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Investigation on an Accelerated Scheme for Solving
Time-Dependent Systems

Montri Maleewong1 and Sirod Sirisup2

Abstract: In this paper, we describe our investigation of an “on-line” POD-
assisted projective integration method for solving a nonlinear PDE. Using the on-
line method, we have computed the representative POD modes without assuming
knowledge of the underlying slow manifold along the integration process. This ap-
proach is based on the “equation-free” framework where the governing PDE does
not need to be projected onto the POD bases in order to build a reduced-order
model. The main objectives of this study were to investigate the effectiveness of
the method in reducing the computational time required for numerically solving a
nonlinear PDE. Here, the one-dimensional viscous Burgers’ equation is chosen as
the time-dependent illustrative prototype. The numerical results from this method
are in good agreement with both the exact solutions and the full DNS results, while
the computational effort has been reduced by up to 72%. Linear stability analy-
sis is presented in order to predict the stability of the method. Moreover, study
of the interplay between the POD modes reveals the role of each dominant POD
mode in dynamically representing the exact solution, and pinpoints the POD mode
accounting for the instability in the approach.

Keywords: Projective integration, Proper orthogonal decomposition, equation-
free methods

1 Introduction

Today, computer simulation via differential equation models has become a very
useful part of research areas such as engineering, physics, chemistry, biology, social
sciences, and the economics of human systems. The results of computer simulation
do not only allow researchers to gain insights into the operation of those systems,
but also provide a visualization of fundamental behavior regarding problems of
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interest. Although it can provide us with many good predictions of complex phe-
nomena, the computational time required to achieve this is, in general, very large.
Thus, most of the calculations are usually performed on high-performance com-
puters, parallel or grid computing. Nevertheless, it remains impractical in many
practical problems from both computing and data-handling viewpoints. It is nec-
essary to employ a simpler model that also embraces all key phenomena from the
original models. The benefits of inventing these reduced-order models are twofold.
First, there would be the ability to perform simulations and accurately predict com-
plex phenomena with much lower computing needs. The second benefit would be
the ability to directly comprehend complex phenomena from these reduced-order
models without mining data sets obtained from traditional simulations. There are
many developments trying to address this issue. Currently, many reduced-order
models or low-dimensional models have been proposed by researchers in many re-
search fields; see Ravindran (2000); Rambo and Joshi (2007); Samimy, Debiasi,
Caraballo, Serrani, amd J. Little, and Myatt (2007); Missoffe, Juillard, and Aubry
(2007); Arifin, Noorani, and Kilicman (2007); Rempfer (2003), for example.

The proper orthogonal decomposition (POD) method is one of the well-known
methods used for creating a low-dimensional model. It is a powerful tool based
on statistical analysis. It is able to identify low-dimensional descriptions (both on
a spatial/temporal dominant basis or structures) for multidimensional systems (see
Bekooz, Holmes, and Lumley (1993)) and utilizes these structures to build a ro-
bust low-dimensional model. Used with the method of snapshots, first proposed in
Sirovich (1987) for flow systems, the POD method becomes particularly effective
and easy to implement. Moreover, the POD method has been successfully imple-
mented in conjunction with both experimental and numerical studies for a wide
range of applications.

In this paper, we explore a POD-assisted projective integration methodology that
employs “equation-free” projective integration frameworks, pioneered by Kevreki-
dis, Gear, and Hummer (2004). This framework has been applied to a variety of
problems, ranging from the bifurcation analysis of complex systems to the homog-
enization of random media, see Kevrekidis, Gear, Hyman, Kevrekidis, Runborg,
and Theodoropoulos (2003); Rico-Martinez, Gear, and Kevrekidis (2004); Makeev,
Maroudas, Panagiotopoulos, and Kevrekidis (2002); Makeev, Maroudas, and Kev-
rekidis (2002); Xiu, Kevrekidis, and Ghanem (2005); Russo, Siettos, and Kevre-
kidis (2007). The equation-free framework is designed for the efficient coarse-
grained computational study of complex, multi-scale problems. The basic idea
operates at two levels:

(a) design and perform short-time numerical experiments with “the best available”
microscopic model, then
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(b) use the numerical results of such microscopic computations to estimate quan-
tities (residuals, action of Jacobians) required in numerical computations of the
macroscopic equations for the coarse-grained system behavior, see Gear and Kev-
rekidis (2004).

A similar POD-assisted projective integration approach has been successfully ap-
plied to solve the Navier-Stokes equation, see Sirisup, Karniadakis, Xiu, and Kev-
rekidis (2005). However, in this current work, we perform POD-assisted projective
integration without assuming knowledge of the underlying slow manifold in the
integration process. We need to compute the underlying slow manifold for every
large projective integration step (see a full definition in the Methodologies section).
Thus the POD modes must be computed on the fly during which we march the
numerical solution in time. This is called the “on-line” method. This method is
completely different from that presented in Sirisup, Karniadakis, Xiu, and Kevreki-
dis (2005), which is called the “off-line” method since the POD modes are already
computed before the numerical solutions are marched in time. Full details of the
on-line method are given in Section 2.2. We can observe that this approach is more
practical than the off-line method. It can be used to solve any complex systems
where the original computer code can still be applied, just merging the new on-line
method code with the original code. This is sometimes referred to as the concept
of building a legacy code. Moreover, the dynamics and interactions of each under-
lying manifold or each representative POD mode can also be revealed through this
approach. We will present the functions of each POD mode, including the first few
POD modes, through the on-line method in Section 4.

In summary, in this current work, we focus on three aspects of the POD-assisted
projective integration approach:

• An examination of the effectiveness of the approach in numerically solving
a nonlinear PDE while the POD modes are not available a priori, and an
analysis of the stability and accuracy of the on-line method.

• An investigation of the dynamic behavior of solutions represented by each
POD mode during the time marching of the method. This will provide us
with information on how the projected solution is formed as well as infor-
mation on the sensitivity of each POD mode in the projective integration
process.

• A comparison of the numerical results between the on-line and off-line meth-
ods.

The paper is organized as follows. In Section 2, we present the algorithms of
the POD-assisted projective integration and related methodologies. The analysis
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of the accuracy and stability of the projective forward Euler (PFE) method are
demonstrated in Section 3. Numerical results follow in Section 4, where the one-
dimensional viscous Burgers’ equation is used as the illustrative prototype. We
summarize the results and provide a brief discussion in Section 5.

2 Methodologies

2.1 Proper orthogonal decomposition

The Proper Orthogonal Decomposition (POD) procedure extracts empirical orthog-
onal features from any ensemble of data. This linear procedure produces a useful
reduced basis set that is optimal in the L2 sense. In the POD framework for contin-
uous problems, see Bekooz, Holmes, and Lumley (1993), we can represent a flow
field u(t,x) as follows:

u(t,x) =
∞

∑
k=0

ak(t)φ k(x), (1)

where {φ k(x)} is the set of POD bases determined by first determining the {ak(t)}
from the eigenvalue problem∫

A
C(t, t ′)ak(t ′)dt ′ = λ̂kak(t) , t ∈ A , (2)

where {ak(t)} is the set of temporal modes, A is a specified time interval, and
C(t, t ′) is the correlation function defined by

C(t, t ′) =
∫

Ω

u(t,x) ·u(t ′,x)dx. (3)

The POD basis is thus defined by

φ k(x) =
∫

A
ak(t)u(t,x)dt, ∀k. (4)

The non-negative definiteness of the correlation function (3) allows us to order the
eigenvalues and the corresponding POD modes by λ̂k ≥ λ̂k+1. The POD expansion
coefficients for (1) can be found from ak =< u(t,x),φ k(x) >. Here <,> denotes
the inner product operator in the L2 sense.

2.2 POD-assisted projective integration

The projective integration technique allows us to integrate numerical solutions for-
ward in time using only two processes: restriction and lifting. We introduce the
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definitions of these processes by using two operators: a restriction operator R and
a lifting operator L such that

a(t) = R u(t,x) ≡ {< u(t,x),φ k(x) >, t ∈ A,∀k}, (5)

and

u(t,x) = L a(t) ≡
∞

∑
k=0

ak(t)φ k(x) . (6)

In a discrete computation, we can approximate (1) using K terms of POD expan-
sion. The representation can be expressed as

uK(t,x) =
K

∑
k=1

ak(t)φ k(x), (7)

and the truncated restriction and truncated lifting operators are defined as RK and
LK , respectively. The convergence of the K-terms POD expansion is assumed to
be in the form of

‖u−uK‖→ K−γ , as K→ ∞, (8)

where the convergence rate, γ > 0, is sufficiently large.

In general, we can write the evolution of the POD coefficient a(t) using

da
dt

= g(a(t)) , (9)

where the explicit form of g may remain unknown. Thus, the derivative of the
POD coefficients must be approximated rather than explicitly evaluated, in order to
march forward in time. Note that we can find an explicit form of g by projecting
the governing PDEs onto the POD modes, see Cazemier, Verstappen, and Veldman
(1998); Deane, Kevrekidis, Karniadakis, and Orszag (1991); Ma, Karamanos, and
Karniadakis (2000); Ma and Karniadakis (2002); Sirisup and Karniadakis (2004);
Noack, Afanasiev, Morzyński, Tadmor, and Thiele (2003).

In this study, the “fine-scale” simulator gives a fully resolved solution of Burg-
ers’ equation using the standard Fourier spectral method. The “coarse-grained”
model is that of solution dynamics (from initial conditions) on the slow manifold;
the dynamics are �observed on only the first few POD modes that parametrize this
manifold.

In general, one large POD-assisted projective integration step to march the system
from t = tn to t = tn+1 consists of the following substeps:
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1. Fine-scale computation: Solve Burgers’ equation for a short period of time
for tn ≤ t ≤ tn

c = tn + n f δ t. The computation is conducted via the standard
Fourier spectral method with a small time step δ t. Here, the local relaxation
time (n f δ t) is assumed to be shorter than the typical coarse-grained flow time
scale (substep 3, below).

2. Restriction: Derive the POD coefficients using the previously saved solutions
from the previous step, i.e., solve the eigenvalue problem (2) and estimate the
time derivatives da/dt at t = tn

c .

3. Projective integration: March a(t) from tn to tn+1 using any standard ODE
technique to obtain a(tn+1). The time step here is ∆tc ≡ ncδ t = tn+1− tn

c ,
where nc ≥ n f ≥ 1.

4. Lifting: At t = tn+1, reconstruct the solution uK(tn,x) = LKa(tn) for a spe-
cific number of POD modes, K.

5. Return to substep 1. Note that the solution from substep 4 is set to an initial
condition for the next fine-scale computation. Repeat the computation until
the final time is reached.

Further details of substeps 2, 3, and 4 are given below.

2.2.1 Restriction and lifting

We employ the snapshot method to extract the set of POD bases {φ k(x)} from the
ensemble of previously saved solutions, see Sirovich (1987). In the fine-scale time
interval, the solution snapshots u(ti,x) at time ti are obtained by solving Burgers’
equation using an accurate spectral method where tn ≤ ti ≤ tn

c , i = 1, ..,n f . From
(4), the POD bases are then determined discretely by

φ k(x) =
n f

∑
i=1

ak(ti)u(ti,x)dt, ∀k. (10)

where {ak} are obtained by solving the correlation matrix (2). Once the POD basis
functions are determined from (10), we can restrict any solution u(t,x) for any
given t to obtain the corresponding POD coefficients ak from (5). The derivative
of POD coefficients can then be approximated and used to march forward in time
via the projective integration technique (see below). The lifting procedure is the
reverse process of restriction, i.e., for a given set of computed POD coefficients at
time t, we can reconstruct the corresponding solution by using (6).
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2.2.2 Projective integration

The projective integration procedure is described as follows:

• Approximate the RHS of (9) at t = tn
c via

g(tn
c ) =

ne

∑
j=0

α ja(t j) =
da
dt

(tn
c )+O

(
δ tJ f

)
, (11)

where 1≤ ne ≤ n f , t j = tn
c − jδ t, and J f denotes the order of the approxima-

tion. Here, {α j}ne
j=0 is a set of consistent coefficients such that ∑α j f (t j) =

d f /dt(tn
c )+O(δ tJ f ).

• Once the RHS of the typical reduced-order model (9) is estimated numeri-
cally, we can effectively integrate it via standard ODE solvers. For instance,
given a coarse time step ∆tc ≡ ncδ t where nc ≥ 1, such that tn+1 = tn

c +∆tc =
tn +(n f +nc)δ t, the single-step forward Euler projective integrator takes the
form

a(tn+1) = a(tn
c )+∆tc ·g(tn

c )+O(∆t2
c ). (12)

It should be noted that other higher-order explicit integration schemes (possibly
implicit ones) can be used as well. For instance, we can use the following scheme:

a(tn+1) = a(tn
c )+

Jc

∑
k=1

(∆tc)k

k!
∂ (k−1)

∂ tk−1 g(tn
c )+O(∆tJc+1

c ). (13)

The higher-order temporal derivatives of g(t) are approximated in a way similar to
(11). Note that (13) is a high-order single-step method.

2.3 Projective Forward Euler Method (PFE)

The global time for projective integrators are composed of two types of integrators:
fine-scale integrator and coarse-scale integrator. We start the computations via fine-
scale integration with n f time steps and then perform coarse-scale integration with
nc time steps. In this study, fine-scale integration is performed using the Fourier
spectral method, whereas coarse-scale integration is carried out using the single-
step forward Euler method. Here, we apply the Euler method in order to check
the stability of the PFE method by comparing it with some predictions from linear
stability analysis. Details of the analysis will be presented in the next section.
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Following Gear and Kevrekidis (2003b), we divide the computational stages in the
PFE method into several steps, as follows.

1. Use a suitable fine-scale integrator to integrate the solutions for n f time steps,
say from tn to tn

c .

2. Approximate da/dt at t = tn
c .

3. Perform outer integration with nc steps using dy/dt at time t = tn
c via

an+n f +nc = (nc +1)an+n f − ncan+n f−1 .

Here, we approximate da/dt at time t = tn
c via the Euler method at points n f and

n f −1.

3 Accuracy and Linear Stability of the PFE method

3.1 Accuracy of the PFE method

Recently, a detailed analysis of the consistency and accuracy of the “off-line” POD-
assisted projective integration method has been presented in Sirisup, Karniadakis,
Xiu, and Kevrekidis (2005). The resultant analysis can be applied to the proposed
(“on-line”) method. The main results are summarized here as follows.

Let vn+1 and un+1 be an exact solution and numerical solution, respectively, at time
tn+1 . Suppose that we employ one step of the PFE method with K POD modes to
approximate the exact solution in one global time step ∆t = ∆tc + ∆t f . The error
from the approximation un+1

K against the exact flow field v at any time tn+1 can be
written as:

εT =
∥∥un+1

K −v(tn+1)
∥∥

≤
∥∥un+1

K −vK(tn+1)
∥∥+

∥∥vK(tn+1)−v(tn+1)
∥∥

∼ ∆t f ε f +O
(
∆t2

c
)
+O

(
δ tJ f

)
+O

(
K−γ

)
(14)

The total error εT is composed of four error terms on the RHS of (14). ε f ∼
O(δ t p,hq) is the error from the fine-scale computation. The second term is the
error from the coarse-scale computation. The third term is the error due to the ap-
proximation of g(a(t)), which is not known exactly in closed-form formulae, and
the last term is the error from the convergence of POD representations.

For very accurate fine-scale computation, we obtain O(∆t f )� O(∆t). Thus, the
dominant error terms arise from the last three terms. In the case of a highly effective
method, nc must be large, so the error term O(∆t2

c ) dominates other error terms, and
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it grows very rapidly when we march the numerical solution in time. However, for
a large K, the error from approximation of (9) at t = tn

c can dominate other error
terms because of aliasing. A technique like non-uniform sampling near t = tn

c could
be used as a remedy for this situation. In practice, the appropriate values of ∆tc and
∆t f providing the most efficient PFE method are not known in advance. One way
to analyze the relation between ∆tc and ∆t f is to use the concept of linear stability.
A detailed analysis of this method will be given in the next subsection.

3.2 Linear stability analysis of the PFE method

In this subsection, we analyze the stability of the PFE method. Following the analy-
sis in Gear and Kevrekidis (2003b), the characteristic polynomial σ(z) of the inner
and outer integrations in one global time step can be written as:

σ(z) = [(nc +1)ρ−nc]ρn f−1 . (15)

Here, ρ = ρ(z) is the amplification factor of the inner integration method. The re-
gion of absolute stability in the complex z-plane is the set of z for which |σ(z)| ≤ 1.
For simplicity, when the inner integrator is the forward Euler method, the stability
region is the set of z such that

[(nc +1)(1+ z)−nc](1+ z)n f−1 ≤ 1 . (16)

Figure 1: Stability region for n f = 5 and nc = 10 when the inner and outer integra-
tors are the Euler method.
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Figure 2: Stability region for n f = 5 and nc = 19 when the inner and outer integra-
tors are the Euler method.

The stability regions when we use the forward Euler method for both the inner and
the outer integrators are shown in Figures 1 and 2. When n f is fixed, it is found
that the stability region is divided into two regions as nc increases. The critical
value at which the stability region begins to be divided on the negative real axis is
nc/n f ≈ 3.9. This implies that the values of nc and n f must be set so that this ratio
is maintained to ensure the stability of the method. Thus, one way to investigate
the stability of the PFE method is to fix n f and vary nc. Moreover, the efficiency
of the method can be observed using this variation because the maximum value of
nc can be approximately determined when n f is specified. Some numerical results
will be presented in the next section.

Next, we analyze the stability of the PFE method when we use the higher-order
method as inner integration. For instance, the amplification factor when inner inte-
gration uses the fourth-order Runge–Kutta method (RK4) is

ρ(z) = 1 + z +
z2

2!
+

z3

3!
+

z4

4!
. (17)

Substituting (17) into (15), we obtain

{
(nc +1)(1+ z+ z2

2! + z3

3! + z4

4!)−nc

}
×
{

1+ z+ z2

2! + z3

3! + z4

4!

}n f−1
≤ 1 (18)

The set of z satisfying (18) in the complex plane shows the stability region when in-
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Figure 3: Stability region for n f = 5 and nc = 10 when the inner integrator is the
RK4 method and the outer integrator is the Euler method.

ner integration is performed via the RK4 method, while outer integration is carried
out by the forward Euler method. Figure 3 shows the stability region when n f = 5
and nc = 10 (exactly three regions), while Figure 4 shows the stability region when
n f = 5 and nc = 20 (three smaller regions, including a point or very small region at
the origin). The critical value at which the stability region starts to be divided on
the negative real axis is nc/n f ≈ 3.12. In this case, the critical value is smaller than
that of the previous case (where the inner integrator is the first-order method). We
will compare this finding of the ratio of nc to n f with numerical experiments in the
next section.

It should be noted that the explicit and implicit multi-step methods can be used as
the outer integrators. Detailed studies and applications of these methods for solving
stiff ODEs can be found in Lee and Gear (2007) and Gear and Kevrekidis (2003a).

4 Numerical Results

In order to demonstrate the PFE method, Burgers’ equation, which is a simple one-
dimensional model of the Navier-Stokes equations, is chosen as a demonstration
model. Fine-scale computation is performed by the Fourier spectral method. Some
details of the method are summarized as follows.

The one-dimensional viscous Burgers’ equation for unknown u(x, t) can be written
as

ut + νuxx + uux = 0 , 0≤ x≤ L (19)

where L is a given computational domain, and ν is the viscosity effect.
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Figure 4: Stability region for n f = 5 and nc = 20 when the inner integrator is the
RK4 method and the outer integrator is the Euler method.

Let û be the discrete Fourier transform of u, defined by

û(k, t) = F(u) =
1
N

N−1

∑
j=0

u(x j, t)exp(−ikx j) , −p≤ k ≤ p−1 ,

where p and N are the number of Fourier modes and discretization points of x,
respectively. Applying the discrete inverse Fourier transform, we obtain

u(x j, t) = F−1(u) =
p−1

∑
k=−p

û(k, t)exp(ikx j) , 0≤ j ≤ 2p−1

where F and F−1 respectively denote the discrete Fourier transform and the inverse
Fourier transform.

In discrete form, (19) can be written as

ut(x j, t) = −F−1{F(u2)ik/2
}

+ F−1{
νk2F(u)

}
, 0≤ j ≤ 2p−1. (20)

Let u = [u(x0, t),u(x1, t), ...,u(x2p−1, t)]T , and (20) can be written as the system of
ODEs at the collocation points:

ut = R(u) . (21)

To reduce the computational time, we apply the discrete fast Fourier transform
(FFT) algorithm to the RHS of (21). We march forward in time by using the clas-
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sical Runge–Kutta method. Hence, the problem can now be solved numerically
subject to appropriate boundary conditions.

The solution u(x, t) represents a traveling wave along a flat horizontal bottom in
the domain 0 < x < L. The boundary conditions can be approximated as u(0, t) =
u(L, t) = 0 for t > 1, whereas the initial condition is given by

u(x,1) =
x

1+ exp[ 1
4ν

(x2− 1
4)]

, 0 < x < L . (22)

This problem has an exact solution (see Nguyen and Reynen (1982)) in the form of

u(x, t) =
x/t

1+(t/t0)1/2 exp(x2/4νt)
, t ≥ 1 , (23)

where t0 = exp(1/8ν). The solution represents a nonlinear wave propagating to the
right with decreasing amplitude due to the viscosity effect. We will apply the PFE
method and check its accuracy by comparing the numerical solutions with these
exact solutions at various times in the next section.

4.1 Numerical results of the PFE method

The evolution of traveling wave profiles u(x, t) is shown in Figure 5. The horizontal
axis represents the x domain, while the vertical axis represents the wave amplitude.
The solid and the dashed lines depict the exact solutions and the numerical solu-
tions, respectively. Here, we set the number of POD modes at K = 3, the inner time
steps at n f = 5, and the outer time steps at nc = 10. The viscosity effect is set at
ν = 0.005 for all presented results. The numerical results and the exact solutions
are in very good agreement. These results ensure the accuracy and stability of the
PFE method.

To investigate the accuracy of the PFE method, we define three forms of error as
follows.

Et j =
1
N

{
N

∑
i=1

∣∣∣∣qexact(i, t j)−qapprox(i, t j)
qexact(i, t j)

∣∣∣∣
}

Eavg =
1
Tn

{
nt

∑
j=1

Et j ∆t

}
,

and ETn =
1
N

{
N

∑
i=1

∣∣∣∣qexact(i,Tn)−qapprox(i,Tn)
qexact(i,Tn)

∣∣∣∣
}

,
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where N is the number of mesh points, nt is the number of time steps, and Tn =
nt ·δ t is the final time. Thus, Eavg is the accumulation of averaged error measured
at the final time step, and Et j is the averaged error at an arbitrary time t j.

The relationships between the number of POD modes K and the errors are shown
in Figure 6. When fixing K, it was found that the errors Eavg and ET n increase as nc

increases. That is, the accuracy of the PFE method decreases as the coarse time step
increases. In this case, the dominant error term is the truncation error of O(∆t2

c ) on
the RHS of (14).

We can see the effect of K by fixing both nc and n f and varying K. It can be seen
from Figure 6 that the errors decrease as K increases, or equivalently, that we have
used a sufficient number of POD modes for the expected convergence and desired
accuracy to be obtained. This conclusion can be made only if nc ≤ 13. We can see
in the case of a relatively large value of nc (nc ≥ 14) that the error is very large even
if we use many K. In this case, the error term from the coarse-scale computation
is much larger than the error term from the POD convergence. This then directly
affects all computations, resulting in a divergence of the numerical solutions.

4.2 Linear stability results for the PFE method

In numerical experiments, we investigated the stability of the PFE method by fixing
n f = 5, while the value of nc was varied. It was found that nc could be dramatically
increased until nc = 14. Referring back to the linear stability analysis, we showed
that the critical value nc/n f is approximately 3.14. In our numerical experiments,
we found that the maximum value of nc is 14, or nc/n f = 2.8. Thus, the linear sta-
bility analysis shows good prediction. Instability of the PFE method usually occurs
before the predicted critical value nc/n f is reached, because nonlinear effects are
taken into account in the calculations. In addition, we found that the error in O(∆t2

c )
increases as ∆tc increases. Thus, this error term is a direct factor in the stability of
the PFE method.

In the case of n f � nc, the error term O(∆t2
c /∆t) = O(n2

cδ t/(n f +nc))∼ O(ncδ t).
The truncation error is an approximate product of nc and δ t. Thus, we can set nc to
be very large provided that δ t is very small. It can be seen from the linear stability
analysis that the stability region can be separated into four regions when nc/n f ≈
3.14. The smallest stability region appears near the origin in the complex plane. In
fact, this region shrinks to a stable point at the origin as nc becomes very large (see
Figure 4). This result from the linear stability analysis again confirms the stability
of the PFE method. That is, for very small δ t (δ t = 0.0001), it is still possible to use
a very large coarse time step (nc = 200 and n f = 100). Although this can be done, it
is inefficient in practice. Note that it is very difficult to obtain the derivation of the
relationship between these parameters to a desired order of accuracy. In addition,
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Figure 5: Traveling waves at various time steps

the method of selecting the number of POD modes in the PFE method is also not
clear and is not easy to clarify. However, the notion of how to choose the number
of POD modes in the PFE method should be observed. Fortunately, the behavior of
each POD mode can be individually investigated, which can be achieved only by
the “on-line” method. We will observe the function of each POD mode in the next
section.

4.3 Interplay of POD modes

In this part of the paper, we will focus on the interplay between POD modes in
the “on-line” POD-assisted projective integration method. The traditional low-
dimensional POD system obtained from Galerkin projection will be inconsistent
with the original systems for long-term model integration, see Jolly, , Kevrekidis,
and Titi (1990); Sirisup and Karniadakis (2004). In some cases, the method re-
quires many POD modes in order to achieve stability during the model integration,
see Deane, Kevrekidis, Karniadakis, and Orszag (1991). This makes it impossible
to understand the roles of each individual POD mode in the integration process.
Thus, one way to individually study the characteristics of each POD mode, espe-
cially of low modes and the interplay of those modes, is to use this approach.

We will focus our study on the first four modes as determined by their energy
distribution. We have checked that only the first four modes are sufficient in our
simulations. The appropriate number of POD modes, in general, should depend on
the dynamics and characteristics for each problem. In order to determine the role
of each individual POD mode, we perform the “on-line” POD-assisted projective
integration with only those modes of interest. The wave profiles u(x, t) of numerical
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Figure 6: Relationship between the number of POD modes K and averaged error
Eavg, and ETn

results and exact solutions at t = 3.01 and 5.02 are shown in Figures 7–9. Important
findings for each POD mode are summarized as follows:

• The first POD mode is responsible for providing a damped solution with no
propagation speed. The wave profiles are shown in Figure 7 (left). The wave
amplitude matches well with the exact solution. Moreover, we found that the
damped solution maintains its profile even if the value of nc is doubled (large
projective integration time step).

• The second POD mode is responsible for providing the propagation speed
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Figure 7: Comparison of the exact solutions and numerical solutions obtained from
the PFE method with only the first POD mode (left), and only the second POD
mode (right).
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of the wave solution; see Figure 7 (right). The wave speed of the numerical
solution agrees well with the speed of the exact solution. However, the wave
profile has a high oscillation near the peak when the value of nc is doubled.
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Figure 8: Comparison of the exact solutions and numerical solutions obtained from
the PFE method with only the third POD mode (left), and only the fourth POD
mode (right).

• The third POD mode or the fourth POD mode: These modes are responsible
for a damped traveling wave solution analogous to the exact solution. How-
ever, both the wave speed and the wave amplitude are slower than those of
the exact solution; see Figure 8. The profile of the damped traveling wave is
maintained as the value of nc is doubled.

The effect of a linear combination of the first four POD modes was investigated;
see Figure 9. The numerical results and exact solutions are in good agreement. We
also investigated the role of the higher POD mode. It was found that the higher
POD modes do not contribute any significant characteristics to the solution. The
reason for this is that the energy distribution of the higher POD modes is less than
the energy of the first few POD modes. Thus, the combination of the first four
POD modes alone is sufficient for this problem. This finding is also confirmed by
the results presented in Figure 6 in that the results for K = 3, 4, and 5 have small
error when nc ≤ 13.

Through the studies of our POD mode interplay, we revealed the role of each POD
mode in representing the numerical solution of the 1D Burgers’ equation. We found
that the fourth POD mode does not play any significant roles from the third POD
mode. This shows why it is sufficient to represent the exact solution with the com-
bination of only the first four POD modes in the PFE method. However, in more
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Figure 9: Comparison of the exact solutions and numerical solutions obtained from
the PFE method with a combination of the first through fourth POD modes.

complicated phenomena such as turbulence flows, the number of representative
POD modes usually require many POD modes. However, we do not know in ad-
vance the appropriate number of POD modes, since it depends on the characteristics
of the problem being considered. However, the role of each POD mode in repre-
senting flow-field behavior can be analyzed in a similar manner as presented by our
approach.

4.4 Numerical results of off-line projective integration

In this subsection, we apply equation-free projective integration, see Sirisup, Kar-
niadakis, Xiu, and Kevrekidis (2005), to solve the same problem. This method is
referred to as “off-line” because the POD modes are known by a priori computa-
tion to invoke the whole integration process. In this method, we need to employ a
large number of snapshots in order to maintain accuracy and the characteristics of
the dynamic behavior. POD modes are then extracted from the ensemble of data
and used in the restriction and lifting processes. Here, we obtained 80 snapshots
from the priori DNSs. These “off-line” POD modes govern the entire simulation
dynamics.

The off-line projective integration method is different in concept from the on-line
method (the present method) because in the later the POD modes are computed on-
the-fly, which means that the POD modes are obtained by n f snapshots from the
DNS simulations for each large time-step projective integration. This is the main
difference between the on-line and the off-line projective integration processes.

To investigate the efficiency of the off-line method, all parameters ν , dt, and n f

are then set to be the same values as in the numerical experiments of the on-line
method. The relationship between averaged error Eavg and the number of POD
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modes K of the off-line method is shown in Figure 10. We have shown four cases
of nc: 5, 10, 15, and 20. For nc = 5 (relatively small jump in the projective step), we
can see that the averaged error decreases as the number of POD modes increases.
This is similar to what we have observed in the results of the current method. As
K increases, the error does not decrease, because the higher POD modes (K > 40)
contribute very little to the accuracy of the solution, or equivalently, they possess
very small energy when compared to the lower modes. The accuracy of the numer-
ical results in the case of nc = 10 is similar to that in the case of nc = 5. However,
in the case of nc = 15, the averaged error is relatively large compared with the pre-
vious cases. The averaged error does not decrease with increasing K. Moreover,
the numerical solution diverges as K becomes large. We can conclude that the trun-
cation error of the coarse time-scale computation dominates in the case of large
nc, leading to the instability of the method. As we can see, the numerical solution
diverges very rapidly in the case of nc = 20.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

K

E
av

g

n
f
 = 5, ν = 0.005, dt = 0.01, nt = 500

nc = 5
nc = 10
nc = 15
nc = 20

Figure 10: Relationship between POD modes K and averaged error Eavg for the
off-line projective integration.

5 Conclusions

In this paper, we have applied the “on-line” POD-assisted projective integration
method to solve numerically the one-dimensional viscous Burgers’ equation. The
method composes of two time-scale computations: fine-scale and coarse-scale. The
fine-scale computation is performed by the Fourier spectral method, and the coarse-
scale computation or the projective integration is carried out using the first-order
forward Euler method.

The main objective of this study was to investigate the efficiency and stability of
the proposed method. Various sets of numerical experiments have been carried
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out. Efficiency in our work was measured by the percentage of the ratio of nc to
nc +n f , or equivalently, the ratio of the number of coarse-time steps to the number
of time steps in one large projective integration. We have found that the method
can produce very accurate results, while the computational effort was reduced by
up to 72%. The stability of the method was investigated numerically. It was found
that the method is stable when the coarse time step is small, while it is unstable
when the coarse time step is large. This results in a large truncation error in the
projective integration where the increment of representative POD modes cannot re-
duce the total error. We also found that the results from the linear stability analysis
agree well with the numerical results. This finding provides the maximum value
of the number of coarse time steps in order to obtain the greatest efficiency. In
general, we can also apply the higher-order integrator as the coarse-scale integra-
tor; for instance, we can use the fourth-order single-step Runge–Kutta method or
the multi-step predictor-corrector method. This would result in a more effective
method. Accuracy and stability analysis by these methods remain open issues. The
numerical study of POD mode interplay was also presented. It revealed the charac-
teristics and functions of each POD mode in representing the dynamics of traveling
wave solutions. It was found that the second POD mode causes more oscillations
in the solution than other POD modes do. The role of the third and the fourth
mode in representing the wave solution is the same. These numerical observations
provide important ideas for choosing a suitable number of POD modes. In gen-
eral, each POD mode interplay cannot be studied individually by using traditional
low-dimensional modeling, and here we have presented one method that can be
applied. Moreover, this concept can be extended to the study of other complex
problems, including higher-dimensional problems. In the current work, although
we have applied a method for solving the prototype viscous Burgers’ equation, the
method can be extended to any dissipative PDEs. The important limitation of the
method is that the projected domain must rely on the existence of a relatively low-
dimensional model or attracting slow manifolds parametrized by the representative
POD modes. In complex systems such as atmospheric or ocean system, time spent
in the fine scale computation step can necessarily be much longer which directly af-
fects the overall efficiency of the proposed method. More research which includes
time required in fine scale computation step, longest projection time step as well
as optimal number of POD modes is still needed in order to achieve the highest
efficiency and stability regarding this method as it is being applied to solve such
systems.
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