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Variable Kinematics and Advanced Variational Statements
for Free Vibrations Analysis of Piezoelectric Plates and

Shells

E. Carrera, S. Brischetto1 and M. Cinefra2

Abstract: This paper investigates the problem of free vibrations of multilayered
plates and shells embedding anisotropic and thickness polarized piezoelectric lay-
ers. Carrera’s Unified Formulation (CUF) has been employed to implement a
large variety of electro-mechanical plate/shell theories. So-called Equivalent Single
Layer and Layer Wise variable descriptions are employed for mechanical and elec-
trical variables; linear to fourth order expansions are used in the thickness direction
z in terms of power of z or Legendre polynomials. Various forms are considered
for the Principle of Virtual Displacements (PVD) and Reissner’s Mixed Variational
Theorem (RMVT) to derive consistent differential electro-mechanical governing
equations. The effect of electro-mechanical stiffness has been evaluated in both
PVD and RMVT frameworks, while the effect of continuity of transverse variables
(transverse shear and normal stresses and transverse normal electric displacement)
has been addressed by comparing various forms of RMVT. According to CUF, gov-
erning equations related to a given variational statement have been written in terms
of fundamental nuclei whose form is independent of the order of expansion and
of the adopted variable description. The numerical results have been restricted to
simply supported orthotropic plates and shells, for which exact three-dimensional
solutions are available. A large numerical investigation has been conducted to com-
pute fundamental and higher vibrations modes. An exhaustive numerical evaluation
of assumptions, related to the various PVD and RMVT forms, is given. Classical,
higher-order, layer-wise and mixed assumptions have been compared to available
three-dimensional solutions. The convenience of hierarchical approaches based on
CUF is shown, along with the suitability of the implemented RMVT forms to ac-
curately trace the free vibration response of piezoelectric plates and shells. RMVT
applications permit the vibration modes of transverse electro-mechanical variables
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to be accurately evaluated in the thickness plate/shell direction

.
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1 Introduction

Piezoelectric materials are one of the most suitable solutions for the design of smart
structures [Im and Atluri (1989)]. These materials use the so-called piezoelectric
effect, which consists of a linear energy conversion between the mechanical and
electric field and viceversa, and this conversion leads to a direct or converse piezo-
electric effect, respectively [Ikeda (1990)]. The main applications of smart struc-
tures are: vibration and noise damping, shape adaptation of aerodynamic surfaces,
active aeroelastic control, shape control of optical and electro-magnetic devices and
health monitoring. Exhaustive overviews on possible applications of smart struc-
tures have been given by Rao and Sunar (1994), Crawley (1994), Chopra (1996),
Tani et al. (1998), Sunar and Rao (1999), and more recently by Chopra (2002) and
Yang (2006). In most applications, smart structures are multilayered anisotropic
plates and shells with strong electro-mechanical coupling. The layers can be made
of traditional metallic or advanced composite materials, as well as sandwich struc-
tures. Piezoelectric layers are embedded in the structures in various forms: one
or more sensor layers (or patches); one or more actuator layers (or patches); a
combination of one or more sensor/actuator layers. Several topics are of interest
in the application of smart structures as well as in their computational simulation:
material modelings, structural modelings and control algorithms. The attention of
this work is restricted to advanced structural modelings for multilayered thickness
polarized piezoelectric plates and shells with emphasis on the vibration response.
In addition to the afore mentioned review papers, further overviews on modelling
are those in Benjeddou (2000), Robbins and Chopra (2006) and Carrera and Bos-
colo (2007). As in any other multilayered structure, improved refined models for
multilayered plates should account for:

• an accurate description of the interlaminar conditions, such as the Zig-Zag
(ZZ) form of displacement in the thickness direction z (rapid change in slope
in correspondence to each layer interface) and the Interlaminar Continuity
(IC) of transverse stresses at each layer interface.
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In Carrera (1995) and Carrera (1997b), ZZ and IC conditions are referred to as
C0

z -requirements. ZZ and IC can be introduced into Equivalent Single Layer ESL
theories by implementing various techniques; according to Reddy (2004), the num-
ber of displacement variables should be kept independent of the number of con-
stitutive layers in the ESL models, while the same variables depend on each layer
in Layer Wise LW cases. A discussion on a historical review of so-called zig-zag
theories has been given in Carrera (2003). Recent works about zigzag models for
the analysis of multilayered piezoelectric structures have been proposed by Kapuria
(2004a), Kapuria (2004b), Kapuria and Achary (2005a) and Kapuria and Kulkarni
(2008). In Carrera (2001) it was established that the Reissner’s Mixed Variational
Theorem (RMVT) [Reissner (1984)] should be considered as the natural extension
of the Principle of Virtual Displacements (PVD) to multilayered structures in view
of the fullfillment of C0

z -requirements. RMVT in fact, permits the compatibility
conditions of transverse shear and normal stress components to be enforced.

The fulfillment of C0
z -requirements remains a crucial point in the development of

appropriate two-dimensional models for multilayered plates and shells embedding
piezolectric layers. Figure 1 shows the distribution of mechanical and electrical
variables in layered plates made of piezoelectric layers. Displacement, in-plane
stress components, electrical potential, transverse stress components and transverse
normal electrical displacement are shown. An extended ’electrical’ form of RMVT
permits the continuity of transverse normal electrical displacement to be fulfilled at
each layer interface as well as the direct evaluation of the electrical charge [Carrera
et al. (2008); Carrera and Nali (2009)]. An alternative method has been proposed in
Chen and Hwu (2010), where the use of Green’s function permits to exactly satisfy
the interface continuity conditions and no meshes are needed along the interface, in
this approach the materials can be any kinds of piezoelectric or anisotropic elastic
materials. The Green’s function is also employed by Wu and Chen (2007) to inves-
tigate the dynamic responses of several piezoelectric materials in order to yield the
displacement or stress fields in the time domain directly.

The attention of the present paper is restricted to a free vibration analysis of mul-
tilayered plates and shells embedding thickness polarized piezoelectric layers. The
afore mentioned review papers discuss most of the available works on this topic.
However, a short review of works which are relevant for this paper is given in the
following. Three-dimensional exact solutions for the free vibration problem have
been provided by Heyliger and Saravanos (1995), where frequencies for the first
three modes are given for both thick and thin multilayered piezoelectric plates.
Kapuria and Achary (2005b) proposed a three-dimensional piezoelasticity solution
for hybrid cross-ply plates where a real mass density, different from the unit value
suggested in Heyliger and Saravanos (1995), was considered. Kapuria and Achary
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Figure 1: C0
z -requirements for multilayered piezoelectric plates. Zig-Zag form and

Interlaminar Continuity for some mechanical and electrical variables. For shell
geometry the reference system (x,y,z) is replaced by (α ,β ,z).

(2005b) investigated also hybrid sandwich configurations where the different val-
ues of the mass density for the embedded layers were more relevant. Du et al.
(2006) investigated the thickness vibrations of a piezoelectric plate using an exact
solution obtained for materials with general anisotropy; the effects of a uniform
biasing acceleration were also considered. A three dimensional theory is presented
in Zhu et al. (2003) for the dynamic stability analysis of piezoelectric circular
cylindrical shells. In this case, results indicate that piezoelectric effects and elec-
tric field have a minor effect on the unstable region with respect to the geometric
parameters and the rigidity of constituent materials. A three dimensional solution
for dynamic analysis of thick laminated shell panels is illustrated in Shakeri et al.
(2006), direct and inverse effects of piezoelectric materials are considered. Appli-
cations of CLT and FSDT to piezoelectric plates have been given by Tiersten (1969)
and Mindlin (1972). In He et al. (1998), numerical and experimental results have
been compared for free vibration analysis of thin plates embedding metallic and
piezoceramic layers, but the transverse normal strain/stress effects were not taken
into account. An annular plate has been considered in Duan et al (2005), where the
free vibration analysis has been conducted using very simple models such as the
Kirchhoff and Reissner-Mindlin plate models; different boundary conditions have
been investigated and FEM solutions have been considered. In Heidary and Eslami
(2006), the linear response of thermopiezoelectric plates is given using the Hamil-
ton principle and the finite element method. Linear shape functions are used and
the First order Shear deformation Theory (FSDT) of laminated plates is consid-
ered. Thermally induced vibration amplitudes are suppressed through application
of electric potential differences across the piezoelectric layers attached to the sur-
faces of the composite plate. The numerical studies demonstrate the effectiveness
of thermal environment, as well as the piezo-control of these thermal deformations
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using piezoelectric structures. As example of a refined theory, the work by Yang
and Yu (1993), is mentioned. The electric field generated by stresses (electrical
stiffness) was not considered in this work. Refined ESL models have been dis-
cussed by Benjeddou and Deü (2001). ESL formulation, taking into account ZZ
and IC, has been discussed by Ossadzow-David and Touratier (2004). Pan and
Heyliger (2002) have shown natural frequencies and shape modes for sandwich
piezoelectric/piezocomposite plates using analytical solutions. Mitchell and Reddy
(1995) introduced a Layer-Wise (LW) description of the electric potential, while
an Equivalent Single Layer (ESL) description was retained for displacements. Han
et al. (2005) have considered the coupling between the elastic and electric field in
each element when characteristics surface waves in hybrid multilayered piezoelec-
tric plates have been investigated. Cupial (2005) has remarked that the capability
of a two-dimensional model to predict vibration modes plays a fundamental role
in both noise damping and health monitoring problems. Ramirez et al. (2006)
calculated the natural frequencies and through-thickness mode behavior of simply
supported and cantilever laminates. An approximated solution for free vibration
problems of two-dimensional magneto-electro-elastic laminates has been presented
to determine their fundamental behavior. The solution for the elastic displacements,
electric potential and magnetic potential is obtained by combining a discrete layer
approach with the Ritz method. Free vibrations of multilayered piezoelectric com-
posite plates can be also found in Zhang et al. (2006), where an analysis was per-
formed using the differential quadratic (DQ) technique to solve three-dimensional
piezoelasticity equations. Solutions for piezoelectric laminates are possible if the
DQ layer-wise modelling technique is implemented. Becker et al. (2006) have pro-
posed a finite element modelling methodology which incorporates both piezoelec-
tric coupling effects and the electrical dynamics of the employed passive electrical
circuits. The effects of the electric boundary conditions and the influence of the
direction of polarization are investigated in Dziatkiewicz and Fedelinski (2007) for
the free vibrations of two-dimensional piezoelectric structures using the dual reci-
procity boundary element method. Further works about shell geometries are listed
in the following. In Wang et al. (2005) the dynamic solution for a multilayered
orthotropic piezoelectric hollow cylinder is obtained by means of a solution split
in two parts: a quasi-static solution in addition to a dynamic one; displacements,
stresses and electric potential are finally obtained. Numerical results for layered
piezoelectric spherical caps and indication of their behavior are given in Wu and
Heyliger (2001). First, only elastic shells are examined to test the accuracy of the
formulation, then solutions for piezoelectric shells are given, they could be a means
of comparison for other techniques and methods. In Zheng et al. (2004) a refined
hybrid piezoelectric shell element formulation is developed for mechanical analysis
and active vibration control of laminated structures bonded to piezoelectric sensors
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and actuators. Benjeddou et al. (2001a) and Benjeddou et al. (2001b) consider
shells of revolution, a finite element implementation is presented. Open circuit
and closed circuit configurations are investigated and different types of modes are
considered, such as bending, radial and torsion ones.

Applications of CUF to piezolectric plates were first given in Carrera (1997a), ZZ
and IC were introduced in the First order Shear Deformation Theory (FSDT). Ball-
hause et al. (2005) gave closed-form solutions for the free vibration problem of
multilayered piezoelectric plates; a quasi-3D formulation was obtained by em-
ploying Carrera’s Unified Formulation (CUF) [Carrera (1995)] and the Principle
of Virtual Displacements (PVD) was extended to the electro-mechanical case. The
closed form solution proposed by Ballhause et al. (2005) for plates was extended to
shell geometry by D’Ottavio et al. (2006). CUF is a variable kinematic framework
which permits a large variety of electro-mechanical plate/shell theories to be imple-
mented: Equivalent Single Layer (ESL) and Layer Wise (LW) variable descriptions
are employed for mechanical and electrical variables; linear to fourth-order expan-
sions are used in the thickness direction z, in terms of power of z and/or Legendre
polynomials. According to CUF, all the governing equations related to a given
variational statement have been written in terms of fundamental nuclei, and their
form is independent of the order of expansion as well as of the adopted variable
description.

It can be concluded that CUF variable kinematic modelings as well as the use of
mixed variational statements could be used to construct appropriate theories for
the analysis of piezoelectric plates and shells in view of the fulfillment of the C0

z -
requirements. The present paper gives a complete discussion of available CUF
modelings, and applications of various classical (PVD) and advanced (RMVT)
statements for the free vibration problems of piezoelectric plates and shells. In
particular, the CUF variable kinematics models are implemented according to the
following variational statements:

• PV D(uuu), the electrical stiffness is neglected (uuu indicates displacement vari-
ables).

• RMV T (uuu,σσσn), the electrical stiffness is neglected and transverse shear/normal
stresses IC are a priori fulfilled (σσσn denotes transverse shear/normal stresses).

• PV D(uuu,Φ), the electrical stiffness is included (Φ is the electric potential).

• RMV T (uuu,Φ ,σσσn), transverse shear/normal stresses IC are a priori fulfilled.

• RMV T (uuu,Φ ,DDDn), transverse normal electric displacement IC is a priori ful-
filled (DDDn is the transverse normal electric displacement).
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• RMV T (uuu,Φ ,σσσn,DDDn), transverse shear/normal stresses and transverse nor-
mal electric displacement IC are a priori fulfilled.

Other applications of RMVT and CUF to piezoelectric plates and shells have been
given in Carrera and Boscolo (2007), Carrera et al. (2008), Carrera and Nali (2009),
Carrera and Brischetto (2007a), Carrera and Brischetto (2007b) and D’Ottavio and
Kröplin (2006). In Carrera and Boscolo (2007) the FEM static analysis of multi-
layered piezoelectric plates was given, in the proposed variational statements the
case RMV T (uuu,Φ ,DDDn) was not considered. Carrera et al. (2008) was an exten-
sion of Carrera and Boscolo (2007), where the magnetic field is also considered.
In Carrera and Nali (2009) the RMV T (uuu,Φ ,DDDn) case was introduced but only
static FEM analysis of multilayered piezoelectric plates was considered. In Car-
rera and Brischetto (2007a) and Carrera and Brischetto (2007b) RMV T (uuu,Φ ,σσσn)
and RMV T (uuu,Φ ,σσσn,DDDn) were extended to the static and dynamic analysis of mul-
tilayered piezoelectric shells, respectively. D’Ottavio and Kröplin (2006) extended
the RMV T (uuu,Φ ,σσσn) to piezoelectric laminates, this variational statement was em-
ployed for the free-vibration problem of multilayered piezoelectric shells. The
present paper gives an exhaustive discussion about each possible extension of PVD
and RMVT variational statement to electro-mechanical analysis of plates and shells,
with emphasis to those variational statements not included in the above cited works.
The governing differential equations related to the various formulations are given
and their closed-form solutions are discussed. A numerical investigation is made
to evaluate fundamental and higher-order modes. The in-house academic MUL2
code [MUL2 (2009)] has been used. Comparisons of classical, higher-order, layer-
wise and mixed assumptions are made. Evaluations of the effect of interlaminar
continuity is given.

The paper has been organized as follows. The various extensions of PVD and
RMVT to electro-mechanical analysis are discussed in Section 2; the related con-
sistent constitutive equations are derived in the same section. Geometrical relations
for plates and shells are described in Section 3, while CUF is dealt with in detail
in Section 4. The governing equations for the dynamic analysis of piezoelectric
plates and shells are derived in Section 5. Closed-form solutions are given in Sec-
tion 6. Governing eigenvalues problem can be found in Section 7. The results are
discussed in Section 8 and the main conclusions are drawn in Section 9. Some
appendices quote a few details of the considered formulations in order to see the
main differences for fundamental nuclei in the case of plate geometry and those in
the case of shell geometry (both open spherical and cylindrical cases).
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2 The considered variational statements

The Principle of Virtual Displacements (PVD) is extended to the electro-mechanical
case by simply adding the virtual internal electric work to the mechanical one. Con-
stitutive equations are obtained from the quadratic form of the Gibbs free-energy
function, written in the case of linear interaction between the mechanical and elec-
trical field [Ikeda (1990); Rogacheva (1994)]. Hooke’s well-known law for the
pure mechanical problem can be considered as a particular case of the more gen-
eral constitutive equations written for the electro-mechanical case [Carrera et al.
(2008)].

Three different extensions of Reissner’s Mixed Variational Theorem (RMVT) to
an electro-mechanical case are here discussed; for each proposed extension, the
constitutive equations must be rearranged and written coherently with the employed
variational statement [Carrera et al. (2008)].

2.1 Extended PVD cases

The PVD(uuu) case

For a multilayered plate or shell, including orthotropic layers, in the case of pure
mechanical problem, the PVD states:

PV D(uuu) :
∫

V
(δεεε

T
pGσσσ pC +δεεε

T
nGσσσnC)dV = δLe +δLin, (1)

subscripts C and G indicate the substitution of constitutive and geometrical rela-
tions, respectively. For plate geometry uuu = (ux,uy,uz) is the displacement vector;
σσσ p = (σxx,σyy,σxy) and σσσn = (σxz,σyz,σzz) are the in-plane and out-plane stress
components, respectively. εεε p = (εxx,εyy,γxy) and εεεn = (γxz,γyz,εzz) are the in-plane
and out-plane strain components, respectively. δLe is the virtual external work and
δLin is the virtual inertial work.

This form of PVD does not include electrical stiffness, so it is denoted as PVD(uuu)
due to the fact that the displacements are the only primary variables. For shell ge-
ometry a curvilinear reference system (α ,β ,z) is employed in place of the rectilinear
one (x,y,z) for the plate (see also Figure 2).

The PVD(uuu,Φ) case

PVD is extended to the electro-mechanical case by simply adding the internal elec-
tric work:

PV D(uuu,Φ) :
∫

V
(δεεε

T
pGσσσ pC +δεεε

T
nGσσσnC−δEEE T

pGDDD pC−δEEE T
nGDDDnC)dV = δLe +δLin ,

(2)
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a) b)
Figure 2: Geometry and notation for a multilayered plate (a) and a multilayered
shell (b).

where EEE p = (Ex,Ey), EEE n = (Ez) and DDD p = (Dx,Dy), DDDn = (Dz) are the in-plane and
out-plane electric field and electric displacement components, respectively. Both
displacement and electric potential are primary variables in PVD(uuu,Φ).

In case of electro-mechanical problem the constitutive equations are obtained from
the Gibbs free-energy function G [Ikeda (1990); Rogacheva (1994)]:

G(ε ,E ) =
1
2

εεε
TCCCεεε− 1

2
EEE T

εεεEEE −EEE Teeeεεε . (3)

CCC is the matrix of elastic coefficients, eee is the matrix of piezoelectric coefficients, εεε

is the matrix of dielectric coefficients. The [6×6] matrix CCC for an orthotropic mate-
rial in the structural reference system assumes the following form [Reddy (2004)]:

CCC =



C11 C12 C16 0 0 C13

C12 C22 C26 0 0 C23

C16 C26 C66 0 0 C36

0 0 0 C55 C45 0

0 0 0 C45 C44 0

C13 C23 C36 0 0 C33


=

 Cpp Cpn

Cnp Cnn

 , (4)

where Cpp, Cpn, Cnp and Cnn are the [3×3] sub-matrices related to in-plane p and
out-plane n strain/stress components.

The matrices for the piezoelectric coupling and for the dielectric coefficients, when
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the poling direction 3 coincides with the layer z direction, are:

eee =

 0 0 0 e15 e14 0
0 0 0 e25 e24 0

e31 e32 e36 0 0 e33

 , εεε =


ε11 ε12 0

ε21 ε22 0

0 0 ε33

 . (5)

Stresses and electric displacement are obtained upon direct differentiation of G as
it follows:

σσσ =
∂G
∂εεε

=
∂

∂εεε
(
1
2

εεε
TCCCεεε− 1

2
EEE T

εεεEEE −EEE Teeeεεε) =CCCεεε−eeeTEEE , (6)

DDD =−∂G
∂EEE

=− ∂

∂EEE
(
1
2

εεε
TCCCεεε− 1

2
EEE T

εεεEEE −EEE Teeeεεε) = eeeεεε +εεεEEE . (7)

EEE = (Ex,Ey,Ez) is the [3×1] electric field vector, εεε = (εxx,εyy,γxy,γxz,γyz,εzz) is
the [6×1] strain vector, σσσ = (σxx,σyy,σxy,σxz,σyz,σzz) is the [6×1] stress vector,
DDD = (Dx,Dy,Dz) is the [3×1] electric displacement vector.

The correspondent constitutive equations are herein split in in-plane and out-plane
components:

σσσ pC =
∂G
∂εεε p

=CCCppεεε pG +CCCpnεεεnG−eeeT
ppEEE pG−eeeT

npEEE nG , (8)

σσσnC =
∂G
∂εεεn

=CCCnpεεε pG +CCCnnεεεnG−eeeT
pnEEE pG−eeeT

nnEEE nG , (9)

DDD pC =− ∂G
∂EEE p

= eeeppεεε pG +eeepnεεεnG +εεε ppEEE pG +εεε pnEEE nG , (10)

DDDnC =− ∂G
∂EEE n

= eeenpεεε pG +eeennεεεnG +εεεnpEEE pG +εεεnnEEE nG , (11)

where

epp =

 0 0 0

0 0 0

 , epn =

 e15 e14 0

e25 e24 0

 , (12)

enp =
[

e31 e32 e36
]

, enn =
[

0 0 e33
]

,

εεε pp =

 ε11 ε12

ε12 ε22

 , εεε pn =

 0

0

 , εεεnp =
[

0 0
]

, εεεnn =
[

ε33
]

.
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From Eqs.(8)-(11), in case of pure mechanical problem, the classical Hooke law is
obtained:

σσσ p =CCCppεεε p +CCCpnεεεn , (13)

σσσn =CCCnpεεε p +CCCnnεεεn . (14)

Eqs.(8)-(11) are the consistent constitutive equations for the variational statement
PVD(uuu,Φ) at Eq.(2), while Eqs.(13) and (14) are the constitutive equations consis-
tent to the PVD(uuu) in Eq.(1).

For shell geometry a curvilinear reference system (α ,β ,z) is employed in place of
the rectilinear one (x,y,z) for the plate (see also Figure 2).

2.2 Extended RMVT cases

The RMVT(uuu,Φ ,σσσn) case

Reissner’s Mixed Variational Theorem (RMVT) for the pure mechanical case as-
sumes transverse shear/normal stresses and displacement as independent variables
[Reissner (1984)]:

RMV T (uuu,σσσn) :
∫

V
(δεεε

T
pGσσσ pC +δεεε

T
nGσσσnM +δσσσ

T
nM(εεεnG−εεεnC))dV = δLe +δLin ,

(15)

a Lagrange multiplier δσσσnM is added to permit to assume a priori interlaminar con-
tinuous transverse stresses σσσnM (subscript M means modelled variables). RMVT
permits therefore the fulfillment a priori of C0

z -requirements for transverse shear/normal
stresses.

A partial extension of RMVT to electro-mechanical problems is obtained simply
adding the virtual internal electric work [Carrera and Brischetto (2007a)]:

RMV T (uuu,Φ ,σσσn) :
∫

V
(δεεε

T
pGσσσ pC +δεεε

T
nGσσσnM +δσσσ

T
nM(εεεnG−εεεnC)− (16)

δEEE T
pGDDD pC−δEEE T

nGDDDnC)dV = δLe +δLin ,

displacement uuu, electric potential Φ and transverse shear/normal stresses σσσn are
primary variables. The related constitutive equations are obtained from Eqs.(8)-
(11) by considering σσσ p, εεεn, DDD p and DDDn:

σσσ pC = ĈCCσpεpεεε pG +ĈCCσpσnσσσnM +ĈCCσpEpEEE pG +ĈCCσpEnEEE nG , (17)

εεεnC = ĈCCεnεpεεε pG +ĈCCεnσnσσσnM +ĈCCεnEpEEE pG +ĈCCεnEnEEE nG , (18)

DDD pC = ĈCCDpεpεεε pG +ĈCCDpσnσσσnM +ĈCCDpEpEEE pG +ĈCCDpEnEEE nG , (19)
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DDDnC = ĈCCDnεpεεε pG +ĈCCDnσnσσσnM +ĈCCDnEpEEE pG +ĈCCDnEnEEE nG , (20)

where:

ĈCCσpεp =CCCpp−CCCpnCCC−1
nn CCCnp , ĈCCσpσn =CCCpnCCC−1

nn , ĈCCσpEp =CCCpnCCC−1
nn eeeT

pn−eeeT
pp ,

ĈCCσpEn =CCCpnCCC−1
nn eeeT

nn−eeeT
np , ĈCCεnεp =−CCC−1

nn CCCnp , ĈCCεnσn =CCC−1
nn ,

ĈCCεnEp =CCC−1
nn eeenp , ĈCCεnEn =CCC−1

nn eeenn , ĈCCDpεp = eeepp−eeepnCCC−1
nn CCCnp ,

ĈCCDpσn = eeepnCCC−1
nn , ĈCCDpEp = eeepnCCC−1

nn eeeT
pn +εεε pp ,

ĈCCDpEn = eeepnCCC−1
nn eeeT

nn +εεε pn , ĈCCDnεp = eeenp−eeennCCC−1
nn CCCnp , ĈCCDnσn = eeennCCC−1

nn , (21)

ĈCCDnEp = eeennCCC−1
nn eeeT

pn +εεεnp , ĈCCDnEn = eeennCCC−1
nn eeeT

nn +εεεnn .

RMVT(uuu,σσσn) for the pure mechanical case can be considered as a particular case
of the RMVT(uuu,Φ ,σσσn). That is Eqs.(17)-(20) degenerate for the pure mechanical
case as:

σσσ pC = ĈCCσpεpεεε pG +ĈCCσpσnσσσnM , (22)

εεεnC = ĈCCεnεpεεε pG +ĈCCεnσnσσσnM . (23)

The RMVT(uuu,Φ ,DDDn) case

The second extension of RMVT to electro-mechanical case, implemented in this
work, considers the transverse normal electric displacement DDDn as primary vari-
able, for details readers can refer to Carrera and Nali (2009):

RMV T (uuu,Φ ,DDDn) :
∫

V
(δεεε

T
pGσσσ pC +δεεε

T
nGσσσnC−δEEE T

pGDDD pC−δEEE T
nGDDDnM− (24)

δDDDT
nM(EEE nG−EEE nC))dV = δLe +δLin ,

the added Lagrange multiplier δDDDnM permits to assume an independent interlami-
nar continuous transverse normal electric displacement DDDn.

The constitutive equations are obtained from Eqs.(8)-(11) by expressing σσσ p, σσσn,
DDD p and EEE n:

σσσ pC = C̄CCσpεpεεε pG +C̄CCσpεnεεεnG +C̄CCσpEpEEE pG +C̄CCσpDnDDDnM , (25)

σσσnC = C̄CCσnεpεεε pG +C̄CCσnεnεεεnG +C̄CCσnEpEEE pG +C̄CCσnDnDDDnM , (26)

DDD pC = C̄CCDpεpεεε pG +C̄CCDpεnεεεnG +C̄CCDpEpEEE pG +C̄CCDpDnDDDnM , (27)

EEE nC = C̄CCEnεpεεε pG +C̄CCEnεnεεεnG +C̄CCEnEpEEE pG +C̄CCEnDnDDDnM , (28)

where:

C̄CCσpεp =CCCpp +eeeT
npεεε
−1
nn eeenp , C̄CCσpεn =CCCpn +eeeT

npεεε
−1
nn eeenn , C̄CCσpEp = eeeT

npεεε
−1
nn εεεnp−eeeT

pp ,
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C̄CCσpDn =−eeeT
npεεε
−1
nn , C̄CCσnεp =CCCnp +eeeT

nnεεε
−1
nn eeenp , C̄CCσnεn =CCCnn +eeeT

nnεεε
−1
nn eeenn ,

C̄CCσnEp = eeeT
nnεεε
−1
nn εεεnp−eeeT

pn , C̄CCσnDn =−eeeT
nnεεε
−1
nn , C̄CCDpεp = eeepp−εεε pnεεε

−1
nn eeenp , (29)

C̄CCDpεn = eeepn−εεε pnεεε
−1
nn eeenn , C̄CCDpEp = εεε pp−εεε pnεεε

−1
nn εεεnp , C̄CCDpDn = εεε pnεεε

−1
nn ,

C̄CCEnεp =−εεε
−1
nn eeenp , C̄CCEnεn =−εεε

−1
nn eeenn , C̄CCEnEp =−εεε

−1
nn εεεnp C̄CCEnDn = εεε

−1
nn .

To be noticed that in this RMVT case, the constitutive equations for pure mechan-
ical case cannot be derived as a particular case of Eqs.(25)-(28) because the mod-
elled variables are different: transverse stresses in Eq.(16) and transverse normal
electric displacement in Eq.(24), in fact, two different Lagrange multipliers are
considered.

The RMVT(uuu,Φ ,σσσn,DDDn) case

The third, full extension case of RMVT to electro-mechanical problems considers
both transverse shear/normal stresses σσσn and transverse normal electrical displace-
ment DDDn as primary variables:

RMV T (uuu,Φ ,σσσn,DDDn) :
∫

V
(δεεε

T
pGσσσ pC +δεεε

T
nGσσσnM−δEEE T

pGDDD pC−δEEE T
nGDDDnM+

δσσσ
T
nM(εεεnG−εεεnC)−δDDDT

nM(EEE nG−EEE nC))dV = δLe +δLin .

(30)

The full extension of RMVT permits the complete fulfillment of C0
z -requirements

for both transverse shear/normal stresses and transverse normal electric displace-
ment.

The constitutive equations are obtained from Eqs.(8)-(11) by expressing σσσ p, εεεn,
DDD p and EEE n:

σσσ pC = C̃CCσpεpεεε pG +C̃CCσpσnσσσnM +C̃CCσpEpEEE pG +C̃CCσpDnDDDnM , (31)

εεεnC = C̃CCεnεpεεε pG +C̃CCεnσnσσσnM +C̃CCεnEpEEE pG +C̃CCεnDnDDDnM , (32)

DDD pC = C̃CCDpεpεεε pG +C̃CCDpσnσσσnM +C̃CCDpEpEEE pG +C̃CCDpDnDDDnM , (33)

EEE nC = C̃CCEnεpεεε pG +C̃CCEnσnσσσnM +C̃CCEnEpEEE pG +C̃CCEnDnDDDnM . (34)

The explicit form of the matrices in Eqs.(31)-(34) is:

C̃CCσpεp =CCCpp−CCCpnCCC−1
nn CCCnp− (CCCpnCCC−1

nn eeeT
nn−eeeT

np)(eeennCCC−1
nn eeeT

nn +εεεnn)−1

(eeenp−eeennCCC−1
nn CCCnp) ,

C̃CCσpσn =CCCpnCCC−1
nn − (CCCpnCCC−1

nn eeeT
nn−eeeT

np)(eeennCCC−1
nn eeeT

nn +εεεnn)−1(eeennCCC−1
nn ) ,

C̃CCσpEp =CCCpnCCC−1
nn eeeT

pn−eeeT
pp− (CCCpnCCC−1

nn eeeT
nn−eeeT

np)(eeennCCC−1
nn eeeT

nn +εεεnn)−1
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(eeennCCC−1
nn eeeT

pn +εεεnp) ,

C̃CCσpDn = (CCCpnCCC−1
nn eeeT

nn−eeeT
pn)(eeennCCC−1

nn eeeT
nn +εεεnn)−1 ,

C̃CCεnεp =−CCC−1
nn CCCnp−CCC−1

nn eeeT
nn(eeennCCC−1

nn eeeT
nn +εεεnn)−1(eeennCCC−1

nn CCCnp−eeenp) ,

C̃CCεnσn =CCC−1
nn −CCC−1

nn eeeT
nn(eeennCCC−1

nn eeeT
nn +εεεnn)−1eeennCCC−1

nn ,

C̃CCεnEp =CCC−1
nn eeeT

pn−CCC−1
nn eeeT

nn(eeennCCC−1
nn eeeT

nn +εεεnn)−1(eeennCCC−1
nn eeenp +εεεnp) ,

C̃CCεnDn =CCC−1
nn eeeT

nn(eeennCCC−1
nn eeeT

nn +εεεnn)−1 ,

C̃CCDpεp = eeepp−eeepnCCC−1
nn CCCnp−eeepnCCC−1

nn eeeT
nn(eeennCCC−1

nn eeeT
nn +εεεnn)−1(eeenp−eeennCCC−1

nn CCCnp)

−εεε pn(eeennCCC−1
nn eeeT

nn +εεεnn)−1(eeenp−eeennCCC−1
nn CCCnp) , (35)

C̃CCDpσn = eeepnCCC−1
nn −eeepnCCC−1

nn eeeT
nn(eeennCCC−1

nn eeeT
nn +εεεnn)−1eeennCCC−1

nn

−εεε pn(eeennCCC−1
nn eeeT

nn +εεεnn)−1eeennCCC−1
nn ,

C̃CCDpEp = εεε pp +eeepnCCC−1
nn eeeT

pn−eeepnCCC−1
nn eeeT

nn(eeennCCC−1
nn eeeT

nn +εεεnn)−1(eeennCCC−1
nn eeenp +εεεnp)

−εεεnp(eeennCCC−1
nn eeeT

nn +εεεnn)−1(eeennCCC−1
nn eeeT

pn +εεεnp) ,

C̃CCDpDn = eeepnCCC−1
nn eeeT

nn(eeennCCC−1
nn eeeT

nn +εεεnn)−1 +εεε pn(eeennCCC−1
nn eeeT

nn +εεεnn) ,

C̃CCEnεp =−(eeennCCC−1
nn eeeT

nn +εεεnn)−1(eeeT
pn−eeennCCC−1

nn CCCnp) ,

C̃CCEnσn =−(eeennCCC−1
nn eeeT

nn +εεεnn)−1eeennCCC−1
nn ,

C̃CCEnEp =−(eeennCCC−1
nn eeeT

nn +εεεnn)−1(eeennCCC−1
nn eeeT

pn +εεεnp) ,

C̃CCEnDn = (eeennCCC−1
nn eeeT

nn +εεεnn)−1 .

3 Geometrical relations

Shells are bi-dimensional structures in which one dimension (in general the thick-
ness in z direction) is negligible with respect to the other two in-plane dimensions.
Geometry and the reference system are indicated in Figure 2. The square of an in-
finitesimal linear segment in the layer, the associated infinitesimal area and volume
are given by:

ds2
k = Hk

α

2
dα

2
k + Hk

β

2
dβ

2
k +Hk

z
2

dz2
k , (36)

dΩk = Hk
αHk

β
dαk dβk , (37)

dVk = Hk
α Hk

β
Hk

z dαk dβk dzk , (38)

where the metric coefficients are:

Hk
α = Ak(1+ zk/Rk

α), Hk
β

= Bk(1+ zk/Rk
β
), Hk

z = 1 . (39)

k denotes the k-layer of the multilayered shell; Rk
α and Rk

β
are the principal radii of

curvature along the coordinates αk and βk, respectively. Ak and Bk are the coeffi-
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cients of the first fundamental form of Ωk (Γk is the Ωk boundary). In this paper,
the attention has been restricted to shells with constant radii of curvature (cylin-
drical, open spherical panels, toroidal geometries) for which Ak = Bk = 1. Details
for shells are reported in Leissa (1973). Eqs.(36)-(38) demonstrate as a LW rep-
resentation of the curvature terms is employed for both ESL and LW kinematics
models.

Geometrical relations permit to express the in-plane εεε p and out-plane εεεn strains
in terms of displacement uuu, and the in-plane components EEE p and out-plane com-
ponents EEE n of electric field in terms of the electric potential Φ . The following
relations hold:

εεε
k
pG = [εk

αα ,εk
ββ

,γk
αβ

]T = (DDDk
p +AAAk

p) uuuk,

εεε
k
nG = [γk

αz,γ
k
β z,ε

k
zz]

T = (DDDk
nΩ +DDDk

nz−AAAk
n) uuuk , (40)

EEE k
pG = [E k

α ,E k
β
]T =−DDDk

eΩ Φ
k , EEE k

nG = [E k
z ]T =−DDDk

en Φ
k .

The explicit form of the introduced arrays follows:

DDDk
p =


∂α

Hk
α

0 0

0 ∂β

Hk
β

0
∂β

Hk
β

∂α

Hk
α

0

 , DDDk
nΩ =


0 0 ∂α

Hk
α

0 0 ∂β

Hk
β

0 0 0

 , DDDk
nz =

∂z 0 0
0 ∂z 0
0 0 ∂z

 , (41)

DDDk
eΩ =

 ∂α

Hk
α

∂β

Hk
β

 , DDDk
en =

[
∂z
]
, AAAk

p =

0 0 1
Hk

α Rk
α

0 0 1
Hk

β
Rk

β

0 0 0

 , AAAk
n =


1

Hk
α Rk

α

0 0
0 1

Hk
β

Rk
β

0

0 0 0

 .

Geometrical relations for shells degenerate in those for plates when the radii of
curvature Rk

α and Rk
β

are infinite, and metric coefficients Hk
α and Hk

β
are equal to

one (see Eq.(44)).

In the case of plate geometry the square of an infinitesimal linear segment, the
associated infinitesimal area and volume of the generic k-layer are given by:

ds2
k = dx2

k + dy2
k + dz2

k , dΩk = dxk dyk , dVk = dxk dyk dzk , (42)

(x,y,z) is the orthogonal cartesian reference system and k is the indicative of the
layer, the following relations hold:

εεε
k
pG = [εk

xx,ε
k
yy,γ

k
xy]

T = DDDp uuuk , εεε
k
nG = [γk

xz,γ
k
yz,ε

k
zz]

T = (DDDnΩ +DDDnz) uuuk (43)

EEE k
pG = [E k

x ,E k
y ]T =−DDDeΩ Φ

k , EEE k
nG = [E k

z ]T =−DDDen Φ
k .
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The explicit form of the introduced arrays follows:

DDDp =

∂x 0 0
0 ∂y 0
∂y ∂x 0

 , DDDnΩ =

0 0 ∂x

0 0 ∂y

0 0 0

 , DDDnz =

∂z 0 0
0 ∂z 0
0 0 ∂z

 , (44)

DDDeΩ =
[

∂x

∂y

]
, DDDen =

[
∂z
]

.

4 Variable kinematics plate/shell modelings via Carrera’s Unified Formula-
tion

Carrera’s Unified Formulation (CUF) is a technique that permits to handle in a uni-
fied manner a large variety of bi-dimensional plate/shell models. CUF [Carrera
(1995); Carrera (2002)] permits to express the considered three-dimensional 3D
variables in terms of a set of thickness functions depending only on the thickness
coordinate z and two-dimensional variables depending on the in-plane coordinates
(x,y). According to CUF, the governing equations are written in terms of a few fun-
damental nuclei which do not formally depend on: - the order of expansion N used
in the z-direction; - variables description (Layer Wise (LW) or Equivalent Single
Layer (ESL)). By expanding these fundamental nuclei in according to opportune
indexes, the governing equations of the structure can be obtained. For a generic 3D
variable aaa, the following expression is written:

aaa(x,y,z) = Fτ(z)aaaτ(x,y) , (45)

the same is done for its variation:

δaaa(x,y,z) = Fs(z)δaaas(x,y) . (46)

The order of expansion ranges from first to fourth order, and depending on the
used thickness functions, a model can be: ESL when the variable is assumed for
the whole multilayer (see Figure 3) and LW when the variable is considered for
each layer (see Figure 4). In case of an ESL theory, zig-zag forms of displace-
ment variables can be accounted (see Figure 5) by means of Murakami function
[Murakami (1986); Carrera (2004)]. The expansion used in Eqs.(45) and (46) are
also employed for shell geometry when a curvilinear reference system (α ,β ,z) is
assumed.

4.1 Equivalent Single Layer theories

In case of electro-mechanical problem the assumed variables are the displacements
uuu and the electric potential Φ . If Reissner’s Mixed Variational Theorem (RMVT) is
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a)

ED1
ED3

b)
Figure 3: Generic variable through the thickness direction z in Equivalent Single
Layer form for plate (a) and shell (b) geometries.

a)

LD1
LD3

b)
Figure 4: Generic variable through the thickness direction z in Layer Wise form for
plate (a) and shell (b) geometries.

a)

zigzag
ED3 EDZ3

b)
Figure 5: Addition of Murakami zig-zag function to ESL models for plate (a) and
shell (b) geometries.
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used, other variables such as transverse shear/normal stresses σσσn and/or transverse
normal electric displacement DDDn can be also assumed. In this work only the dis-
placement uuu can be modelled as ESL or LW, the other variables are always assumed
in LW form. So a model is said ESL or LW depending on the choice made for the
displacement variables.

The expansion in the thickness direction z for ESL theories coincides to Taylor
expansion:

uuu = F0 uuu0 + F1 uuu1 + . . . + FN uuuN = Fτ uuuτ with τ = 0,1, . . . ,N , (47)

N is the order of expansion and the thickness functions are:

F0 = z0 = 1, F1 = z1 = z, . . . , FN = zN , (48)

the order of expansion N ranges from 1 to 4, that is from linear to fourth order.

Typical zig-zag form of displacements can be recovered by means of Murakami
zigzag function (MZZF) [Murakami (1986)] as described in Figure 5. This function
is M(z) = (−1)kζ k where ζk = 2zk/hk is a non-dimensional layer coordinate (zk is
the physical coordinate of the k-layer whose thickness is hk) which goes from −1
to +1:

uuu = F0 uuu0 + F1 uuu1 + . . . + FN uuuN + (−1)k
ζkuuuZ = Fτ uuuτ +(−1)k

ζkuuuZ (49)

with τ = 0,1, . . . ,N.

The exponent k changes the sign of the zig-zag term in each layer. Such an artifice
permits one to reproduce the discontinuity of the first derivative of the displacement
variables in the z-direction, see Figure 5.

4.2 Layer Wise theories

In the case of Layer Wise (LW) models, the considered variables are modelled in
each layer k. For electro-mechanical problems the expansions in z direction are:

(uuuk,σσσ k
nM,Φk,DDDk

nM) = Ft (ukukuk,σσσ k
nM,Φk,DDDk

nM)t + Fb (ukukuk,σσσ k
nM,Φk,DDDk

nM)b

+ Fr(ukukuk,σσσ k
nM,Φk,DDDk

nM)r

= Fτ (ukukuk,σσσ k
nM,Φk,DDDk

nM)τ

(50)

where

τ = t,b,r with r = 2, . . . ,N , (51)

t and b are the top and bottom values, and r the higher order terms of expansion.
The thickness functions Fτ(ζk) have been defined at the k-layer level, they are a
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linear combination of Legendre polynomials Pj = Pj(ζk) of the jth-order defined in
ζk-domain (−1≤ ζk ≤ 1). The first five Legendre polynomials are:

P0 = 1, P1 = ζk, P2 =
(3ζk

2−1)
2

, P3 =
5ζk

3

2
− 3ζk

2
, P4 =

35ζk
4

8
− 15ζk

2

4
+

3
8

,

(52)

and:

Ft =
P0 +P1

2
, Fb =

P0−P1

2
, Fr = Pr−Pr−2 with r = 2, . . . ,N . (53)

The chosen functions have the following interesting properties:

ζk = 1 : Ft = 1; Fb = 0; Fr = 0 , (54)

ζk =−1 : Ft = 0; Fb = 1; Fr = 0 . (55)

Eqs.(54) and (55) permit to consider interface values of the variables as unknown
variables, this fact permits to impose the compatibility and/or equilibrium condi-
tions at each layer interface.

4.3 Acronyms system

Several refined and advanced two-dimensional models can be obtained according
to what in Sections 4.1 and 4.2. Depending on the used variational statement (PVD
or RMVT), variables description (LW, ESL or ESL with MZZF), order of expan-
sion N in z, a large variety of kinematics plate/shell theories is obtained. A system
of acronyms is given in order to denote these models. The first letter indicates
the multilayer approach which can be Equivalent Single Layer (E) or Layer Wise
(L). The second letter refers to the employed variational statement: D for Principle
of Virtual Displacements and M for Reissner’s Mixed Variational Theorem. The
number N indicates the order of expansion used in the z-direction (from 1 to 4).
In the case of ESL approach, a letter Z can be added if the zigzag effect of dis-
placements is considered by means of MZZF. Summarizing, ED1−ED4 are ESL
models based on PVD and EM1−EM4 are ESL models based on RMVT. If Mu-
rakami zigzag function is used, these equivalent single layer models are indicated
as EDZ1−EDZ3 and EMZ1−EMZ3, respectively. In the case of layer wise ap-
proaches, the letter L is considered in place of E, so the acronyms are LD1−LD4
and LM1− LM4. Classical theories such as Classical Lamination Theory (CLT)
and First order Shear Deformation Theory (FSDT) can be obtained as particular
cases of ED1 theory simply imposing a constant value of uz through the thick-
ness direction. An appropriate application of penalty technique to shear correction
factor leads to CLT.
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5 Governing equations

The steps to obtain the consistent governing equations are: - choice of the oppor-
tune variational statement (PVD or RMVT); - substitutions of consistent constitu-
tive equations; - use of geometrical relations for plates and shells; - introduction of
CUF for the two-dimensional approximation.

5.1 The classical PVD electro-mechanical case

The complete procedure to obtain governing equations, boundary conditions and
fundamental nuclei for PVD case extended to electro-mechanical problem is here
discussed (see Ballhause et al. (2005)). The variational statement, as obtained in
Eq.(2), and written for a multilayered structure is:

PV D(uuu,Φ) :
Nl

∑
k=1
{
∫

Ωk

∫
Ak

{δεεε
kT
pGσσσ

k
pC +δεεε

kT
nGσσσ

k
nC−δEEE kT

pGDDDk
pC−δEEE kT

nGDDDk
nC}dΩkdzk}

=
Nl

∑
k=1

(δLk
in +δLk

e) , (56)

where k denotes the layer and Nl is the number of layers embedded in the multilay-
ered structure. Ωk is the in-plane integration domain, Ak denotes domain in the z
direction. Upon substitution of the correspondent constitutive equations (Eqs.(8)-
(11)) in Eq.(56) one has:

Nl

∑
k=1
{
∫

Ωk

∫
Ak

{δεεε
kT
pG(CCCk

ppεεε
k
pG +CCCk

pnεεε
k
nG−eeekT

ppEEE
k
pG−eeekT

npEEE
k
nG)+

δεεε
kT
nG(CCCk

npεεε
k
pG +CCCk

nnεεε
k
nG−eeekT

pnEEE
k
pG−eeekT

nnEEE k
nG)−

δEEE kT
pG(eeek

ppεεε
k
pG +eeek

pnεεε
k
nG +εεε

k
ppEEE

k
pG +εεε

k
pnEEE

k
nG)−

δEEE kT
nG(eeek

npεεε
k
pG +eeek

nnεεε
k
nG +εεε

k
npEEE

k
pG +εεε

k
nnEEE

k
nG)}dΩkdzk}=

Nl

∑
k=1

(δLk
in +δLk

e) .

(57)
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5.1.1 Plate geometry

If the geometrical relations for plate geometry (Eqs.(43)) are substituted where the
subscript G appears in Eq.(57), the PVD becomes:

Nl

∑
k=1
{
∫

Ωk

∫
Ak

{(DDDpδuuuk)T (CCCk
ppDDDpuuuk +CCCk

pn(DDDnΩ +DDDnz)uuuk +eeekT
ppDDDeΩΦ

k +eeekT
npDDDenΦ

k)+

((DDDnΩ +DDDnz)δuuuk)T (CCCk
npDDDpuuuk +CCCk

nn(DDDnΩ +DDDnz)uuuk +eeekT
pnDDDeΩΦ

k +eeekT
nnDDDenΦ

k)−
(−DDDeΩδΦ

k)T (eeek
ppDDDpuuuk +eeek

pn(DDDnΩ +DDDnz)uuuk−εεε
k
ppDDDeΩΦ

k−εεε
k
pnDDDenΦ

k)−
(−DDDenδΦ

k)T (eeek
npDDDpuuuk +eeek

nn(DDDnΩ +DDDnz)uuuk−εεε
k
npDDDeΩΦ

k−εεε
k
nnDDDenΦ

k)}dΩkdzk}

=
Nl

∑
k=1

(δLk
in +δLk

e) .

(58)

Upon substitution of two-dimensional approximation by means of CUF, the follow-
ing form is obtained:

Nl

∑
k=1
{
∫

Ωk

∫
Ak

{
(
DDDpδuuuk

s
)T Fs

(
CCCk

ppDDDpFτuuuk
τ+

CCCk
pn(DDDnΩ +DDDnz)Fτuuuk

τ +eeekT
ppDDDeΩFτΦ

k
τ +eeekT

npDDDenFτΦ
k
τ

)
+(

(DDDnΩ +DDDnz)δuuuk
s
)T Fs

(
CCCk

npDDDpFτuuuk
τ+

CCCk
nn(DDDnΩ +DDDnz)Fτuuuk

τ +eeekT
pnDDDeΩFτΦ

k
τ +eeekT

nnDDDenFτΦ
k
τ

)
−(

−DDDeΩδΦ
k
s
)T Fs

(
eeek

ppDDDpFτuuuk
τ +eeek

pn(DDDnΩ +DDDnz)Fτuuuk
τ−

εεε
k
ppDDDeΩFτΦ

k
τ −εεε

k
pnDDDenFτΦ

k
τ

)
−
(
−DDDenδΦ

k
s
)T Fs

(
eeek

npDDDpFτuuuk
τ+

eeek
nn(DDDnΩ +DDDnz)Fτuuuk

τ −εεε
k
npDDDeΩFτΦ

k
τ −εεε

k
nnDDDenFτΦ

k
τ

)
}dΩkdzk}=

Nl

∑
k=1

(δLk
in +δLk

e) .

(59)

In order to obtain a strong form of differential equations on the domain Ωk, as well
as the correspondence boundary conditions on edge Γk, the integration by parts
must be employed. This latter permits to move the differential operator from the
infinitesimal variation of the generic variable δaaak to the finite quantity aaak [Carrera
(2002)]. For a generic variable aaak, the integration by parts states:

∫
Ωk

(
(DDDΩ)δaaak

)T
aaakdΩk =
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−
∫

Ωk

δaaakT
(
(DDDΩ)Taaak

)
dΩk +

∫
Γk

δaaakT
(
(IIIΩ)Taaak

)
dΓk , (60)

where Ω = p,nΩ,eΩ. The following additional arrays have been introduced to
perform integration by parts:

Ip =


1 0 0

0 1 0

1 1 0

 ;InΩ =


0 0 1

0 0 1

0 0 0

 ;IeΩ =

 1

1

 . (61)

After the integration by parts, the PVD assumes the following form:

Nl

∑
k=1
{
∫

Ωk

∫
Ak

{δuuukT
s [(−DDDp)T Fs(CCCk

ppDDDpFτuuuk
τ+

CCCk
pn(DDDnΩ +DDDnz)Fτuuuk

τ +eeekT
ppDDDeΩFτΦ

k
τ +eeekT

npDDDenFτΦ
k
τ )]+

δuuukT
s [(−DDDnΩ +DDDnz)T Fs(CCCk

npDDDpFτuuuk
τ+

CCCk
nn(DDDnΩ +DDDnz)Fτuuuk

τ +eeekT
pnDDDeΩFτΦ

k
τ +eeekT

nnDDDenFτΦ
k
τ )]+

δΦ
kT
s [(−DDDeΩ)T Fs(eeek

ppDDDpFτuuuk
τ +eeek

pn(DDDnΩ +DDDnz)Fτuuuk
τ−

εεε
k
ppDDDeΩFτΦ

k
τ −εεε

k
pnDDDenFτΦ

k
τ )]+δΦ

kT
s [(DDDen)T Fs(eeek

npDDDpFτuuuk
τ+

eeek
nn(DDDnΩ +DDDnz)Fτuuuk

τ −εεε
k
npDDDeΩFτΦ

k
τ −εεε

k
nnDDDenFτΦ

k
τ )]}dΩkdzk}

+
Nl

∑
k=1
{
∫

Γk

∫
Ak

{δuuukT
s [IIIT

p Fs(CCCk
ppDDDpFτuuuk

τ+

CCCk
pn(DDDnΩ +DDDnz)Fτuuuk

τ +eeekT
ppDDDeΩFτΦ

k
τ +eeekT

npDDDenFτΦ
k
τ )]+

δuuukT
s [IIIT

nΩFs(CCCk
npDDDpFτuuuk

τ+

CCCk
nn(DDDnΩ +DDDnz)Fτuuuk

τ +eeekT
pnDDDeΩFτΦτ +eeekT

nnDDDenFτΦ
k
τ )]+

δΦ
kT
s [IIIT

eΩFs(eeek
ppDDDpFτuuuk

τ +eeek
pn(DDDnΩ +DDDnz)Fτuuuk

τ−
εεε

k
ppDDDeΩFτΦ

k
τ −εεε

k
pnDDDenFτΦ

k
τ )]}dΓkdzk}

=−
Nl

∑
k=1
{
∫

Ωk

∫
Ak

(δuuukT
s ρ

kFsFτ ü̈üuk
τ)dΩkdzk}+

Nl

∑
k=1
{
∫

Ωk

δuuukT
s Fspppk

u +δΦ
kT
s Fspppk

Φ)dΩk} .

(62)

The governing equations on the domain Ωk are:

δuuuk
s : KKKkτs

uu uuuk
τ +KKKkτs

uΦ Φ
k
τ = PPPk

us−MMMkτsü̈üuk
τ , (63)

δΦ
k
s : KKKkτs

Φuuuuk
τ +KKKkτs

ΦΦ Φ
k
τ = PPPk

Φs ,
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where ü̈üuk
τ denotes the second derivative with respect to the time of the displacement

components. MMMkτs is the fundamental nucleus for the inertial array. KKKkτs
uu , KKKkτs

uΦ
,

KKKkτs
Φu and KKKkτs

ΦΦ
are the so-called fundamental nuclei of electro-mechanical stiffness

array. PPPk
us and PPPk

Φs are the consistent variationally mechanical and electric loads,
respectively.
Boundary conditions of Dirichlet type are:

uuuk
τ = ū̄ūuk

τ , (64)

Φ
k
τ = Φ̄

k
τ ,

Boundary conditions of Neumann type are:

ΠΠΠ
kτs
uu uuuk

τ +ΠΠΠ
kτs
uΦ Φ

k
τ = ΠΠΠ

kτs
uu ū̄ūuk

τ +ΠΠΠ
kτs
uΦ Φ̄

k
τ ,

ΠΠΠ
kτs
Φuuuuk

τ +ΠΠΠ
kτs
ΦΦ Φ

k
τ = ΠΠΠ

kτs
Φuū̄ūuk

τ +ΠΠΠ
kτs
ΦΦ Φ̄

k
τ . (65)

The fundamental nuclei are:

KKKkτs
uu =

∫
Ak

[
[−DDDp]T CCCk

ppDDDp +[−DDDp]T CCCk
pn[DDDnΩ +DDDnz]+ (66)

[−DDDnΩ +DDDnz]T CCCk
npDDDp +[−DDDnΩ +DDDnz]T CCCk

nn[DDDnΩ +DDDnz]
]
FτFs dz ,

KKKkτs
uΦ =−

∫
Ak

[
[−DDDp]T eeekT

ppDDDeΩ +[−DDDp]T eeekT
npDDDen+ (67)

[−DDDnΩ +DDDnz]T eeekT
pnDDDeΩ +[−DDDnΩ +DDDnz]T eeekT

nnDDDen

]
FτFs dz ,

KKKkτs
Φu =−

∫
Ak

[
[−DDDeΩ]T (eeek

ppDDDp +eeek
pn[DDDnΩ +DDDnz]+ [DDDen]T (eeek

npDDDp+ (68)

eeek
nn[DDDnΩ +DDDnz])

]
FτFs dz ,

KKKkτs
ΦΦ =−

∫
Ak

[
[−DDDeΩ]T (−εεε

k
ppDDDeΩ)+ [−DDDeΩ]T (−εεε

k
pnDDDen)+ (69)

[DDDen]T (−εεε
k
npDDDeΩ)+ [DDDen]T (−εεε

k
nnDDDen)

]
FτFs dz .

The inertial array is:

MMMkτs =
∫

Ak

III ρ
kFτFs dz , (70)

where ρk is the mass density for each layer k, and III is the identity matrix of dimen-
sion [3×3].

The nuclei for the boundary conditions are:
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ΠΠΠ
kτs
uu =

∫
Ak

[
IIIT

p CCCk
ppDDDp +IIIT

p CCCk
pn[DDDnΩ +DDDnz]+

IIIT
nΩCCCk

npDDDp + IIIT
nΩ CCCk

nn[DDDnΩ +DDDnz]
]
FτFs dz, (71)

ΠΠΠ
kτs
uΦ =

∫
Ak

[
IIIT

peeekT
ppDDDeΩ +IIIT

peeekT
npDDDen +IIIT

nΩeeekT
pnDDDeΩ +IIIT

nΩeeekT
nnDDDen

]
FτFs dz , (72)

ΠΠΠ
kτs
Φu =−

∫
Ak

[
IIIT

eΩ(eeek
ppDDDp +eeek

pn[DDDnΩ +DDDnz])
]
FτFs dz , (73)

ΠΠΠ
kτs
ΦΦ =−

∫
Ak

[
IIIT

eΩ(−εεε
k
ppDDDeΩ)+IIIT

eΩ(−εεε
k
pnDDDen)

]
FτFs dz . (74)

5.1.2 Shell geometry

If the geometrical relations for shell geometry (Eqs.(40)) are substituted where the
subscript G appears in Eq.(57), the PVD becomes:

Nl

∑
k=1
{
∫

Ωk

∫
Ak

{((DDDk
p +AAAk

p)δuuuk)T (CCCk
pp(DDD

k
p +AAAk

p)uuu
k +CCCk

pn(DDD
k
nΩ +DDDk

nz−AAAk
n)uuu

k+

eeekT
ppDDDk

eΩΦ
k +eeekT

npDDDk
enΦ

k)+

((DDDk
nΩ +DDDk

nz−AAAk
n)δuuuk)T (CCCk

np(DDD
k
p +AAAk

p)uuu
k +CCCk

nn(DDD
k
nΩ +DDDk

nz−AAAk
n)uuu

k+

eeekT
pnDDDk

eΩΦ
k +eeekT

nnDDDk
enΦ

k)−
(−DDDk

eΩδΦ
k)T (eeek

pp(DDD
k
p +AAAk

p)uuu
k+

eeek
pn(DDD

k
nΩ +DDDk

nz−AAAk
n)uuu

k−εεε
k
ppDDDk

eΩΦ
k−εεε

k
pnDDDk

enΦ
k)−

(−DDDk
enδΦ

k)T (eeek
np(DDD

k
p +AAAk

p)uuu
k +eeek

nn(DDD
k
nΩ +DDDk

nz−AAAk
n)uuu

k−

εεε
k
npDDDk

eΩΦ
k−εεε

k
nnDDDk

enΦ
k)}dΩkdzk}=

Nl

∑
k=1

(δLk
in +δLk

e) . (75)
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Upon substitution of two-dimensional approximation, by means of CUF, the fol-
lowing form is obtained:

Nl

∑
k=1
{
∫

Ωk

∫
Ak

{
(
(DDDk

p +AAAk
p)δuuuk

s
)T Fs

(
CCCk

pp(DDD
k
p +AAAk

p)Fτuuuk
τ+

CCCk
pn(DDD

k
nΩ +DDDk

nz−AAAk
n)Fτuuuk

τ +eeekT
ppDDDk

eΩFτΦ
k
τ +eeekT

npDDDk
enFτΦ

k
τ

)
+(

(DDDk
nΩ +DDDk

nz−AAAk
n)δuuuk

s
)T Fs

(
CCCk

np(DDD
k
p +AAAk

p)Fτuuuk
τ+

CCCk
nn(DDD

k
nΩ +DDDk

nz−AAAk
n)Fτuuuk

τ +eeekT
pnDDDk

eΩFτΦ
k
τ +eeekT

nnDDDk
enFτΦ

k
τ

)
−(

−DDDk
eΩδΦ

k
s
)T Fs

(
eeek

pp(DDD
k
p +AAAk

p)Fτuuuk
τ +eeek

pn(DDD
k
nΩ +DDDk

nz−AAAk
n)Fτuuuk

τ−

εεε
k
ppDDDk

eΩFτΦ
k
τ −εεε

k
pnDDDk

enFτΦ
k
τ

)
−
(
−DDDk

enδΦ
k
s
)T Fs

(
eeek

np(DDD
k
p +AAAk

p)Fτuuuk
τ+

eeek
nn(DDD

k
nΩ +DDDk

nz−AAAk
n)Fτuuuk

τ −εεε
k
npDDDk

eΩFτΦ
k
τ −εεε

k
nnDDDk

enFτΦ
k
τ

)
}dΩkdzk}

=
Nl

∑
k=1

(δLk
in +δLk

e) .

(76)

In order to obtain a strong form of differential equations on the domain Ωk, as well
as the correspondence boundary conditions on edge Γk, the integration by parts
must be employed. For a generic variable aaak, the integration by parts states as in
Eq.(60), the additional arrays introduced to perform integration by parts in the case
of shell geometry change with respect to the plate case (see Eq.(61)):

Ik
p =


1

Hk
α

0 0

0 1
Hk

β

0

1
Hk

β

1
Hk

α

0

 ; Ik
nΩ =


0 0 1

Hk
α

0 0 1
Hk

β

0 0 0

 ; Ik
eΩ =


1

Hk
α

1
Hk

β

 . (77)
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After the integration by parts, the PVD assumes the following form:

Nl

∑
k=1
{
∫

Ωk

∫
Ak

{δuuukT
s [(−DDDk

p +AAAk
p)

T Fs(CCCk
pp(DDD

k
p +AAAk

p)Fτuuuk
τ+

CCCk
pn(DDD

k
nΩ +DDDk

nz−AAAk
n)Fτuuuk

τ +eeekT
ppDDDk

eΩFτΦ
k
τ +eeekT

npDDDk
enFτΦ

k
τ )]+

δuuukT
s [(−DDDk

nΩ +DDDk
nz−AAAk

n)
T Fs(CCCk

np(DDD
k
p +AAAk

p)Fτuuuk
τ+

CCCk
nn(DDD

k
nΩ +DDDk

nz−AAAk
n)Fτuuuk

τ +eeekT
pnDDDk

eΩFτΦ
k
τ +eeekT

nnDDDk
enFτΦ

k
τ )]+

δΦ
kT
s [(−DDDk

eΩ)T Fs(eeek
pp(DDD

k
p +AAAk

p)Fτuuuk
τ +eeek

pn(DDD
k
nΩ +DDDk

nz−AAAk
n)Fτuuuk

τ−
εεε

k
ppDDDk

eΩFτΦ
k
τ −εεε

k
pnDDDk

enFτΦ
k
τ )]+δΦ

kT
s [(DDDk

en)
T Fs(eeek

np(DDD
k
p +AAAk

p)Fτuuuk
τ+

eeek
nn(DDD

k
nΩ +DDDk

nz−AAAk
n)Fτuuuk

τ −εεε
k
npDDDk

eΩFτΦ
k
τ −εεε

k
nnDDDk

enFτΦ
k
τ )]}dΩkdzk}

+
Nl

∑
k=1
{
∫

Γk

∫
Ak

{δuuukT
s [IIIkT

p Fs(CCCk
pp(DDD

k
p +AAAk

p)Fτuuuk
τ+

CCCk
pn(DDD

k
nΩ +DDDk

nz−AAAk
n)Fτuuuk

τ +eeekT
ppDDDk

eΩFτΦ
k
τ +eeekT

npDDDk
enFτΦ

k
τ )]+

δuuukT
s [IIIkT

nΩFs(CCCk
np(DDD

k
p +AAAk

p)Fτuuuk
τ+

CCCk
nn(DDD

k
nΩ +DDDk

nz−AAAk
n)Fτuuuk

τ +eeekT
pnDDDk

eΩFτΦτ +eeekT
nnDDDk

enFτΦ
k
τ )]+

δΦ
kT
s [IIIkT

eΩFs(eeek
pp(DDD

k
p +AAAk

p)Fτuuuk
τ +eeek

pn(DDD
k
nΩ +DDDk

nz−AAAk
n)Fτuuuk

τ−
εεε

k
ppDDDk

eΩFτΦ
k
τ −εεε

k
pnDDDk

enFτΦ
k
τ )]}dΓkdzk}

=−
Nl

∑
k=1
{
∫

Ωk

∫
Ak

(δuuukT
s ρ

kFsFτ ü̈üuk
τ)dΩkdzk}+

Nl

∑
k=1
{
∫

Ωk

δuuukT
s Fspppk

u +δΦ
kT
s Fspppk

Φ)dΩk} .

(78)

The governing equations on the domain Ωk and the relative boundary conditions
are the same proposed in Eqs.(63)-(65) for plate geometry. The form of the funda-
mental nuclei changes as:

KKKkτs
uu =

∫
Ak

[
[−DDDk

p +AAAk
p]

T CCCk
pp[DDD

k
p +AAAk

p]+ [−DDDk
p +AAAk

p]
T CCCk

pn[DDD
k
nΩ +DDDk

nz−AAAk
n]+

[−DDDk
nΩ +DDDk

nz−AAAk
n]

T CCCk
np[DDD

k
p +AAAk

p]+ [−DDDk
nΩ +DDDk

nz−AAAk
n]

T CCCk
nn[DDD

k
nΩ +DDDk

nz−AAAk
n]
]

FτFsHk
αHk

β
dz, (79)

KKKkτs
uΦ =

∫
Ak

[
[−DDDk

p +AAAk
p]

T eeekT
ppDDDk

eΩ +[−DDDk
p +AAAk

p]
T eeekT

npDDDk
en+ (80)
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[−DDDk
nΩ +DDDk

nz−AAAk
n]

T eeekT
pnDDDk

eΩ +[−DDDk
nΩ +DDDk

nz−AAAk
n]

T eeekT
nnDDDk

en

]
FτFsHk

αHk
β

dz ,

KKKkτs
Φu =

∫
Ak

[
[−DDDk

eΩ]T (eeek
pp[DDD

k
p +AAAk

p]+eeek
pn[DDD

k
nΩ +DDDk

nz−AAAk
n]+ [DDDk

en]
T (eeek

np[DDD
k
p +AAAk

p]+

eeek
nn[DDD

k
nΩ +DDDk

nz−AAAk
n])
]
FτFsHk

αHk
β

dz ,

KKKkτs
ΦΦ =

∫
Ak

[
[−DDDk

eΩ]T (−εεε
k
ppDDDk

eΩ)+ [−DDDk
eΩ]T (−εεε

k
pnDDDk

en)+ (81)

[DDDk
en]

T (−εεε
k
npDDDk

eΩ)+ [DDDk
en]

T (−εεε
k
nnDDDk

en)
]
FτFsHk

αHk
β

dz .

The inertial array is:

MMMkτs =
∫

Ak

III ρ
kFτFsHk

αHk
β

dz , (82)

where ρk is the mass density for each layer k, and III is the identity matrix of dimen-
sion [3×3].

The nuclei for the boundary conditions are:

ΠΠΠ
kτs
uu =

∫
Ak

[
IIIkT

p CCCk
pp[DDD

k
p +AAAk

p]+IIIkT
p CCCk

pn[DDD
k
nΩ +DDDk

nz−AAAk
n]+

IIIkT
nΩCCCk

np[DDD
k
p +AAAk

p]+IIIkT
nΩ CCCk

nn[DDD
k
nΩ +DDDk

nz−AAAk
n]
]
FτFsHk

αHk
β

dz , (83)

ΠΠΠ
kτs
uΦ =

∫
Ak

[
IIIkT

p eeekT
ppDDDk

eΩ +IIIkT
p eeekT

npDDDk
en +IIIkT

nΩeeekT
pnDDDk

eΩ +IIIkT
nΩeeekT

nnDDDk
en

]
FτFsHk

αHk
β

dz , (84)

ΠΠΠ
kτs
Φu =

∫
Ak

[
IIIkT

eΩ(eeek
pp[DDD

k
p +AAAk

p]+eeek
pn[DDD

k
nΩ +DDDk

nz−AAAk
n])
]
FτFsHk

αHk
β

dz , (85)

ΠΠΠ
kτs
ΦΦ =

∫
Ak

[
IIIkT

eΩ(−εεε
k
ppDDDk

eΩ)+IIIkT
eΩ(−εεε

k
pnDDDk

en)
]
FτFsHk

αHk
β

dz . (86)

5.2 The advanced RMVT(uuu,Φ ,σσσn) case

The steps to obtain the governing equations for the partial extension of RMVT
to electro-mechanical case are the same illustrated in Section 5.1 (see D’Ottavio
and Kröplin (2006) and Carrera and Brischetto (2007a)). The proposed variational
statement considers as primary variables the displacements uuu, the electric potential
Φ and the transverse shear/normal stresses σσσn. Eq.(16) written for a multilayered
structure is:

RMV T (uuu,Φ ,σσσn) :
Nl

∑
k=1
{
∫

Ωk

∫
Ak

{δεεε
kT
pGσσσ

k
pC +δεεε

kT
nGσσσ

k
nM−δEEE kT

pGDDDk
pC (87)
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−δEEE kT
nGDDDk

nC +δσσσ
kT
nM(εεεk

nG−εεε
k
nC)}dΩkdzk}=

Nl

∑
k=1

(δLk
in +δLk

e) .

The governing equations on the domain Ωk are:

δuuuk
s : KKKkτs

uu uuuk
τ +KKKkτs

uσ σσσ
k
nτ +KKKkτs

uΦ Φ
k
τ = PPPk

us−MMMkτsü̈üuk
τ ,

δσσσ
k
ns : KKKkτs

σu uuuk
τ +KKKkτs

σσσσσ
k
nτ +KKKkτs

σΦ Φ
k
τ = 0 , (88)

δΦ
k
s : KKKkτs

Φuuuuk
τ +KKKkτs

Φσσσσ
k
nτ +KKKkτs

ΦΦ Φ
k
τ = PPPk

Φs ,

nine fundamental nuclei are obtained which are completely different from those
obtained in Section 5.1.

Corresponding boundary conditions of Dirichlet type are:

uuuk
τ = ū̄ūuk

τ (89)

Φ
k
τ = Φ̄

k
τ ,

while the Neumann ones are:

ΠΠΠ
kτs
uu uuuk

τ +ΠΠΠ
kτs
uσ σσσ

k
nτ +ΠΠΠ

kτs
uΦ Φ

k
τ = ΠΠΠ

kτs
uu ū̄ūuk

τ +ΠΠΠ
kτs
uσ σ̄̄σ̄σ

k
nτ +ΠΠΠ

kτs
uΦ Φ̄

k
τ ,

ΠΠΠ
kτs
Φuuuuk

τ +ΠΠΠ
kτs
Φσσσσ

k
nτ +ΠΠΠ

kτs
ΦΦ Φ

k
τ = ΠΠΠ

kτs
Φuū̄ūuk

τ +ΠΠΠ
kτs
Φσ σ̄̄σ̄σ

k
nτ +ΠΠΠ

kτs
ΦΦ Φ̄

k
τ . (90)

5.2.1 Plate geometry

Fundamental nuclei on domain Ωk, after integration by parts for plates (see Eqs.(60)
and (61)), are:

KKKkτs
uu =

∫
Ak

[
[−DDDp]TĈCC

k
σpεp

DDDp

]
FsFτdz , (91)

KKKkτs
uσ =

∫
Ak

[
−DDDp]TĈCC

k
σpσn

+[−DDDnΩ +DDDnz]T
]
FsFτdz , (92)

KKKkτs
uΦ =

∫
Ak

[
[−DDDp]T (−ĈCC

k
σpEp

DDDeΩ−ĈCC
k
σpEn

DDDen)
]
FsFτdz , (93)

KKKkτs
σu =

∫
Ak

[
[DDDnΩ +DDDnz]−ĈCC

k
εnεp

DDDp

]
FsFτdz , (94)

KKKkτs
σσ =

∫
Ak

[
−ĈCC

k
εnσn

]
FsFτdz , (95)

KKKkτs
σΦ =

∫
Ak

[
ĈCC

k
εnEp

DDDeΩ +ĈCC
k
εnEn

DDDen

]
FsFτdz , (96)
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KKKkτs
Φu =

∫
Ak

[
[−DDDeΩ]TĈCC

k
Dpεp

+[DDDen]TĈCC
k
Dnεp

)DDDp

]
FsFτdz , (97)

KKKkτs
Φσ =

∫
Ak

[
[−DDDeΩ]TĈCC

k
Dpσn

+[DDDen]TĈCC
k
Dnσn

]
FsFτdz , (98)

KKKkτs
ΦΦ =

∫
Ak

[
[−DDDeΩ]T (−ĈCC

k
DpEp

DDDeΩ−ĈCC
k
DpEn

DDDen)+ [DDDen]T

(−ĈCC
k
DnEp

DDDeΩ−ĈCC
k
DnEn

DDDen)
]
FsFτdz . (99)

The inertial array does not change with respect to the Section 5.1.

The nuclei for the boundary conditions are:

ΠΠΠ
kτs
uu =

∫
Ak

[
IIIT

pĈCC
k
σpεp

DDDp

]
FsFτdz , (100)

ΠΠΠ
kτs
uσ =

∫
Ak

[
IIIT

pĈCC
k
σpσn

+IIIT
nΩ

]
FsFτdz , (101)

ΠΠΠ
kτs
uΦ =

∫
Ak

[
IIIT

p (−ĈCC
k
σpEp

DDDeΩ−ĈCC
k
σpEn

DDDen)
]
FsFτdz , (102)

ΠΠΠ
kτs
Φu =

∫
Ak

[
IIIT

eΩ(ĈCC
k
Dpεp

DDDp)
]
FsFτdz , (103)

ΠΠΠ
kτs
Φσ =

∫
Ak

[
IIIT

eΩĈCC
k
Dpσn

]
FsFτdz , (104)

ΠΠΠ
kτs
ΦΦ =

∫
Ak

[
IIIT

eΩ(−ĈCC
k
DpEp

DDDeΩ−ĈCC
k
DpEn

DDDen)
]
FsFτdz . (105)

5.2.2 Shell geometry

Fundamental nuclei on domain Ωk, after integration by parts for shells (see Eqs.(60)
and (77)), are:

KKKkτs
uu =

∫
Ak

[
[−DDDk

p +AAAk
p]

TĈCC
k
σpεp

[DDDk
p +AAAk

p]
]
FsFτHk

αHk
β

dz , (106)

KKKkτs
uσ =

∫
Ak

[
−DDDk

p +AAAk
p]

TĈCC
k
σpσn

+[−DDDk
nΩ +DDDk

nz−AAAk
n]

T
]
FsFτHk

αHk
β

dz , (107)

KKKkτs
uΦ =

∫
Ak

[
[−DDDk

p +AAAk
p]

T (−ĈCC
k
σpEp

DDDk
eΩ−ĈCC

k
σpEn

DDDk
en)
]
FsFτHk

αHk
β

dz , (108)
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KKKkτs
σu =

∫
Ak

[
[DDDk

nΩ +DDDk
nz−AAAk

n]−ĈCC
k
εnεp

[DDDk
p +AAAk

p]
]
FsFτHk

αHk
β

dz , (109)

KKKkτs
σσ =

∫
Ak

[
−ĈCC

k
εnσn

]
FsFτHk

αHk
β

dz , (110)

KKKkτs
σΦ =

∫
Ak

[
ĈCC

k
εnEp

DDDk
eΩ +ĈCC

k
εnEn

DDDk
en

]
FsFτHk

αHk
β

dz , (111)

KKKkτs
Φu =

∫
Ak

[
([−DDDk

eΩ]TĈCC
k
Dpεp

+[DDDk
en]

TĈCC
k
Dk

n εp
)[DDDk

p +AAAk
p]
]
FsFτHk

αHk
β

dz , (112)

KKKkτs
Φσ =

∫
Ak

[
[−DDDk

eΩ]TĈCC
k
Dpσn

+[DDDk
en]

TĈCC
k
Dnσn

]
FsFτHk

αHk
β

dz , (113)

KKKkτs
ΦΦ =

∫
Ak

[
[−DDDk

eΩ]T (−ĈCC
k
DpEp

DDDk
eΩ−ĈCC

k
DpEn

DDDk
en)+ [DDDk

en]
T (114)

(−ĈCC
k
DnEp

DDDk
eΩ−ĈCC

k
DnEn

DDDk
en)
]
FsFτHk

αHk
β

dz .

The inertial array does not change with respect to the section 5.1.

The nuclei for the boundary conditions are:

ΠΠΠ
kτs
uu =

∫
Ak

[
IIIkT

p ĈCC
k
σpεp

[DDDk
p +AAAk

p]
]
FsFτHk

αHk
β

dz , (115)

ΠΠΠ
kτs
uσ =

∫
Ak

[
IIIkT

p ĈCC
k
σpσn

+IIIkT
nΩ

]
FsFτHk

αHk
β

dz , (116)

ΠΠΠ
kτs
uΦ =

∫
Ak

[
IIIkT

p (−ĈCC
k
σpEp

DDDk
eΩ−ĈCC

k
σpEn

DDDk
en)
]
FsFτHk

αHk
β

dz , (117)

ΠΠΠ
kτs
Φu =

∫
Ak

[
IIIkT

eΩ(ĈCC
k
Dpεp

[DDDk
p +AAAk

p])
]
FsFτHk

αHk
β

dz , (118)

ΠΠΠ
kτs
Φσ =

∫
Ak

[
IIIkT

eΩĈCC
k
Dpσn

]
FsFτHk

αHk
β

dz , (119)

ΠΠΠ
kτs
ΦΦ =

∫
Ak

[
IIIkT

eΩ(−ĈCC
k
DpEp

DDDk
eΩ−ĈCC

k
DpEn

DDDk
en)
]
FsFτHk

αHk
β

dz . (120)
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5.3 The advanced RMVT(uuu,Φ ,DDDn) case

Variational statement here illustrated considers as primary variables the displace-
ment uuu, the electric potential Φ and the transverse normal electric displacement
DDDn. Eq.(24) in case of multilayered structures states [Carrera and Nali (2009)]:

RMV T (uuu,Φ ,DDDn) :
Nl

∑
k=1
{
∫

Ωk

∫
Ak

{δεεε
kT
pGσσσ

k
pC +δεεε

kT
nGσσσ

k
nM−δEEE kT

pGDDDk
pC− (121)

−δEEE kT
nGDDDk

nM−δDDDkT
nM(EEE k

nG−EEE k
nC)}dΩkdzk}=

Nl

∑
k=1

(δLk
in +δLk

e) .

Upon substitution of constitutive equations (symbol C), geometrical relations (sym-
bol G) and CUF, as well as via integration by parts, governing equations are de-
rived:

δuuuk
s : KKKkτs

uu uuuk
τ +KKKkτs

uDDDDk
nτ +KKKkτs

uΦ Φ
k
τ = PPPk

us−MMMkτsü̈üuk
τ ,

δDDDk
ns : KKKkτs

Duuuuk
τ +KKKkτs

DDDDDk
nτ +KKKkτs

DΦ Φ
k
τ = 0 , (122)

δΦ
k
s : KKKkτs

Φuuuuk
τ +KKKkτs

ΦDDDDk
nτ +KKKkτs

ΦΦ Φ
k
τ = PPPk

Φs .

Corresponding boundary conditions of Dirichlet type are:

uuuk
τ = ū̄ūuk

τ , (123)

Φ
k
τ = Φ̄

k
τ ,

the corresponding Neumann ones are:

ΠΠΠ
kτs
uu uuuk

τ +ΠΠΠ
kτs
uDDDDk

nτ +ΠΠΠ
kτs
uΦ Φ

k
τ = ΠΠΠ

kτs
uu ū̄ūuk

τ +ΠΠΠ
kτs
uDD̄̄D̄Dk

nτ +ΠΠΠ
kτs
uΦ Φ̄

k
τ ,

ΠΠΠ
kτs
Φuuuuk

τ +ΠΠΠ
kτs
ΦDDDDk

nτ +ΠΠΠ
kτs
ΦΦ Φ

k
τ = ΠΠΠ

kτs
Φuū̄ūuk

τ +ΠΠΠ
kτs
ΦDD̄̄D̄Dk

nτ +ΠΠΠ
kτs
ΦΦ Φ̄

k
τ . (124)

5.3.1 Plate geometry

Fundamental nuclei on domain Ωk, after integration by parts for plates (see Eqs.(60)
and (61)), are:

KKKkτs
uu =

∫
Ak

[
[−DDDp]T (C̄̄C̄Ck

σpεp
DDDp +C̄̄C̄Ck

σpεn
[DDDnΩ +DDDnz])+ (125)

[DDDnz−DDDnΩ]T (C̄̄C̄Ck
σnεp

DDDp +C̄̄C̄Ck
σnεn

[DDDnΩ +DDDnz])
]
FτFs dz ,

KKKkτs
uD =

∫
Ak

[
[DDDp]TC̄̄C̄Ck

σpDn
+[DDDnz−DDDnΩ]TC̄̄C̄Ck

σnDn

]
FτFs dz , (126)

KKKkτs
uΦ =

∫
Ak

[
[−DDDp]T (−C̄̄C̄Ck

σpEn
DDDeΩ)+ [DDDnz−DDDnΩ]T (−C̄̄C̄Ck

σnEn
DDDeΩ)

]
FτFs dz , (127)
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KKKkτs
Du =

∫
Ak

[
C̄̄C̄Ck

Enεp
DDDp +C̄̄C̄Ck

Enεn
[DDDnΩ +DDDnz]

]
FτFs dz , (128)

KKKkτs
DD =

∫
Ak

[
C̄̄C̄Ck

EnDn

]
FτFs dz , (129)

KKKkτs
DΦ =

∫
Ak

[
DDDen−C̄̄C̄Ck

EnEp
DDDeΩ

]
FτFs dz , (130)

KKKkτs
Φu =

∫
Ak

[
− [DDDeΩ]T (C̄̄C̄Ck

Dpεp
DDDp +C̄̄C̄Ck

Dpεn
[DDDnΩ +DDDnz])

]
FτFs dz , (131)

KKKkτs
ΦD =

∫
Ak

[
[−DDDeΩ]TC̄̄C̄Ck

DpDn
+[DDDen]T

]
FτFs dz , (132)

KKKkτs
ΦΦ =

∫
Ak

[
[−DDDeΩ)]T (−C̄̄C̄Ck

DpEp
DDDeΩ)

]
FτFs dz . (133)

The inertial array does not change with respect to previous sections.

The nuclei for the boundary conditions are:

ΠΠΠ
kτs
uu =

∫
Ak

[
IIIT

p (C̄̄C̄Ck
σpεp

DDDp +C̄̄C̄Ck
σpεn

[DDDnΩ +DDDnz])+ (134)

IIIT
nΩ (C̄̄C̄Ck

σnεp
DDDp +C̄̄C̄Ck

σnεn
[DDDnΩ +DDDnz])

]
FτFs dz ,

ΠΠΠ
kτs
uD =

∫
Ak

[
IIIT

p C̄̄C̄Ck
σpDn

+IIIT
nΩ C̄̄C̄Ck

σnDn

]
FτFs dz , (135)

ΠΠΠ
kτs
uΦ =

∫
Ak

[
IIIT

p (−C̄̄C̄Ck
σpEn

DDDeΩ)+IIIT
nΩ (−C̄̄C̄Ck

σnEn
DDDeΩ)

]
FτFs dz , (136)

ΠΠΠ
kτs
Φu =

∫
Ak

[
IIIT

eΩ (C̄̄C̄Ck
Dpεp

DDDp +C̄̄C̄Ck
Dpεn

[DDDnΩ +DDDnz])
]
FτFs dz , (137)

ΠΠΠ
kτs
ΦD =

∫
Ak

[
IIIT

eΩ C̄̄C̄Ck
DpDn

]
FτFs dz , (138)

ΠΠΠ
kτs
ΦΦ =

∫
Ak

[
IIIT

eΩ (−C̄̄C̄Ck
DpEp

DDDeΩ)
]
FτFs dz . (139)

5.3.2 Shell geometry

Fundamental nuclei on domain Ωk, after integration by parts for shells (see Eqs.(60)
and (77)), are:

KKKkτs
uu =

∫
Ak

[
[−DDDk

p +AAAk
p]

T (C̄̄C̄Ck
σpεp

[DDDk
p +AAAk

p]+C̄̄C̄Ck
σpεn

[DDDk
nΩ +DDDk

nz−AAAk
n])+

[DDDk
nz−DDDk

nΩ−AAAk
n]

T (C̄̄C̄Ck
σnεp

[DDDk
p +AAAk

p]+C̄̄C̄Ck
σnεn

[DDDk
nΩ +DDDk

nz−AAAk
n])
]
FτFsHk

αHk
β

dz ,

(140)
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KKKkτs
uD =

∫
Ak

[
[−DDDk

p +AAAk
p]

TC̄̄C̄Ck
σpDn

+[DDDk
nz−DDDk

nΩ−AAAk
n]

TC̄̄C̄Ck
σnDn

]
FτFsHk

αHk
β

dz , (141)

KKKkτs
uΦ =

∫
Ak

[
[−DDDk

p +AAAk
p]

T (−C̄̄C̄Ck
σpEn

DDDk
eΩ)+ [DDDk

nz−DDDk
nΩ−AAAk

n]
T (−C̄̄C̄Ck

σnEn
DDDk

eΩ)
]

FτFsHk
αHk

β
dz , (142)

KKKkτs
Du =

∫
Ak

[
C̄̄C̄Ck

Enεp
[DDDk

p +AAAk
p]+C̄̄C̄Ck

Enεn
[DDDk

nΩ +DDDk
nz−AAAk

n]
]
FτFsHk

αHk
β

dz , (143)

KKKkτs
DD =

∫
Ak

[
C̄̄C̄Ck

EnDn

]
FτFsHk

αHk
β

dz , (144)

KKKkτs
DΦ =

∫
Ak

[
DDDk

en−C̄̄C̄Ck
EnEp

DDDk
eΩ

]
FτFsHk

αHk
β

dz , (145)

KKKkτs
Φu =

∫
Ak

[
− [DDDk

eΩ]T (C̄̄C̄Ck
Dpεp

[DDDk
p +AAAk

p]+C̄̄C̄Ck
Dpεn

[DDDk
nΩ +DDDk

nz−AAAk
n])
]
FτFsHk

αHk
β

dz ,

(146)

KKKkτs
ΦD =

∫
Ak

[
[−DDDk

eΩ]TC̄̄C̄Ck
DpDn

+[DDDk
en]

T
]
FτFsHk

αHk
β

dz , (147)

KKKkτs
ΦΦ =

∫
Ak

[
[−DDDk

eΩ]T (−C̄̄C̄Ck
DpEp

DDDk
eΩ)
]
FτFsHk

αHk
β

dz . (148)

The inertial array does not change with respect to previous sections.

The nuclei for the boundary conditions are:

ΠΠΠ
kτs
uu =

∫
Ak

[
IIIkT

p (C̄̄C̄Ck
σpεp

[DDDk
p +AAAk

p]+C̄̄C̄Ck
σpεn

[DDDk
nΩ +DDDk

nz−AAAk
n])+ (149)

IIIkT
nΩ (C̄̄C̄Ck

σnεp
[DDDk

p +AAAk
p]+C̄̄C̄Ck

σnεn
[DDDk

nΩ +DDDk
nz−AAAk

n])
]
FτFsHk

αHk
β

dz ,

ΠΠΠ
kτs
uD =

∫
Ak

[
IIIkT

p C̄̄C̄Ck
σpDn

+IIIkT
nΩ C̄̄C̄Ck

σnDn

]
FτFsHk

αHk
β

dz , (150)

ΠΠΠ
kτs
uΦ =

∫
Ak

[
IIIkT

p (−C̄̄C̄Ck
σpEn

DDDk
eΩ)+IIIkT

nΩ (−C̄̄C̄Ck
σnEn

DDDk
eΩ)
]
FτFsHk

αHk
β

dz , (151)

ΠΠΠ
kτs
Φu =

∫
Ak

[
IIIkT

eΩ (C̄̄C̄Ck
Dpεp

[DDDk
p +AAAk

p]+C̄̄C̄Ck
Dpεn

[DDDk
nΩ +DDDk

nz−AAAk
n])
]
FτFsHk

αHk
β

dz ,

(152)

ΠΠΠ
kτs
ΦD =

∫
Ak

[
IIIkT

eΩ C̄̄C̄Ck
DpDn

]
FτFsHk

αHk
β

dz , (153)

ΠΠΠ
kτs
ΦΦ =

∫
Ak

[
IIIkT

eΩ (−C̄̄C̄Ck
DpEp

DDDk
eΩ)
]
FτFsHk

αHk
β

dz . (154)
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5.4 The advanced RMVT(uuu,Φ ,σσσn,DDDn) case

Governing equations, boundary conditions and fundamental nuclei for the full ex-
tension of RMTV are presented in this section. Displacement uuu, transverse shear/
normal stresses σσσn, electric potential Φ and transverse normal electric displace-
ment DDDn are the chosen primary variables (see Carrera and Brischetto (2007b)).
The Eq.(30) states:

RMV T (uuu,Φ ,σσσn,DDDn) :
Nl

∑
k=1
{
∫

Ωk

∫
Ak

{δεεε
kT
pGσσσ

k
pC +δεεε

kT
nGσσσ

k
nM−δEEE kT

pGDDDk
pC−δEEE kT

nGDDDk
nM

+δσσσ
kT
nM(εεεk

nG−εεε
k
nC)−δDDDkT

nM(EEE k
nG−EEE k

nC)}dΩkdzk}=
Nl

∑
k=1

(δLk
in +δLk

e) . (155)

Governing equations on domain Ωk are:

δuuuk
s : KKKkτs

uu uuuk
τ +KKKkτs

uσ σσσ
k
nτ +KKKkτs

uΦ Φ
k
τ +KKKkτs

uDDDDk
nτ = PPPk

us−MMMkτsü̈üuk
τ ,

δσσσ
k
ns : KKKkτs

σu uuuk
τ +KKKkτs

σσσσσ
k
nτ +KKKkτs

σΦ Φ
k
τ +KKKkτs

σDDDDk
nτ = 0 , (156)

δΦΦΦ
k
s : KKKkτs

Φuuuuk
τ +KKKkτs

Φσσσσ
k
nτ +KKKkτs

ΦΦ Φ
k
τ +KKKkτs

ΦDDDDk
nτ = PPPk

Φs ,

δDDDk
ns : KKKkτs

Duuuuk
τ +KKKkτs

Dσσσσ
k
nτ +KKKkτs

DΦ Φ
k
τ +KKKkτs

DDDDDk
nτ = 0 ,

Dirichlet type boundary conditions are:

uuuk
τ = ū̄ūuk

τ (157)

Φ
k
τ = Φ̄

k
τ

the Neumann ones are:

ΠΠΠ
kτs
uu uuuk

τ +ΠΠΠ
kτs
uσ σσσ

k
nMτ +ΠΠΠ

kτs
uΦ Φ

k
τ +ΠΠΠ

kτs
uD DDDk

nMτ = ΠΠΠ
kτs
uu ūuuk

τ +ΠΠΠ
kτs
uσ σ̄σσ

k
nMτ

+ΠΠΠ
kτs
uΦ Φ̄

k
τ +ΠΠΠ

kτs
uD D̄DD

k
nMτ , (158)

ΠΠΠ
kτs
Φu uuuk

τ +ΠΠΠ
kτs
Φσ σσσ

k
nMτ +ΠΠΠ

kτs
ΦΦ Φ

k
τ +ΠΠΠ

kτs
ΦD DDDk

nMτ = ΠΠΠ
kτs
Φu ūuuk

τ +ΠΠΠ
kτs
Φσ σ̄σσ

k
nMτ

+ΠΠΠ
kτs
ΦΦ Φ̄

k
τ +ΠΠΠ

kτs
ΦD D̄DD

k
nMτ .

5.4.1 Plate geometry

Explicit forms of the fundamental nuclei on the domain Ωk, after integration by
parts for plates (see Eqs.(60) and (61)), are:

KKKkτs
uu =

∫
Ak

[
(−DDDp)T (C̃CCk

σpεp
DDDp)

]
FsFτdz , (159)
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KKKkτs
uσ =

∫
Ak

[
(−DDDp)T (C̃CCk

σpσn
)+(−DDDnΩ +DDDnz)T

]
FsFτdz , (160)

KKKkτs
uΦ =

∫
Ak

[
(−DDDp)T (−C̃CC

k
σpEp

DDDeΩ)
]
FsFτdz , (161)

KKKkτs
uD =

∫
Ak

[
(−DDDp)T (C̃CCk

σpDn
)
]
FsFτdz , (162)

KKKkτs
σu =

∫
Ak

[
(DDDnΩ +DDDnz)− (C̃CCk

εnεp
DDDp)

]
FsFτdz , (163)

KKKkτs
σσ =

∫
Ak

[
−C̃CC

k
εnσn

]
FsFτdz , (164)

KKKkτs
σΦ =

∫
Ak

[
C̃CC

k
εnEp

DDDeΩ

]
FsFτdz , (165)

KKKkτs
σD =

∫
Ak

[
−C̃CC

k
εnDn

]
FsFτdz , (166)

KKKkτs
Φu =

∫
Ak

[
−DDDT

eΩC̃CC
k
Dpεp

DDDp

]
FsFτdz , (167)

KKKkτs
Φσ =

∫
Ak

[
−DDDT

eΩC̃CC
k
Dpσn

]
FsFτdz , (168)

KKKkτs
ΦΦ =

∫
Ak

[
DDDT

eΩC̃CC
k
DpEp

DDDeΩ

]
FsFτdz , (169)

KKKkτs
ΦD =

∫
Ak

[
−DDDT

eΩC̃CC
k
DpDn

+DDDT
en

]
FsFτdz , (170)

KKKkτs
Du =

∫
Ak

[
C̃CC

k
Enεp

DDDT
p

]
FsFτdz , (171)

KKKkτs
Dσ =

∫
Ak

[
C̃CC

k
Enσn

]
FsFτdz , (172)

KKKkτs
DΦ =

∫
Ak

[
DDDen−C̃CC

k
EnEp

DDDeΩ

]
FsFτdz , (173)

KKKkτs
DD =

∫
Ak

[
C̃CC

k
EnDn

]
FsFτdz . (174)
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The expression of the inertial matrix is the same of the other PVD and RMVT
variational statements.

The fundamental nuclei on the boundary Γk are:

ΠΠΠ
kτs
uu =

∫
Ak

[
IIIT

pC̃CC
k
σpεp

DDDp

]
FsFτdz , (175)

ΠΠΠ
kτs
uσ =

∫
Ak

[
IIIT

pC̃CC
k
σpσn

+IIIT
nΩ

]
FsFτdz , (176)

ΠΠΠ
kτs
uΦ =

∫
Ak

[
−IIIT

pC̃CC
k
σpEp

DDDeΩ

]
FsFτdz , (177)

ΠΠΠ
kτs
uD =

∫
Ak

[
IIIT

pC̃CC
k
σpDn

]
FsFτdz , (178)

ΠΠΠ
kτs
Φu =

∫
Ak

[
IIIT

eΩC̃CC
k
Dpεp

DDDp

]
FsFτdz , (179)

ΠΠΠ
kτs
Φσ =

∫
Ak

[
IIIT

eΩC̃CC
k
Dpσn

]
FsFτdz , (180)

ΠΠΠ
kτs
ΦΦ =

∫
Ak

[
−IIIT

eΩC̃CC
k
DpEp

DDDeΩ

]
FsFτdz , (181)

ΠΠΠ
kτs
ΦD =

∫
Ak

[
IIIT

eΩC̃CC
k
DpDn

]
FsFτdz . (182)

5.4.2 Shell geometry

Fundamental nuclei on domain Ωk, after integration by parts for shells (see Eqs.(60)
and (77)), are:

KKKkτs
uu =

∫
Ak

[
[−DDDk

p +AAAk
p]

T C̃CC
k
σpεp

[DDDk
p +AAAk

p]
]
FsFτHk

αHk
β

dz , (183)

KKKkτs
uσ =

∫
Ak
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[−DDDk

p +AAAk
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T C̃CC
k
σpσn

+[−DDDk
nΩ +DDDk
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n]

T
]
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dz , (184)

KKKkτs
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∫
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[−DDDk

p +AAAk
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σpEp

DDDk
eΩ)
]
FsFτHk
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KKKkτs
uD =

∫
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[
[−DDDk

p +AAAk
p]

T C̃CC
k
σpDn

]
FsFτHk

αHk
β

dz , (186)
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KKKkτs
σu =

∫
Ak

[
[DDDk

nΩ +DDDk
nz−AAAk

n]− (C̃CCk
εnεp

[DDDk
p +AAAk

p])
]
FsFτHk

αHk
β

dz , (187)

KKKkτs
σσ =

∫
Ak

[
−C̃CC

k
εnσn

]
FsFτHk

αHk
β

dz , (188)

KKKkτs
σΦ =

∫
Ak

[
C̃CC

k
εnEp

DDDk
eΩ

]
FsFτHk

αHk
β

dz , (189)

KKKkτs
σD =

∫
Ak

[
−C̃CC

k
εnDn

]
FsFτHk

αHk
β

dz , (190)

KKKkτs
Φu =

∫
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[
−DDDkT

eΩ C̃CC
k
Dpεp

[DDDk
p +AAAk

p]
]
FsFτHk

αHk
β

dz , (191)

KKKkτs
Φσ =

∫
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[
−DDDkT

eΩ C̃CC
k
Dpσn

]
FsFτHk

αHk
β

dz , (192)

KKKkτs
ΦΦ =

∫
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[
DDDkT

eΩ C̃CC
k
DpEp

DDDk
eΩ

]
FsFτHk

αHk
β

dz , (193)

KKKkτs
ΦD =

∫
Ak

[
−DDDkT

eΩ C̃CC
k
DpDn

+DDDkT
en

]
FsFτHk

αHk
β

dz , (194)

KKKkτs
Du =

∫
Ak

[
C̃CC

k
Enεp

[DDDk
p +AAAk

p]
T
]
FsFτHk

αHk
β

dz , (195)

KKKkτs
Dσ =

∫
Ak

[
C̃CC

k
Enσn

]
FsFτHk

αHk
β

dz , (196)

KKKkτs
DΦ =

∫
Ak

[
DDDk

en−C̃CC
k
EnEp

DDDk
eΩ

]
FsFτHk

αHk
β

dz , (197)

KKKkτs
DD =

∫
Ak

[
C̃CC

k
EnDn

]
FsFτHk

αHk
β

dz . (198)

The expression of the inertial array is the same of the other PVD and RMVT vari-
ational statements.

The fundamental nuclei on the boundary Γk are:

ΠΠΠ
kτs
uu =

∫
Ak

[
IIIkT

p C̃CC
k
σpεp

[DDDk
p +AAAk

p]
]
FsFτHk

αHk
β

dz , (199)
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ΠΠΠ
kτs
uσ =

∫
Ak

[
IIIkT

p C̃CC
k
σpσn

+IIIkT
nΩ

]
FsFτHk

αHk
β

dz , (200)

ΠΠΠ
kτs
uΦ =

∫
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[
−IIIkT

p C̃CC
k
σpEp

DDDk
eΩ

]
FsFτHk
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β

dz , (201)

ΠΠΠ
kτs
uD =

∫
Ak

[
IIIkT

p C̃CC
k
σpDn

]
FsFτHk

αHk
β

dz , (202)

ΠΠΠ
kτs
Φu =

∫
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[
IIIkT

eΩC̃CC
k
Dpεp

[DDDk
p +AAAk

p]
]
FsFτHk
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dz , (203)

ΠΠΠ
kτs
Φσ =

∫
Ak

[
IIIkT

eΩC̃CC
k
Dpσn

]
FsFτHk

αHk
β

dz , (204)

ΠΠΠ
kτs
ΦΦ =

∫
Ak

[
−IIIkT

eΩC̃CC
k
DpEp

DDDk
eΩ

]
FsFτHk

αHk
β

dz , (205)

ΠΠΠ
kτs
ΦD =

∫
Ak

[
IIIkT

eΩC̃CC
k
DpDn

]
FsFτHk

αHk
β

dz . (206)

6 Closed form solution

Navier-type closed form solutions are applied to the proposed governing equations
if the considered materials fulfill the following conditions:

C16 = C26 = C36 = C45 = 0 ,

e25 = e14 = e36 = 0 , (207)

ε12 = ε21 = 0 .

The following harmonic assumptions can be made for the field variables in the case
of plate geometry:

(uk
xτ

,σ k
xzτ

) = ∑
m,n

(Ûk
xτ

, σ̂ k
xzτ
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mπxk

ak
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bk
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(uk
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,σ k
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) = ∑
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, σ̂ k
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)sin
mπxk

ak
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bk
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(Ûk

zτ
, σ̂ k

zzτ
,Φ̂k

τ ,D̂k
zτ
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nπyk

bk
eiωmnt , r = 2,N ,

(208)

in which ak and bk are the plate lengths in the xk and yk directions, respectively; m
and n are the corresponding waves numbers; i =

√
−1, t is the time and ωmn is the

circular frequency. The quantities with ˆ indicate the amplitudes.
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The following assumptions for the field variables in the case of shell geometry
consider the curvilinear coordinates (α , β , z):

(uk
ατ

,σ k
αzτ

) = ∑
m,n

(Ûk
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, σ̂ k
αzτ
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ak
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, σ̂ k
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nπβk

bk
eiωmnt ,r = 2,N

(209)

in which ak and bk are the shell lengths in the αk and βk directions, respectively.

These assumptions correspond to the simply-supported boundary conditions. Upon
substitution of Eqs.(207) and Eqs.(208) or (209), the governing equations on Ωk

assume the form of a linear system of algebraic equations in the domain, while the
boundary conditions are exactly fulfilled.

Examples of fundamental nuclei for plates in explicit and in closed-algebraic form
are given in Appendix A.1 and A.2, respectively, for the case of the Principle of
Virtual Displacements. Appendix B.1 and B.2 are for the shell geometry (both
open spherical and cylindrical geometry).

7 Free vibration analysis

The free vibration analysis leads to an eigenvalue problem. Upon substitution of
Eqs.(207) and Eqs.(208) for plate geometry or Eqs.(209) for shell geometry, the
governing equations assume the form of a linear system of algebraic equations in
the Ωk domain:

K∗K∗K∗Û̂ÛU = ω
2
mnMMMÛ̂ÛU , (210)

where K∗K∗K∗ is the equivalent stiffness matrix obtained by means of static condensation
(for further details see Carrera et al. (2005) and D’Ottavio et al. (2006)), MMM is the
inertial matrix and Û̂ÛU is the vector of unknown variables. Only the free vibration
analysis is investigated in this article, and the external loadings (mechanical and
electrical) are therefore set to zero and the relative boundary conditions are exactly
fulfilled. By defining λmn = ω2

mn, the solution of the associated eigenvalue problem
becomes:

||K∗K∗K∗−λmnM̂̂M̂M||= 0 . (211)

The eigenvectors Û̂ÛU associated to the eigenvalues λmn (or to circular frequencies
ωmn) define the vibration modes of the structure in terms of primary variables. Once
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the waves number (m,n) has been defined in the in-plane directions, the number of
obtained frequencies becomes equal to the degrees of freedom of the employed
two-dimensional model. It is possible to obtain the relative eigenvector, in terms
of primary variables, for each value of frequency, in order to display the modes
plotted in the thickness direction.

8 Results

The proposed results consider a square plate geometry in closed circuit configura-
tion in the first part of the section. The second part of the section investigates shell
geometries (both ring and cylindrical panels).

8.1 Plate geometry

The free vibrations problem for multilayered plates including piezoelectric layers
has been investigated. By imposing the waves number in the in-plane directions,
the corresponding vibration modes are obtained. The number of frequencies is
equal to the number of degrees of freedom through the thickness according to the
considered kinematics.

A five-layered plate is considered (see Figure 6). The two external layers are made
of piezoelectric material with a thickness h1 = h5 = h

10 , the three internal ones
consist of reinforced carbon fiber layers with lamination sequence 0◦/90◦/0◦ and
thickness h2 = h3 = h4 = 4

15 h. The elastic and electrical properties of the multi-
layered plate are given in Table 1. The three-dimensional solution was proposed
by Heyliger and Saravanos (1995). The considered plate has a square geometry
(a = b) in a closed circuit configuration (electric potential applied at the top and
bottom equal to zero, as indicated in Figure 6). In order to obtain the reference
solution, Heyliger and Saravanos (1995) employed a mass density ρ = 1kg/m3 for
both materials; this operation does not have a physical sense but it is however ac-
ceptable for the proposed preliminary assessment. The results are given as the first
three fundamental circular frequencies ω = ω/100 = 2π f /100 (for waves num-
ber m = n = 1). Two thickness ratios are investigated: a thick plate (a/h = 4 with
h = 0.01 m) and a moderately thin plate (a/h = 50 with h = 0.01 m).

Table 2 gives the first three circular frequencies for the thick and thin plates in
the case of CLT and FSDT. Tables 3 and 4 consider the ESL models and the ESL
models with the Murakami zigzag function in the case of PVD extended to an
electro-mechanical problem (PVD(uuu,Φ)). LW theories are investigated in Table 5
using the same variational statement (PVD(uuu,Φ)). Tables 6-11 give the results of
the first three circular frequencies in the case of the three possible extensions of
RMVT to the electro-mechanical case; the same kinematics models introduced for
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Table 1: Elastic and electric properties of the considered multilayered plate and
cylindrical panel.

Properties PZT −4 Gr/EP
E1[GPa] 81.3 132.38
E2[GPa] 81.3 10.756
E3[GPa] 64.5 10.756
ν12[−] 0.329 0.24
ν13[−] 0.432 0.24
ν23[−] 0.432 0.49
G23[GPa] 25.6 3.606
G13[GPa] 25.6 5.6537
G12[GPa] 30.6 5.6537
e15[C/m2] 12.72 0
e24[C/m2] 12.72 0
e31[C/m2] −5.20 0
e32[C/m2] −5.20 0
e33[C/m2] 15.08 0
ε11[pC/V m] 1.306×104 30.9897
ε22[pC/V m] 1.306×104 26.563
ε33[pC/V m] 1.151×104 26.563
ρ[kg/m3](3D solution plate) 1 1
ρ[kg/m3](real case plate) 7600 1578
ρ[kg/m3](cylindrical panel) 1 1
h1 = h5[m] h/10 −
h2 = h3 = h4[m] − 4

15 h
θ [deg] − 0◦/90◦/0◦

the PVD case are considered.

The results show that the 3D solution for the thick plate [Heyliger and Saravanos
(1995)] can be obtained using Layer Wise kinematics and higher orders of expan-
sion, whereas for the thin plate, an order of expansion equal to 2 is sufficient. The
use of Equivalent Single Layer models, even though higher orders are considered,
gives a larger error than 2% in the case of the thick plate for the first frequency.
The error is smaller for the thin plate (less than 1%), but the exact solution is not
achieved. Table 2 shows that classical theories, such as FSDT and CLT, are totally
inappropriate for such cases; in fact, CLT gives a larger error than 50% for the first
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Figure 6: Geometry for vibrations problem in case of a multilayered piezoelectric
plate: closed circuit configuration.

Table 2: Plate: 3D results vs CLT and FSDT analysis. 3D solution by Heyliger and
Saravanos (1995). m = n = 1, first three modes.

a/h = 4 a/h = 50
Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3

3D 57074.5 191301 250769 618.118 15681.6 21492.8

PV D(uuu,Φ)

CLT 88173.4 195086 262887 592.439 15607.0 21031.4
Err(%) (54.49) (1.98) (4.83) (−4.15) (−0.48) (−2.15)
FSDT 67878.5 195086 262887 590.917 15607.0 21031.4
Err(%) (18.93) (1.98) (4.83) (−4.40) (−0.48) (−2.15)

frequency (thick plate). The zig-zag theories provide better results with respect to
ESL models; however they do not provide the 3D solution.

The use of mixed models does not appear mandatory to obtain the frequencies: the
kinematic based PVD leads to a quasi-3D evaluation of the first three frequencies
for m = m = 1. The use of mixed models instead appears mandatory to obtain
the correct evaluation of modes through the thickness in terms of displacements,
stresses, electric potential and electric displacement. This fact is illustrated in the
following analysis.

The mode through the thickness for the first frequency is given in Figures 7-10 in
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Table 3: Plate: 3D results vs Equivalent Single Layer (ESL) theories. 3D solution
by Heyliger and Saravanos (1995). m = n = 1, first three modes.

a/h = 4 a/h = 50
Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3

3D 57074.5 191301 250769 618.118 15681.6 21492.8

PV D(uuu,Φ)

ED1 74105.9 196021 266337 689.867 15694.9 21507.4
Err(%) (29.84) (2.47) (6.21) (11.61) (0.08) (0.07)
ED2 69413.8 195860 262204 620.300 15694.9 21505.2
Err(%) (21.62) (2.38) (4.56) (0.35) (0.08) (0.06)
ED3 58818.6 195825 259586 618.551 15694.2 21500.1
Err(%) (3.06) (2.36) (3.52) (0.07) (0.08) (0.03)
ED4 58713.8 194592 254740 618.465 15693.5 21497.8
Err(%) (2.87) (1.72) (1.58) (0.06) (0.08) (0.02)

Table 4: Plate: 3D results vs ESL zig-zag theories. 3D solution by Heyliger and
Saravanos (1995). m = n = 1, first three modes.

a/h = 4 a/h = 50
Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3

3D 57074.5 191301 250769 618.118 15681.6 21492.8

PV D(uuu,Φ)

EDZ1 63204.7 195965 266196 688.082 15693.6 21498.5
Err(%) (10.74) (2.44) (6.15) (11.32) (0.08) (0.03)
EDZ2 60605.5 195721 260861 619.047 15693.5 21496.5
Err(%) (6.19) (2.31) (4.02) (0.15) (0.08) (0.02)
EDZ3 57656.8 195711 259570 618.382 15687.0 21496.5
Err(%) (1.02) (2.30) (3.51) (0.04) (0.03) (0.02)
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Table 5: Plate: 3D results vs Layer Wise (LW) theories. 3D solution by Heyliger
and Saravanos (1995). m = n = 1, first three modes.

a/h = 4 a/h = 50
Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3

3D 57074.5 191301 250769 618.118 15681.6 21492.8

PV D(uuu,Φ)

LD1 57252.5 194840 255646 619.023 15683.4 21494.4
Err(%) (0.31) (1.85) (1.94) (0.15) (0.01) (0.01)
LD2 57081.9 191311 250786 618.106 15681.6 21492.6
Err(%) (0.01) (0.00) (0.01) (0.00) (0.00) (0.00)
LD3 57074.0 191301 250768 618.105 15681.6 21492.6
Err(%) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
LD4 57074.0 191301 250768 618.106 15681.6 21492.6
Err(%) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Figure 7: Plate proposed by Heyligher and Saravanos (1995): mechanical trans-
verse displacement uz vs z. a/h = 4, first mode for m = n = 1.
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Table 6: Plate: 3D results vs mixed ESL theories with Interlaminar Continuous
transverse stress components. 3D solution by Heyliger and Saravanos (1995). m =
n = 1, first three modes.

a/h = 4 a/h = 50
Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3

3D 57074.5 191301 250769 618.118 15681.6 21492.8

RMV T (uuu,Φ ,σσσn)

EM1 71619.2 195939 266276 679.117 15689.3 21505.5
Err(%) (25.48) (2.42) (6.18) (9.87) (0.05) (0.06)
EM2 68710.5 195835 262092 620.214 15693.3 21504.6
Err(%) (20.39) (2.37) (4.51) (0.34) (0.07) (0.05)
EM3 58576.0 195807 259495 618.504 15693.0 21499.7
Err(%) (2.63) (2.35) (3.48) (0.06) (0.07) (0.03)
EM4 58568.2 194571 254601 618.432 15692.9 21497.5
Err(%) (2.62) (1.71) (1.53) (0.05) (0.07) (0.02)

Figure 8: Plate proposed by Heyligher and Saravanos (1995): electric potential Φ

vs z. a/h = 4, first mode for m = n = 1.
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Table 7: Plate: 3D results vs mixed LW theories with Interlaminar Continuous
transverse stress components. 3D solution by Heyliger and Saravanos (1995). m =
n = 1, first three modes.

a/h = 4 a/h = 50
Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3

3D 57074.5 191301 250769 618.118 15681.6 21492.8

RMV T (uuu,Φ ,σσσn)

LM1 57056.6 194696 253955 617.996 15683.3 21493.9
Err(%) (−0.03) (1.77) (1.27) (−0.02) (0.01) (0.01)
LM2 57078.3 191301 250779 618.106 15681.6 21492.6
Err(%) (0.01) (0.00) (0.01) (0.00) (0.00) (0.00)
LM3 57074.0 191301 250768 618.105 15681.6 21492.6
Err(%) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
LM4 57074.0 191301 250768 618.105 15681.6 21492.6
Err(%) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Figure 9: Plate proposed by Heyligher and Saravanos (1995): transverse normal
stress σzz vs z. a/h = 4, first mode for m = n = 1.
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Table 8: Plate: 3D results vs mixed ESL theories with Interlaminar Continuous
transverse normal electrical displacement. 3D solution by Heyliger and Saravanos
(1995). m = n = 1, first three modes.

a/h = 4 a/h = 50
Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3

3D 57074.5 191301 250769 618.118 15681.6 21492.8

RMV T (uuu,Φ ,DDDn)

EM1 74117.2 196021 266338 689.885 15694.9 21507.4
Err(%) (29.86) (2.47) (6.21) (11.61) (0.08) (0.07)
EM2 69413.8 195860 262204 620.300 15694.9 21505.2
Err(%) (21.62) (2.38) (4.56) (0.35) (0.08) (0.06)
EM3 58818.6 195825 259586 618.551 15694.2 21500.1
Err(%) (3.06) (2.36) (3.52) (0.07) (0.08) (0.03)
EM4 58713.8 194592 254740 618.465 15693.5 21497.8
Err(%) (2.87) (1.72) (1.58) (0.06) (0.08) (0.02)

Figure 10: Plate proposed by Heyligher and Saravanos (1995): transverse normal
electric displacement Dz vs z. a/h = 4, first mode for m = n = 1.
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Table 9: Plate: 3D results vs mixed LW theories with Interlaminar Continuous
transverse normal electrical displacement. 3D solution by Heyliger and Saravanos
(1995). m = n = 1, first three modes.

a/h = 4 a/h = 50
Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3

3D 57074.5 191301 250769 618.118 15681.6 21492.8

RMV T (uuu,Φ ,DDDn)

LM1 57257.9 194840 255646 619.043 15683.4 21494.4
Err(%) (0.32) (1.85) (1.94) (0.15) (0.01) (0.01)
LM2 57081.9 191311 250786 618.106 15681.5 21492.6
Err(%) (0.01) (0.00) (0.01) (0.00) (0.00) (0.00)
LM3 57074.0 191301 250768 618.105 15681.5 21492.6
Err(%) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
LM4 57074.0 191301 250768 618.105 15681.5 21492.6
Err(%) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

terms of displacements, electric potential, stresses and electric displacement. The
distribution of the transverse displacement uz through the thickness is given in Fig-
ure 7; in this case, there are no differences for the considered variational statements
because the displacement is a primary variable in all them. The mode is given in
Figure 8 in terms of electric potential. The potential Φ consists of a primary vari-
able in each considered model; as a consequence, the same considerations made
for the displacements are confirmed: the electric potential is continuous and sat-
isfies the closed-circuit boundary conditions. In order to give the mode through
the thickness in terms of stress σzz, the use of mixed models in which σzz is a pri-
mary variable is mandatory: these models permit the interlaminar continuity and
the correct boundary homogeneous conditions to be obtained, even if low orders of
expansion are employed (see Figure 9). Finally, Figure 10 gives the modes in terms
of transverse normal electric displacement Dz. As in the case of stress σzz, mixed
models, where normal electric displacement is a primary variable, are necessary in
order to achieve the interlaminar continuity of Dz at the interfaces.

The frequencies calculated using a pure mechanical model are quoted in Table 12.
In order to estimate the piezoelectric effect, the following parameter is evaluated:
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Table 10: Plate: 3D results vs mixed ESL theories with Interlaminar Continuous
transverse stresses and transverse normal electrical displacement. 3D solution by
Heyliger and Saravanos (1995). m = n = 1, first three modes.

a/h = 4 a/h = 50
Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3

3D 57074.5 191301 250769 618.118 15681.6 21492.8

RMV T (uuu,Φ ,σσσn,DDDn)

EM1 71645.9 195940 266276 679.982 15689.3 21505.7
Err(%) (25.53) (2.42) (6.18) (10.00) (0.05) (0.06)
EM2 68710.5 195835 262094 620.214 15693.3 21504.6
Err(%) (20.39) (2.37) (4.52) (0.34) (0.07) (0.05)
EM3 58576.0 195807 259498 618.504 15693.0 21499.7
Err(%) (2.63) (2.35) (3.48) (0.06) (0.07) (0.03)
EM4 58568.2 194571 254603 618.432 15692.9 21497.5
Err(%) (2.62) (1.71) (1.53) (0.05) (0.07) (0.02)

∆
p[%] =

√
ω2−ω2

el
ω2 ·100 (212)

where the eigenfrequency ω is obtained by considering the electric effect, whereas
ωel is computed neglecting the electric part (only the elastic properties of the piezo-
electric layers are considered). Due to the employed high orders, each model gives
the exact solution according to the solution proposed by Heyliger and Saravanos
(1995) for both thick and thin laminates. Figure 11 and Table 12 confirm that the
effect produced by the electro-mechanical interaction is not predictable and the de-
pendence on the thickness ratio a/h (see Figure 11a) and on the considered mode
(see Figure 11b) cannot be a priori estimated.

Effect of the real mass on the electro-mechanical coupling

The case proposed in Heyliger and Saravanos (1995) is a well-known three-dimen-
sional benchmark which has been employed to validate the proposed variational
statements and variable kinematics models, the electro-mechanical coupling has
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Table 11: Plate: 3D results vs mixed LW theories with Interlaminar Continuous
transverse stresses and transverse normal electrical displacement. 3D solution by
Heyliger and Saravanos (1995). m = n = 1, first three modes.

a/h = 4 a/h = 50
Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3

3D 57074.5 191301 250769 618.118 15681.6 21492.8

RMV T (uuu,Φ ,σσσn,DDDn)

LM1 57094.0 194697 253958 618.143 15683.3 21493.9
Err(%) (0.03) (1.77) (1.27) (0.00) (0.01) (0.01)
LM2 57078.3 191301 250779 618.106 15681.6 21492.6
Err(%) (0.01) (0.00) (−0.01) (0.00) (0.00) (0.00)
LM3 57074.0 191301 250768 618.105 15681.6 21492.6
Err(%) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
LM4 57074.0 191301 250768 618.106 15681.6 21492.6
Err(%) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

been also investigated. However, in Heyliger and Saravanos (1995) a mass density
ρ = 1 kg/m3 has been assumed for both piezoelectric and composite materials.
This assumption does not have a physical meaning, therefore in this section we
suppose a real mass density ρ = 7600 kg/m3 and ρ = 1578 kg/m3 for PZT −4 and
Gr/EP materials, respectively. The first three circular frequencies ω = ω/100 for
m = n = 1 are considered.

The most refined theory proposed in this paper is the layer wise model with fourth
order of expansion in the thickness direction for each modelled variable
(LM4(uuu,Φ ,σσσn,DDDn)). This theory has been validated in the previous section by
using the three-dimensional solution proposed by Heyliger and Saravanos (1995):
it gives 0% of error for the three first modes and for thin and thick plates. In Table
13 LM4(uuu,Φ ,σσσn,DDDn) is used as reference solution for the case of real mass density
for the embedded layers. Several classical and refined models are compared and
no further comments are obtained by the introduction of mass densities different
from 1 kg/m3. In Table 14 and in Figure 12, the electro-mechanical coupling has
been analyzed in the case of real mass density, the piezoelectric effect does not
change with respect to the case proposed in Heyliger and Saravanos (1995). The
mass density influences the frequency values, but it does not add new effects in the



Variable Kinematics and Advanced Variational Statements 309

Table 12: Plate: comparison between frequency response of pure mechanical prob-
lem and electro-mechanical problem for the case proposed by Heyliger and Sara-
vanos (1995). m = n = 1, first three modes.

a/h = 4 a/h = 50
Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3

LD4(uuu) 55514.8 189939 246834 584.085 15590.0 20948.1

LD4(uuu,Φ) 57074.0 191301 250768 618.105 15681.5 21492.6
LM4(uuu,Φ ,DDDn) 57074.0 191301 250768 618.105 15681.5 21492.6

∆p[%] (23.21) (11.91) (17.64) (32.72) (10.79) (22.37)

LM4(uuu,σσσn) 55514.8 189939 246834 584.085 15590.0 20948.1

LM4(uuu,Φ ,σσσn) 57074.0 191301 250768 618.105 15681.6 21492.6
LM4(uuu,Φ ,σσσn,DDDn) 57074.0 191301 250768 618.105 15681.6 21492.6

∆p[%] (23.21) (11.91) (17.64) (32.72) (10.79) (22.37)

electro-mechanical coupling behavior.

8.2 Shell geometry

The free vibration problem of multilayered shells including thickness polarized
piezoelectric layers has been investigated. As in the plate case, by imposing the
waves number in the in-plane directions, the corresponding vibration modes have
been obtained. The number of frequencies is equal to the number of degrees of
freedom through the thickness of the considered kinematics model.

A two-layered ring shell and a multilayered cylindrical panel have been considered.
The geometry of these shells are given in Figure 13. The free vibration problem has
been investigated in closed circuit configuration: the electric potential is zero at the
top and bottom of the shell (Φt = Φb = 0). The elastic and piezoelectric properties
of the embedded materials, and the geometrical parameters are given in Table 15
(ring shell) and in Table 1 (cylindrical panel).

The cylindrical ring shell has two layers, the internal layer in Titanium and the
external one in piezoelectric PZT-4. The 3D solution was given by Heyliger et
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a) b)
Figure 11: Plate: ∆p[%] calculated for LD4(uuu) vs. LD4(uuu,Φ). Variation of ∆p[%]
depending on the thickness ratio a/h (a). Variation of ∆p[%] depending on the
considered mode (b). Case proposed by Heyligher and Saravanos (1995).

a) b)
Figure 12: Plate: ∆p[%] calculated for LD4(uuu) vs. LD4(uuu,Φ). Variation of ∆p[%]
depending on the thickness ratio a/h (a). Variation of ∆p[%] depending on the
considered mode (b). Case of real mass for the embedded layers.
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Table 13: Plate: refined results vs classical theories for the case of real mass
of the embedded layers. The error in percentage of each theory is calculated as
theory−LM4(uuu,Φ ,σσσn,DDDn)

LM4(uuu,Φ ,σσσn,DDDn)
×100. m = n = 1, first three modes.

a/h = 4 a/h = 50
Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3

LM4(uuu,Φ ,σσσn,DDDn) 714.106 2390.66 3027.73 7.72934 196.087 268.669

CUF theories

CLT (uuu,Φ) 1116.75 2439.42 3287.22 7.40869 195.154 262.982
Err(%) (56.4) (2.04) (8.57) (−4.15) (−0.48) (−2.12)
FSDT (uuu,Φ) 852.682 2439.42 3287.22 7.38966 195.154 262.982
Err(%) (19.4) (2.04) (8.57) (−4.39) (−0.48) (−2.12)
ED3(uuu,Φ) 735.673 2446.70 3206.23 7.73489 196.244 268.817
Err(%) (3.02) (2.34) (5.89) (0.07) (0.08) (0.05)
EDZ3(uuu,Φ) 720.900 2445.41 3206.22 7.73278 196.155 268.772
Err(%) (0.95) (2.29) (5.89) (0.04) (0.03) (0.04)
LD2(uuu,Φ) 714.201 2390.81 3028.05 7.72936 196.087 268.669
Err(%) (0.01) (0.01) (0.01) (0.00) (0.00) (0.00)
LD4(uuu,Φ) 714.106 2390.66 3027.73 7.72934 196.087 268.669
Err(%) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
EM3(uuu,Φ ,σσσn) 732.612 2446.42 3204.46 7.73430 196.229 268.811
Err(%) (2.59) (2.33) (5.84) (0.06) (0.07) (0.05)
LM2(uuu,Φ ,DDDn) 714.201 2390.81 3028.05 7.72936 196.087 268.669
Err(%) (0.01) (0.01) (0.01) (0.00) (0.00) (0.00)
LM4(uuu,Φ ,σσσn) 714.106 2390.66 3027.73 7.72934 196.087 268.669
Err(%) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

al. (1996): the first fundamental frequency in Hz is given by imposing m = 0 and
n = 4,8,12,16,20. The thickness ratio Rβ /h is equal to 72.75 (where the total
thickness is h = 0.004 m, and the radii of curvature at the midsurface are Rα = ∞

and Rβ = 0.291 m). The dimensions are a = 0.3048 m and b = 2πRβ = 1.82841 m.

Table 16 gives the first fundamental frequency in the case of CLT and FSDT mod-
els. Tables 17 and 18 consider the ESL models and the ESL models with the Mu-
rakami zigzag function, respectively: the PVD extended to an electro-mechanical
problem (PVD(uuu,Φ)) has been considered. LW theories are investigated in Table
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Table 14: Plate: comparison between frequency response of pure mechanical prob-
lem and electro-mechanical problem for the case of real mass of the embedded
layers. m = n = 1, first three modes.

a/h = 4 a/h = 50
Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3

LD4(uuu) 694.561 2376.51 2989.28 7.30390 194.944 261.874

LD4(uuu,Φ) 714.106 2390.66 3027.73 7.72934 196.087 268.669
LM4(uuu,Φ ,DDDn) 714.106 2390.66 3027.73 7.72934 196.087 268.669

∆p[%] (23.24) (10.86) (15.89) (32.72) (10.78) (22.35)

LM4(uuu,σσσn) 694.561 2376.51 2989.28 7.30390 194.944 261.874

LM4(uuu,Φ ,σσσn) 714.106 2390.66 3027.73 7.72934 196.087 268.669
LM4(uuu,Φ ,σσσn,DDDn) 714.106 2390.66 3027.73 7.72934 196.087 268.669

∆p[%] (23.24) (10.86) (15.89) (32.72) (10.78) (22.35)

19 using the same variational statement (PVD(uuu,Φ)). Tables 20-25 give the results
of the first fundamental frequency in the case of the three possible extensions of
RMVT to the electro-mechanical case: the same kinematics models introduced for
the PVD case are considered.

The results obtained in each case (ESL or LW, and PVD or RMVT model) are
very close to the 3D solution if higher orders of expansion are used (N = 4), the
maximum error is 2.68% for imposed waves number m = 0 and n = 20. The use
of LW theories is not mandatory because in the considered two-layered ring the
largest part is in Titanium (isotropic material) with a very thin layer in PZT-4: the
ZZ effect is not so evident. Table 16 shows that classical theories, such as CLT and
FSDT, give larger errors with respect to the refined and advanced 2D models based
on CUF, the same happens for ED1 theories: a good 2D theory for the electro-
mechanical problems must have an electric potential at least quadratically varying
in the thickness direction.

The use of mixed models does not appear mandatory to obtain the frequencies: the
kinematic based on PVD leads to a quasi-3D evaluation of the first fundamental
frequency for each waves number n. The use of mixed models, based on RMVT,
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Table 15: Elastic and electric properties of the ring in PZT-4 and Titanium.

Properties PZT −4 Titanium
E1[GPa] 81.3 114
E2[GPa] 81.3 114
E3[GPa] 64.5 114
ν12[−] 0.329 0.3
ν13[−] 0.432 0.3
ν23[−] 0.432 0.3
G23[GPa] 25.6 43.85
G13[GPa] 25.6 43.85
G12[GPa] 30.6 43.85
e15[C/m2] 12.72 0
e24[C/m2] 12.72 0
e31[C/m2] −5.20 0
e32[C/m2] −5.20 0
e33[C/m2] 15.08 0
ε11[pC/V m] 1.306×104 8.850
ε22[pC/V m] 1.306×104 8.850
ε33[pC/V m] 1.151×104 8.850
ρ[kg/m3] 7600 2768
hPZT 4[m] 0.001 −
hT [m] − 0.003

is mandatory to obtain the correct evaluation of modes through the thickness in
terms of displacements, electric potential, stresses and electric displacement. This
fact is clearly explained in Figures 14-17 where the mode through the thickness for
the fundamental frequency is given in terms of displacements, electric potential,
stresses and electric displacement. The distribution of the transverse displacement
uz through the thickness is given in Figure 14; in this case, there are no differences
because the displacement is a primary variable in each proposed variational state-
ment. The mode in Figure 15 is given in terms of electric potential. The electric
potential Φ is a primary variable in each considered variational statement; this fea-
ture permits a continuous electric potential through the thickness which satisfies the
closed-circuit boundary conditions. In order to give the mode through the thickness
in terms of stress σzz, the use of mixed models in which σzz is a primary variable is
mandatory: these models permit the interlaminar continuity and the correct bound-
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Table 16: Ring in PZT-4 and Titanium, closed circuit configuration. 3D results vs
CLT and FSDT analysis, fundamental mode for m = 0. 3D solution by Heyliger et
al. (1996).

n = 4 n = 8 n = 12 n = 16 n = 20

3D 31.27 170.42 407.29 745.21 1190.48

PV D(uuu,Φ)

CLT 30.71 166.63 395.29 715.59 1127.24
Err(%) (−1.79) (−2.22) (−2.95) (−3.97) (−5.31)
FSDT 30.71 166.57 394.98 714.60 1124.79
Err(%) (−1.79) (−2.26) (−3.02) (−4.11) (−5.52)

ary homogeneous conditions to be obtained (see Figure 16). Finally, Figure 17
gives the modes in terms of transverse normal electric displacement Dz. As in the
case of stress σzz, mixed models, where normal electric displacement is a primary
variable, are mandatory in order to achieve the interlaminar continuity of Dz at the
interfaces.

The frequencies calculated using a pure mechanical model are shown in Table 26.
In order to estimate the piezoelectric effect, the parameter ∆p[%] as defined in
Eq.(212) is employed. Due to the considered higher orders of expansion, each
model gives the same value of the parameter ∆p, this last is quite large, so the
piezoelectric effect cannot be neglected. In addition to the conclusions already
given for the plate (the effect produced by the electromechanical interaction is not
predictable for variations of the thickness ratio and for the order of the considered
mode), it is possible to note that in the proposed case the parameter ∆p does not
depend on the waves number n because of the particular geometry and vibration
modes (closed cylinder, axisymmetric modes with m = 0).

The cylindrical panel has two external layers in piezoelectric material PTZ-4 with
thickness h1 = h5 = hTOT

10 and three internal layers in graphite-epoxy with lamination
sequence 0◦/90◦/0◦ and thickness h2 = h3 = h4 = 4

15 hTOT . The dimensions are
a = 1 m and b = π

3 Rβ = 10.47197 m (radii of curvature Rα = ∞ and Rβ = 10 m).
This assessment is a sort of extension of the plate case proposed in the previous
section to the shell geometry. In this case, the reference solution (Ref) in Tables 27-
30 is the LM4(uuu,Φ ,σσσn,DDDn) theory. The results are given as the first fundamental
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Figure 13: Geometry and notation of the multilayered piezoelectric ring (a) and
multilayered piezoelectric cylindrical panel (b).

Figure 14: Ring in PZT-4 and Titanium: mechanical transverse displacement uz vs
z. First mode for m = 0 and n = 4.

circular frequency ω = ω

√
Rβ (ρ)PT Z−4

(E3)PT Z−4h2
TOT

. Four thickness ratios are investigated:

Rβ /h = 2,4,10,100 (where the values of the total thickness are h = 5,2.5,1,0.1 m).

Tables 27 and 28 give the fundamental frequencies of the shell for different thick-
ness ratios and for both PVD and RMVT theories, the waves number are m = n = 1.
Tables 29 and 30 are for waves number m = n = 10. The results show that in case
of thick shell, Layer Wise kinematics and an order of expansion equal to 4 are
mandatory to obtain the reference solution, whereas for thin shells lower order of
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Figure 15: Ring in PZT-4 and Titanium: electric potential Φ vs z. First mode for
m = 0 and n = 4.

Table 17: Ring in PZT-4 and Titanium, closed circuit configuration. 3D results vs
Equivalent Single Layer (ESL) theories, fundamental mode for m = 0. 3D solution
by Heyliger et al. (1996).

n = 4 n = 8 n = 12 n = 16 n = 20

3D 31.27 170.42 407.29 745.21 1190.48

PV D(uuu,Φ)

ED1 30.65 166.28 394.29 713.35 1122.85
Err(%) (−1.98) (−2.43) (−3.19) (−4.27) (−5.68)
ED2 31.65 171.67 407.05 736.45 1159.21
Err(%) (1.21) (0.73) (−0.06) (−1.17) (−2.63)
ED3 31.64 171.62 406.93 736.18 1158.70
Err(%) (1.18) (0.70) (−0.09) (−1.21) (−2.67)
ED4 31.64 171.61 406.91 736.14 1158.64
Err(%) (1.18) (0.70) (−0.09) (−1.22) (−2.67)
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Table 18: Ring in PZT-4 and Titanium, closed circuit configuration. 3D results vs
ESL zig-zag theories, fundamental mode for m = 0. 3D solution by Heyliger et al.
(1996).

n = 4 n = 8 n = 12 n = 16 n = 20

3D 31.27 170.42 407.29 745.21 1190.48

PV D(uuu,Φ)

EDZ1 33.28 180.53 428.05 774.35 1218.71
Err(%) (6.43) (5.93) (5.10) (3.91) (2.37)
EDZ2 31.64 171.60 406.90 736.16 1158.73
Err(%) (1.18) (0.69) (−0.10) (−1.21) (−2.67)
EDZ3 31.64 171.60 406.88 736.08 1158.55
Err(%) (1.18) (0.69) (−0.10) (−1.22) (−2.68)

expansion could be considered. The reference solution is not achieved by using
Equivalent Single Layer models, even if high orders of expansion and thin shells
are considered. This happens because in this case the transverse anisotropy of the
shell is much bigger than the ring case. Classical theories give a larger error, so they
are totally inappropriate. The zig-zag theories provide little better results with re-
spect to ESL models but the error does not become zero even if the shell is thin. As
above, the use of mixed models appears mandatory only to obtain the correct eval-
uation of modes through the thickness in terms of transverse shear/normal stresses
and normal electric displacement.

The frequencies calculated using a pure mechanical model are given in Table 31.
The parameter ∆p increases with the thickness ratio if the fundamental frequency is
investigated for waves number m = n = 1. It is evident that the effect produced by
the electromechanical interaction becomes more important when the total thickness
of the shell decreases, even if the percentage of piezoelectric material is the same.
Figure 18 confirms that the effect of the electromechanical interaction is very hard
to predict if several parameters are involved in the investigation (thickness ratio,
higher modes and waves number m and n in the plane directions).
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Table 19: Ring in PZT-4 and Titanium, closed circuit configuration. 3D results vs
Layer Wise (LW) theories, fundamental mode for m = 0. 3D solution by Heyliger
et al. (1996).

n = 4 n = 8 n = 12 n = 16 n = 20

3D 31.27 170.42 407.29 745.21 1190.48

PV D(uuu,Φ)

LD1 33.28 180.51 427.99 774.24 1218.54
Err(%) (6.43) (5.92) (5.08) (3.89) (2.36)
LD2 31.64 171.60 406.88 736.11 1158.61
Err(%) (1.18) (0.69) (−0.10) (−1.22) (−2.68)
LD3 31.64 171.59 406.87 736.07 1158.51
Err(%) (1.18) (0.69) (−0.10) (−1.23) (−2.68)
LD4 31.64 171.59 406.87 736.07 1158.51
Err(%) (1.18) (0.69) (−0.10) (−1.23) (−2.68)

Table 20: Ring in PZT-4 and Titanium, closed circuit configuration. 3D results
vs mixed ESL theories with Interlaminar Continuous transverse stress components,
fundamental mode for m = 0. 3D solution by Heyliger et al. (1996).

n = 4 n = 8 n = 12 n = 16 n = 20

3D 31.27 170.42 407.29 745.21 1190.48

RMV T (uuu,Φ ,σσσn)

EM1 35.53 192.70 456.86 826.39 1300.41
Err(%) (13.62) (13.07) (12.17) (10.89) (9.23)
EM2 31.65 171.65 407.03 736.40 1159.13
Err(%) (1.21) (0.72) (−0.06) (−1.18) (−2.63)
EM3 31.64 171.61 406.91 736.15 1158.65
Err(%) (1.18) (0.70) (−0.10) (−1.22) (−2.67)
EM4 31.64 171.61 406.90 736.13 1158.62
Err(%) (1.18) (0.70) (−0.10) (−1.22) (−2.68)
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Table 21: Ring in PZT-4 and Titanium, closed circuit configuration. 3D results
vs mixed LW theories with Interlaminar Continuous transverse stress components,
fundamental mode for m = 0. 3D solution by Heyliger et al. (1996).

n = 4 n = 8 n = 12 n = 16 n = 20

3D 31.27 170.42 407.29 745.21 1190.48

RMV T (uuu,Φ ,σσσn)

LM1 32.39 175.66 416.50 753.47 1185.87
Err(%) (3.58) (3.07) (2.26) (1.11) (−0.39)
LM2 31.64 171.60 406.88 736.10 1158.58
Err(%) (1.18) (0.69) (−0.10) (−1.22) (−2.68)
LM3 31.64 171.59 406.87 736.07 1158.51
Err(%) (1.18) (0.69) (−0.10) (−1.23) (−2.68)
LM4 31.64 171.59 406.87 736.07 1158.51
Err(%) (1.18) (0.69) (−0.10) (−1.23) (−2.68)

Table 22: Ring in PZT-4 and Titanium, closed circuit configuration. 3D results
vs mixed ESL theories with Interlaminar Continuous transverse normal electrical
displacement, fundamental mode for m = 0. 3D solution by Heyliger et al. (1996).

n = 4 n = 8 n = 12 n = 16 n = 20

3D 31.27 170.42 407.29 745.21 1190.48

RMV T (uuu,Φ ,DDDn)

EM1 35.54 192.73 456.93 826.51 1300.61
Err(%) (13.65) (13.09) (12.19) (10.91) (9.25)
EM2 31.65 171.67 407.05 736.45 1159.21
Err(%) (1.21) (0.73) (−0.06) (−1.17) (−2.63)
EM3 31.64 171.62 406.93 736.18 1158.70
Err(%) (1.18) (0.70) (−0.09) (−1.21) (−2.67)
EM4 31.64 171.62 406.91 736.14 1158.64
Err(%) (1.18) (0.70) (−0.09) (−1.22) (−2.67)
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Table 23: Ring in PZT-4 and Titanium, closed circuit configuration. 3D results
vs mixed LW theories with Interlaminar Continuous transverse normal electrical
displacement, fundamental mode for m = 0. 3D solution by Heyliger et al. (1996).

n = 4 n = 8 n = 12 n = 16 n = 20

3D 31.27 170.42 407.29 745.21 1190.48

RMV T (uuu,Φ ,DDDn)

LM1 33.28 180.53 428.05 774.35 1218.71
Err(%) (6.43) (5.93) (5.10) (3.91) (2.37)
LM2 31.64 171.60 406.88 736.11 1158.61
Err(%) (1.18) (0.69) (−0.10) (−1.22) (−2.68)
LM3 31.64 171.59 406.87 736.07 1158.51
Err(%) (1.18) (0.69) (−0.10) (−1.23) (−2.68)
LM4 31.64 171.59 406.87 736.07 1158.51
Err(%) (1.18) (0.69) (−0.10) (−1.23) (−2.68)

Figure 16: Ring in PZT-4 and Titanium: transverse normal stress σzz vs z. First
mode for m = 0 and n = 4.
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Table 24: Ring in PZT-4 and Titanium, closed circuit configuration. 3D results
vs mixed ESL theories with Interlaminar Continuous transverse stresses and trans-
verse normal electrical displacement, fundamental mode for m = 0. 3D solution by
Heyliger et al. (1996).

n = 4 n = 8 n = 12 n = 16 n = 20

3D 31.27 170.42 407.29 745.21 1190.48

RMV T (uuu,Φ ,σσσn,DDDn)

EM1 35.54 192.73 456.92 826.49 1300.57
Err(%) (13.65) (13.09) (12.18) (10.91) (9.25)
EM2 31.65 171.66 407.03 736.40 1159.13
Err(%) (1.21) (0.73) (−0.06) (−1.18) (−2.63)
EM3 31.64 171.61 406.91 736.15 1158.65
Err(%) (1.18) (0.70) (−0.09) (−1.22) (−2.67)
EM4 31.64 171.61 406.90 736.13 1158.62
Err(%) (1.18) (0.70) (−0.10) (−1.22) (−2.68)

Figure 17: Ring in PZT-4 and Titanium: transverse normal electric displacement
Dz vs z. First mode for m = 0 and n = 4.
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Table 25: Ring in PZT-4 and Titanium, closed circuit configuration. 3D results
vs mixed LW theories with Interlaminar Continuous transverse stresses and trans-
verse normal electrical displacement, fundamental mode for m = 0. 3D solution by
Heyliger et al. (1996).

n = 4 n = 8 n = 12 n = 16 n = 20

3D 31.27 170.42 407.29 745.21 1190.48

RMV T (uuu,Φ ,σσσn,DDDn)

LM1 32.53 176.42 418.30 756.73 1191.00
Err(%) (4.03) (3.52) (2.70) (1.55) (0.04)
LM2 31.64 171.60 406.88 736.09 1158.58
Err(%) (1.18) (0.69) (−0.10) (−1.22) (−2.68)
LM3 31.64 171.59 406.87 736.07 1158.51
Err(%) (1.18) (0.69) (−0.10) (−1.23) (−2.68)
LM4 31.64 171.59 406.87 736.07 1158.51
Err(%) (1.18) (0.69) (−0.10) (−1.23) (−2.68)

a) b)
Figure 18: Multilayered piezoelectric cylindrical panel: ∆p[%] calculated for
LD4(uuu) vs. LD4(uuu,Φ). Variation of ∆p[%] depending on the thickness ratio Rβ /h
(a). Variation of ∆p[%] depending on the waves number m,n (b).
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Table 26: Ring in PZT-4 and Titanium, closed circuit configuration. Comparison
between frequency response of pure mechanical problem and electro-mechanical
problem.

n = 4 n = 8 n = 12 n = 16 n = 20

LD4(uuu) 30.55 165.69 392.87 710.78 1118.77

LD4(uuu,Φ) 31.64 171.59 406.87 736.07 1158.51
LM4(uuu,Φ ,DDDn) 31.64 171.59 406.87 736.07 1158.51

∆p[%] (26.02) (26.00) (26.00) (26.00) (26.00)
LM4(uuu,σσσn) 30.55 165.69 392.87 710.78 1118.77

LM4(uuu,Φ ,σσσn) 31.64 171.59 406.87 736.07 1158.51
LM4(uuu,Φ ,σσσn,DDDn) 31.64 171.59 406.87 736.07 1158.51

∆p[%] (26.02) (26.00) (26.00) (26.00) (26.00)

9 Conclusions

This paper has provided governing equations for the electro-mechanical problem
according to the Principle of Virtual Displacements (PVD) and Reissner’s Mixed
Variational Theorem (RMVT). Various forms of RMVT are discussed in which the
transverse shear/normal stresses and/or the transverse normal electric displacement
are assumed variables. Governing differential equations are derived according to
Carrera’s Unified Formulation (CUF) for multilayered plates and shells. Closed-
form solutions are given for the free vibration problem of simply supported, or-
thotropic piezoelectric laminates in closed circuit configurations (electric potential
imposed to zero at the top and bottom). Assessments have been provided in which
the obtained frequencies have been compared with available three-dimensional so-
lutions proposed for plates [Heyliger and Saravanos (1995)] and shells [Heyliger
et al. (1996)]. Further benchmarks has been also performed in the case of both
plate and shell geometries. From an analysis of the results, the following main
conclusions can be drawn:

1. The use of Layer Wise models is mandatory to achieve a 3D solution, whereas
Equivalent Single Layer models could give erroneous results in particular for
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Table 27: Closed circuit vibration problem for multilayered piezoelectric cylin-

drical panel, fundamental frequency ω = ω

√
Rβ

4(ρ)PZT 4

(E3)PZT 4h2
TOT

obtained by using PVD

theories. m = n = 1.

Rβ /h 2 4 10 100

(Re f ) 17.584 37.351 83.816 357.27

PV D(uuu,Φ)

CLT 26.575 52.481 130.70 385.82
Err(%) (51.12) (40.50) (55.94) (7.99)
FSDT 24.829 48.060 113.49 369.14
Err(%) (41.19) (28.66) (35.40) (3.32)

ED3 20.529 41.907 88.193 359.47
Err(%) (16.74) (12.19) (5.22) (0.62)
ED4 18.229 40.442 87.869 359.30
Err(%) (3.66) (8.27) (4.83) (0.57)

EDZ3 20.234 39.527 85.849 359.31
Err(%) (15.06) (5.82) (2.42) (0.57)

LD3 17.620 37.416 83.818 357.27
Err(%) (0.20) (0.17) (0.00) (0.00)
LD4 17.585 37.353 83.816 357.27
Err(%) (0.00) (0.00) (0.00) (0.00)
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Table 28: Closed circuit vibration problem for multilayered piezoelectric cylindri-

cal panel, fundamental frequency ω = ω

√
Rβ

4(ρ)PZT 4

(E3)PZT 4h2
TOT

obtained by using RMVT

theories. m = n = 1.

Rβ /h 2 4 10 100

(Re f ) 17.584 37.351 83.816 357.27

RMV T (uuu,Φ ,σσσn)

EM3 20.283 41.436 87.646 359.12
Err(%) (15.34) (10.94) (4.57) (0.52)
EM4 18.143 40.178 87.510 359.08
Err(%) (3.18) (7.57) (4.41) (0.51)

LM3 17.593 37.369 83.815 357.27
Err(%) (0.05) (0.05) (0.00) (0.00)
LM4 17.584 37.351 83.816 357.27
Err(%) (0.00) (0.00) (0.00) (0.00)

RMV T (uuu,Φ ,DDDn)

LM3 17.620 37.416 83.818 357.27
Err(%) (0.20) (0.17) (0.00) (0.00)
LM4 17.585 37.353 83.816 357.27
Err(%) (0.00) (0.00) (0.00) (0.00)

RMV T (uuu,Φ ,σσσn,DDDn)

LM3 17.593 37.369 83.815 357.27
Err(%) (0.05) (0.05) (0.00) (0.00)
LM4 17.584 37.351 83.816 357.27
Err(%) (0.00) (0.00) (0.00) (0.00)
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Table 29: Closed circuit vibration problem for multilayered piezoelectric cylin-

drical panel, fundamental frequency ω = ω

√
Rβ

4(ρ)PZT 4

(E3)PZT 4h2
TOT

obtained by using PVD

theories. m = n = 10.

Rβ /h 2 4 10 100

(Re f ) 150.09 302.76 796.46 8338.2

PV D(uuu,Φ)

CLT 265.66 524.76 1306.9 13061
Err(%) (77.00) (73.32) (64.08) (56.64)
FSDT 259.58 518.06 1276.3 11321
Err(%) (72.95) (71.11) (60.24) (35.77)

ED3 172.26 348.16 925.26 8776.4
Err(%) (14.77) (14.99) (16.17) (5.25)
ED4 162.86 327.61 843.39 8746.9
Err(%) (8.51) (8.20) (5.89) (4.90)

EDZ3 172.34 348.20 923.51 8539.6
Err(%) (14.82) (15.00) (15.95) (2.41)

LD3 150.34 304.17 802.71 8338.3
Err(%) (0.17) (0.46) (0.78) (0.00)
LD4 150.09 302.77 796.49 8338.2
Err(%) (0.00) (0.00) (0.00) (0.00)
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Table 30: Closed circuit vibration problem for multilayered piezoelectric cylindri-

cal panel, fundamental frequency ω = ω

√
Rβ

4(ρ)PZT 4

(E3)PZT 4h2
TOT

by using RMVT theories.

m = n = 10.

Rβ /h 2 4 10 100

(Re f ) 150.09 302.76 796.46 8338.2

RMV T (uuu,Φ ,σσσn)

EM3 171.25 345.78 915.75 8721.4
Err(%) (14.10) (14.21) (15.00) (4.60)
EM4 162.51 326.94 841.08 8710.8
Err(%) (8.27) (7.99) (5.60) (4.47)

LM3 150.13 303.07 798.50 8338.1
Err(%) (0.03) (0.10) (0.26) (0.00)
LM4 150.09 302.76 796.46 8338.2
Err(%) (0.00) (0.00) (0.00) (0.00)

RMV T (uuu,Φ ,DDDn)

LM3 150.34 304.17 802.71 8338.3
Err(%) (0.17) (0.47) (0.78) (0.00)
LM4 150.09 302.77 796.49 8338.2
Err(%) (0.00) (0.00) (0.00) (0.00)

RMV T (uuu,Φ ,σσσn,DDDn)

LM3 150.13 303.07 798.51 8338.1
Err(%) (0.03) (0.10) (0.26) (0.00)
LM4 150.09 302.76 796.46 8338.2
Err(%) (0.00) (0.00) (0.00) (0.00)
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Table 31: Closed circuit vibration problem for multilayered piezoelectric cylindri-
cal panel. Comparison between frequency response of pure mechanical problem
and electro-mechanical problem.

m = n = 1

Rβ /h 2 4 10 100

LD4(uuu) 17.555 36.784 82.658 346.77

LD4(uuu,Φ) 17.585 37.353 83.816 357.27
LM4(uuu,Φ ,DDDn) 17.585 37.353 83.816 357.27

∆p[%] (5.84) (17.39) (16.56) (24.07)

LM4(uuu,σσσn) 17.554 36.783 82.658 346.77

LM4(uuu,Φ ,σσσn) 17.584 37.351 83.816 357.27
LM4(uuu,Φ ,σσσn,DDDn) 17.584 37.351 83.816 357.27

∆p[%] (5.84) (17.37) (16.56) (24.07)
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lower orders of expansion; classical theories such as CLT and FSDT lead to
large errors. For higher values of the transverse anisotropy ESL models give
erroneous results even if higher orders of expansion are used.

2. Mixed theories do not significantly improve the results in terms of circular
frequency parameters; however, their use becomes mandatory to predict the
correct ’through the thickness’ modes for both transverse mechanical and
electrical variables.

3. The effect produced by the electromechanical interaction on the frequency
response, is not a priori predictable: several parameters are involved in this
effect such as the thickness ratio, the order of the considered frequency and
the waves number. As a consequence, the accuracy of various theories cannot
be predicted a priori.

4. The introduction of the curvature does not give further comments and CUF
description remains also suitable for shell geometry.

The extension of the present findings to FEM applications will be proposed in the
future (both plate and shell geometries). In this new work different expansion func-
tions for the involved electro-mechanical variables will be proposed in order to
weigh up the different contributions.

Acknowledgement: Financial support from the Regione Piemonte projects E42,
E59 and STEPS is gratefully acknowledged.
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Appendix A: Fundamental nuclei for plates

After performing the arrays products and introducing the appropriate integrals in
the thickness direction z, it is possible to obtain the explicit form of fundamental
nuclei: they are arrays which can be expanded in τ and s directions depending on
the order of expansion N, and assembled in k index depending on the number of
layers and on the multilayer approach (ESL or LW). An example is given for the
fundamental nucleus Kuu for PVD in case of electro-mechanical problem. In A.1
the explicit components for plates in differential form are proposed. A.2 gives the
relative closed form after the introduction of harmonic assumptions.

Appendix A:.1 Explicit form

The following integrals are introduced to perform the explicit form of fundamental
nuclei:

(Jkτs,Jkτzs,Jkτsz ,Jkτzsz) =
∫

Ak

(FτFs,
∂Fτ

∂ z
Fs,Fτ

∂Fs

∂ z
,
∂Fτ

∂ z
∂Fs

∂ z
) dz . (213)

Fundamental nucleus Kuu for PVD extended to electro-mechanical case for plate
geometry is:(

Kkτs
uu

)
11

=−Ck
11Jkτs

∂xx−2Ck
16Jkτs

∂xy−Ck
66Jkτs

∂yy +Ck
55Jkτzsz ,
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Kkτs
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=−Ck
12Jkτs

∂xy−Ck
16Jkτs

∂xx−Ck
26Jkτs

α ∂yy−Ck
66Jkτs

∂xy +Ck
45Jkτzsz ,

(
Kkτs

uu

)
13

=−Ck
13Jkτsz∂x−Ck

36Jkτsz∂y +Ck
45Jkτzs∂y +Ck

55Jkτzs∂x ,

(
Kkτs

uu

)
21

=−Ck
12Jkτs

∂xy−Ck
16Jkτs

∂xx−Ck
26Jkτs

∂yy−Ck
66Jkτs

∂xy +Ck
45Jkτzsz ,

(
Kkτs

uu

)
22

=−Ck
22Jkτs

∂yy−2Ck
26Jkτs

∂xy−Ck
66Jkτs

∂xx +Ck
44Jkτzsz ,

(
Kkτs

uu

)
23

=−Ck
23Jkτsz∂y−Ck

36Jkτsz∂x +Ck
45Jkτzs∂x +Ck

44Jkτzs∂y , (214)

(
Kkτs
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)
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= Ck
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36Jkτzs∂y−Ck
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(
Kkτs

uu

)
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= Ck
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36Jkτzs∂x−Ck
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)
33
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55Jkτs
∂xx−2Ck

45Jkτs
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where the symbols ∂i j and ∂i indicate partial derivatives.

Appendix A:.2 Closed algebraic form

Nuclei presented in A.1 can be written in closed form for the algebraic system if
Eqs.(207) and (208) are employed:(

Kkτs
uu

)
11

= ᾱ
2Ck

11Jkτs + β̄
2Ck

66Jkτs +Ck
55Jkτzsz ,(

Kkτs
uu
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= ᾱβ̄Ck
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66Jkτs =
(

Kkτs
uu

)
21

,

(
Kkτs

uu

)
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=−ᾱCk
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55Jkτzs ,(
Kkτs

uu
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22Jkτs + ᾱ
2Ck
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44Jkτzsz , (215)(

Kkτs
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)
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=−Ck
23Jkτsz β̄ +Ck

44Jkτzsβ̄ ,(
Kkτs
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=−ᾱCk
13Jkτzs + ᾱCk
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uu
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Kkτs

uu

)
33

= Ck
33Jkτzsz + β̄

2Ck
44Jkτs + ᾱ

2Ck
55Jkτs ,

where ᾱ = mπ

a and β̄ = nπ

b , with a and b as plate dimensions, and m and n as waves
number in x and y directions, respectively.

Appendix B: Fundamental nuclei for shells

After performing the arrays products and introducing the appropriate integrals in
the thickness direction z of the shell, it is possible to obtain the explicit form of
fundamental nuclei. An example is given for the fundamental nucleus Kuu for PVD
in case of electro-mechanical problem. In A.1 the explicit components for shells
in differential form are proposed. A.2 gives the relative closed form after the intro-
duction of harmonic assumptions.

Appendix B:.1 Explicit form

The following integrals are introduced to perform the explicit form of fundamental
nuclei:

(Jkτs,Jkτs
α ,Jkτs

β
,Jkτs

α/β
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=
∫
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β
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) dz, (216)
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First, fundamental nucleus Kuu related to PVD extended to electro-mechanical case
is given for doubly curved shells (radii of curvature in both α and β directions, see
Figure 2); the symbols ∂i j and ∂i indicate partial derivatives:
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β
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β
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For cylindrical shells, one of the radii of curvature is ∞, we consider the example
of Rk

β
= ∞, so 1/Rk

β
= 0 and Hk

β
= 1, Eqs.(217) are simplified in:
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When both Rk
α and Rk

β
are infinite, fundamental nuclei for plates are obtained (see

Appendix A).

Appendix B:.2 Closed algebraic form

Nuclei presented in Appendix B:.1 can be written in closed form if Eqs.(207) and
(209) are employed. In this case, ᾱ = mπ

a and β̄ = nπ

b where a and b are the shell
dimensions.
Implemented algebraic form of nuclei for doubly curved shells are:(
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66Jkτs, (219)(
Kkτs

uu

)
22

= β̄
2Ck

22Jkτs
α/β

+ ᾱ
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Implemented nuclei in case of cylindrical shells are :(
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66Jkτs,

(
Kkτs

uu

)
22

= β̄
2Ck

22Jkτs
α + ᾱ
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=−ᾱCk
11

1
Rk

α

Jkτs
1/α
− ᾱCk
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When both Rk
α and Rk

β
are infinite, fundamental nuclei for plates are obtained (see

Appendix A).




