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Analysis of Thermoelastic Waves in a Two-Dimensional
Functionally Graded Materials Domain by the Meshless

Local Petrov-Galerkin (MLPG) Method
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Abstract: This contribution focuses on the simulation of two-dimensional elas-
tic wave propagation in functionally graded solids and structures. Gradient volume
fractions of the constituent materials are assumed to obey the power law function
of position in only one direction and the effective mechanical properties of the ma-
terial are determined by the Mori–Tanaka scheme. The investigations are carried
out by extending a meshless method known as the Meshless Local Petrov-Galerkin
(MLPG) method which is a truly meshless approach to thermo-elastic wave propa-
gation. Simulations are carried out for rectangular domains under transient thermal
loading. To investigate the effect of material composition on the dynamic response
of functionally graded materials, a metal/ceramic (Aluminum (Al) and Alumina
(Al2O3) are considered as ceramic and metal constituents) composite is considered
for which the transient thermal field, dynamic displacement and stress fields are
reported for different material distributions.

Keywords: Thermoelasticity, wave propagation, Functionally graded materials,
MLPG.

1 Introduction

Functionally graded materials (FGM) are now ubiquitous in structures arising in
mechanical and aerospace engineering. These materials are endowed with gradu-
ally varying material properties (structural, thermal, etc.) in one or more directions.
If properly designed, these functionally graded materials inherit the advantages of
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their constituents making them ideal as, e.g. thermal barrier coatings. In order to
design and optimize these materials, it is crucial to understand and predict their
behavior, which often includes tackling coupled physical actions such as thermo-,
electrico, hydro- and chemico-mechanical actions. Because of the complexity of
both the materials and the loading conditions, it is usually not possible to obtain
analytical results, and recourse to numerical methods is a generality.

This paper focuses on one such particular combination of external actions where
an elastic wave propagates through a functionally graded material. To fix ideas, an
aluminum ceramic composite is studied here. Numerical methods are numerous,
the most widely used of which is the finite element method (FEM) and meshfree
methods (MMs). The latter class of methods provides higher order continuity for
the solution, facilitates the treatment of moving interfaces, and makes adapting the
computational grid to the solution straightforward compared to the FEM. How-
ever, these methods are usually computationally costly and require special care for
numerical integration as well as the enforcement of boundary conditions. The in-
terested reader is referred to the recent review [Nguyen, V P; Rabczuk, T; Bordas,
S; Duflot, M. (2008) ], where an open-source MATLAB toolbox is also provided.
Partition of unity enrichment [Melenk, J.M. and Babuska, I. (1996)] provides the
FEM with the capability to be adapted to the solution sought through the incor-
poration of special functions within the approximation space. The extended and
generalized finite element method (XFEM/GFEM) [Belytschko, T and Black, T.
(1999)] are examples of partition of unity enriched finite element methods, which
have been applied to a wide range of fields and may have the capacity to bridge
the gap between FEM and MMs. The interested reader is referred to [Karihaloo,
B L and Xiao, Q Z. (2003)] for a review, and [Bordas, Stephane P.A.; Nguyen, P
V; Dunant, C; Dang, H N; Guidoum, A, (2006)] for an open source C++ XFEM
library.

The long-term goal of this research is to assess the failure of functionally graded
materials in electro-mechanical settings, for which we believe that meshfree meth-
ods have distinct advantages [Rabczuk, T; Bordas, S and Zi, G. (2007)], Bordas,
S, Rabczuk, T and Zi, G. (2008)] and Rabczuk, T; Bordas, S; Nguyen, P V; Zi, G,
(2008)].

Research into meshless methods is very active. After the work of [Nayroles, B,
Touzot, G and Villon, P. (1992)], who proposed a diffuse element method which
only used a mesh of nodes and a boundary description to develop the Galerkin
equations, several meshless methods have spurred the interest of researchers, such
as the element-free Galerkin method (EFG) [Belytschko, T, Lu, Y Y and Gu, L.
(1994)], hp-clouds [Duarte, C A and Oden, J T. (1996)], the reproducing kernel
particle method (RKPM) [Liu, W K, et al. (1996)], and, finally, the meshless lo-
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cal Petrov-Galerkin method [Atluri, S N and Zhu, T. (1998)]. The meshless local
Petrov-Galerkin method compared to the other meshless methods is a “truly mesh-
less” approach, as it does not need elements or meshes, either for interpolation
purposes, or for integration purposes. Two truly meshless methods, the meshless
local Petrov-Galerkin (MLPG) method and the meshless local boundary integral
equation (LBIE) method, have been developed by [Atluri, S N and Zhu, T. (1998)]
and [Atluri, S N, Kim, H G and Cho, J Y. (1999)] for solving linear and non-linear
boundary problems. Both of these methods are truly meshless, as no finite ele-
ment/or boundary element meshes are required in these two approaches, neither for
purposes of approximation of the trial and test functions for the solution variables,
nor for the purpose of integration of the weak-form (either symmetric or unsym-
metric).

Functionally graded materials (FGMs) are new branch of materials which may
combine the desired properties of materials to enhance the capability of the struc-
tures to withstand various mechanical and thermal loads. The material properties of
FGMs change gradually with position. Since the material properties of FGMs vary
smoothly, these materials provide macroscopic properties that are complementary
to now conventional composite materials in which microscopic properties change
abruptly across the interface between layers, fiber/matrix and can result in large
interfacial stresses and consequential delamination.

This delamination phenomenon is much more critical when abruptly varying ther-
mal loads are applied to the composite structure. The applicability of FGMs in
various areas of engineering has incited their detailed study. As briefly mentioned
above, FGMs may be used as thermal barriers where a material with lower thermal
conductivity is incorporated within the main structural material in order to help
withstand thermal loads [Hasselman, D P.H and Youngblood, G E. (1978)].

Analyses of thermal stresses in FG elastic structures show that FGMs can indeed
reduce the thermal stresses, e.g. see [Noda, N and Tsuji, T (1990)]. [Reddy, J
N, Wang, C M and Kitipornchai, S. (1999)] studied the axisymmetric bending and
stretching of FG solids and annular circular plates using the first-order shear defor-
mation Mindlin plate theory. An analytical solution for functionally graded thick
spheres under combined steady mechanical and thermal loads is presented by [Es-
lami, M R, Babai, M H and Poultangari, R. (2005)]. In their work, these authors
provided a closed form solution of the problem where a simple power law function
is considered for the material properties’ distributions. [Shakeri, M, Akhlaghi, M
and Hoseini, S M. (2006)] presented the analysis of layered FG thick hollow cylin-
ders under a dynamic load where the functional grading is simulated by assuming
the cylinder to be made of a succession of cylindrical isotropic layers.

[Chi, L F and Chung, Y L. (2006)] derived analytical solutions for FG plates un-
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der transverse loads in the form of a Fourier series expansion. They studied elas-
tic, rectangular, and simply supported FGM plates of medium thickness and con-
firmed their results through finite element analysis. [Zhang, G M and Batra, R
C. (2007)] studied the wave propagation, under uniaxial strain conditions, in an
FG plate where the material properties vary continuously in the direction of wave
propagation. [Qian, L F and Batra, R C. (2005)] analyzed the transient heat con-
duction in a functionally graded thick plate by using a higher-order plate theory
and a meshless local Petrov-Galerkin (MLPG) method. In [Qian, L F and Batra,
R C. (2004)], the same authors considered the MLPG method for investigation of
the transient thermoelastic deformations of a thick functionally graded plate with
edges held at a uniform temperature. [Sladek, J, Sladek, V and Hon, Y C. (2006)]
used the same MLPG method to solve stationary and transient heat conduction in-
verse problems in two-dimensional (2D) and three-dimensional (3D) axisymmetric
bodies. [Ching, H K and Yen, S C. (2005)] presented MLPG formulations and
solutions to the general thermo-mechanical problem of a 2D FG solid. They first
considered the case of an FG link bar, then a pressurized hollow cylinder is. The
most general problem these authors solved in their contribution is the thermoelastic
analysis of cylindrical bending, for a two-phase FG material.

Sladek and et al applied MLPG method for 3-D problems such as orthotropic
shallow shells under a thermal load [Sladek J, Sladek, V; Solek, P; Wen, P H;
Atluri, S N. (2008)], solution of steady-state and transient heat conduction prob-
lems in a continuously nonhomogeneous anisotropic medium with randomly dis-
tributed nodal points [Sladek, J; Sladek, V; Tan, C L; Atluri, S N. (2008)], solu-
tion of static and elastodynamic problems [Sladek J, Sladek V, Solek P. (2009)].
MLPG method for transient linear thermoelastic analysis is presented by [Sladek,
J; Sladek, V;Solek, P;Tan, C L; Zhang, Ch. (2009)]. A meshless method based on
the local Petrov-Galerkin approach is proposed by [Sladek, J; Sladek, V; Zhang,
Ch; Solek, P. (2007) ] for the solution of boundary value problems for coupled
thermo-electro-mechanical fields. They used the Heaviside step function as test
functions in the local integral equations to the derivation of the local boundary-
domain integral equations and the Laplace transform technique to eliminate time
dependence in their equations [Sladek J, Sladek, V; Solek, P; Wen, P H; Atluri, S
N. (2008) ;Sladek, J; Sladek, V; Zhang, Ch; Solek, P. (2007)].

MLPG method is proposed to solve the interface crack problem between two dis-
similar anisotropic elastic solids [Sladek, J; Sladek, V; Wünsch, M; Zhang, Ch.
(2009)]. Meshless local Petrov-Galerkin collocation method is applied to compute
two dimensional heat conduction problems in irregular domain [XueHong, WU;
ShengPing, SHEN; WenQuan, TAO. (2007)]. [Heaney, C; Augarde, C; Deeks, A.
(2010)] extended a novel numerical method, based on the Meshless Local Petrov-
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Galerkin (MLPG) method, to the modelling of elasto-plastic materials. Their ex-
tended method is particularly suitable for problems in geomechanics, as it permits
inclusion of infinite boundaries.

Numerical solutions obtained by the MLPG method are presented for static defor-
mations, free and forced vibrations of an FG cantilever beam by [Qian, L F and
Ching, H K. (2004)]. These authors reported results for the static, free and forced
vibration analyses of an FG cantilever beam. [Eslami, M R; Akbari R., A; Bagri,
A; Tajdari, M. (2007)] presented a meshless method based on the local Petrov–
Galerkin approach for the static analysis of thermal stresses in a two-dimensional
domain made of isotropic linear thermoelastic functionally graded materials. [Bere-
zovski, A, Engelbrecht, J and Maugin, G A. (2003)] numerically studied the prop-
agation of stress waves in functionally graded materials by means of the composite
wave-propagation algorithm. Two distinct models of FGMs were considered: (i)
a multilayered metal–ceramic composite with averaged properties within layers;
(ii) randomly embedded ceramic particles in a metal matrix with prescribed vol-
ume fraction. The simulations demonstrate the applicability of that algorithm to
the modelling of FGMs without any averaging procedure. These simulations show
the influence of the material models on the characteristics of the stress wave when
the FG structure is subjected to impact loading.

[Liu, G R, Han, X and Lam, K Y. (1999)] proposed a method to investigate elas-
tic waves in functionally graded plates excited by plane pressure wavelets, where
the FGM plate is divided into linearly inhomogeneous elements (LIEs). These au-
thors have derived a general solution for the equations of motion governing the
LIE. The general solution was then used together with the boundary and continuity
conditions to obtain the displacement and stress in the frequency domain for an
arbitrary FGM plate. Relationships between the surface displacement response and
the material mechanical properties of FGM plates were also obtained which may be
used for the characterization of FGM plate materials. [Han, X; Liu, G R; Xi, Z C;
Lam, K Y. (2001)] have presented a hybrid method, which combines finite element
method with the Fourier transformation method for analyzing transient wave in a
cylinder made of functionally graded material.

In the present paper, we propose a new numerical method for the simulation of elas-
tic wave propagation in isotropic linear elastic functionally graded materials. We
then validate this numerical technique and employ it to shed light on the behavior
of functionally graded materials in a two-dimensional setting. Our contribution is
therefore two-fold
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1) propose and validate an accurate numerical scheme to study the dynamic re-
sponse of a two-dimensional functionally graded domain under thermal loads;

2) help the understanding of the behavior of functionally graded materials under
thermal loads.

The method we propose relies on the meshless local Petrov–Galerkin (MLPG)
method, a “truly-meshless” method that was briefly introduced above and will be
further explained in Section 2. The material properties of the domain are assumed
to change continuously and be position dependent functions. Here, we use a power
law form function to describe the volume fraction change and the elastic material
properties are calculated using the Mori-Tanaka scheme [Mori, T and Tanaka, K.
(1973)].

As will be made clear below, the MLPG method does not require a mesh, neither for
numerical integration nor for the construction of the approximation. In this work,
we use a regular array of nodes (sometimes also called particles) and construct the
approximation functions using the moving least squares (MLS) method Belytschko,
T, Lu, Y Y and Gu, L. (1994)]. The MLS approximation technique is now well-
known, and its basic ingredients are recalled for completeness in Section 2.1.

The MLPG is employed in Section 2.2. and Section 2.3, to obtain a discretized
local weak form for the energy balance equation and the dynamic thermo-elasticity
equations in a two-dimensional functionally-graded domain, respectively. As de-
scribed in the recent meshfree review [Nguyen, V P; Rabczuk, T; Bordas, S; Duflot,
M. (2008) ], the essential boundary conditions in the MLPG approach are enforced
by the matrix transformation technique [Qian, L F and Batra, R C. (2004)].

Section 3 then describes how the effective properties of the functionally graded
materials considered are calculated before briefly describing, in Section 4, the time
integration scheme.

The MLPG formulation proposed is first validated, in Section 5.1., in the case of an
isotropic, homogeneous material. In Section 5.2., the thermal stress calculation is
then validated, before, in Section 5.3., analyzing in-depth the problem of thermo-
elastic wave propagation in a two-dimensional functionally graded material. In
particular, the effects of material composition on temperature, displacement and
stress distribution and its influence on the wave propagation speed are studied in
detail.

Section 6. concludes the paper with a discussion and outlook onto future work.
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2 Meshless local Petrov-Galerkin (MLPG) method and thermo-elastic wave
propagation problem formulation

2.1 Moving least square (MLS) approximation technique

A simple and effective scheme to approximate scattered data is the moving least
square (MLS) method [Belytschko, T, Lu, Y Y and Gu, L. (1994)]. In this section,
a brief summary of this technique is given. As the MLS has been used extensively
in the meshfree (meshless) literature, only the most salient features are provided
here, and the interested reader is referred back to the recent review paper on mesh-
free methods [Nguyen, V P; Rabczuk, T; Bordas, S; Duflot, M. (2008)] where a
MATLAB code for MLS approximations and their enrichment is provided.

Consider Ωx, a neighborhood of x which is denoted as the domain of definition of
the MLS approximation at x, and is located in the problem domain Ω. To approx-
imate the distribution of function ψ(x, t) in Ωxover a number of randomly located
nodes {xI} , I = 1,2, · · · ,Nd , the moving least squares approximant ψh (x, t) of ψ ,
∀x ∈Ωx can be defined, for all times, by

ψ
h (x, t) = pT (x)a(x, t) , ∀x ∈Ωx (1)

where pT (x) = [p1 (x) p2(x) . . . pm(x)] is a complete monomial basis, pT (x) =[
1 x y x2 xy y2

]
is the number of terms in the basis, and a(x, t) is a vector con-

taining the coefficients a j (x, t) , j = 1, 2, . . . , m, which are functions of the space
coordinates x, and term t is the time variable.

Remark In the present research, we use the quadratic polynomial basis pT (x) =[
1 x y x2 xy y2

]
for 2-D.

The coefficient vector a(x, t) is determined by minimizing a weighted discrete L2
norm, which is defined as

J (a(x, t)) =
Nd

∑
I=1

wI(x)
[

pT (xI) a(x, t)− ψ̂I (t)
] 2

(2)

where wI(x) is a weight function associated with node I, with wI(x) > 0 for all x in
the support of wI(x), xI denotes the position vector of node I, Nd is the number of
nodes in Ωx for which the weight functions wI(x) > 0.

Remark It should be noted that ψ̂I are the fictitious nodal values, and not the actual
nodal values of the trial functionψh (x, t), in general (cf. second line in Eq. 3). This
is because the functions φI are not interpolants, but only approximants, i.e. the ap-
proximation does not pass through the data points. This is also known as the lack of
Kronecker-Delta property and leads to difficulties in imposing essential boundary
conditions in MLS-based meshfree methods. Details on this are provided in the
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following papers, among others: [Huerta, A; Belytschko, T; Fernandez-Mendez, S;
Rabczuk, T. (2004)] and [Nguyen, V P; Rabczuk, T; Bordas, S; Duflot, M. (2008)].

After some algebraic manipulations and substituting for the vector a(x, t) in Eq.1,
the following relation may be obtained

ψ
h (x, t) =

Nd

∑
I=1

φI(x) ψ̂I (t) = ΦΦΦ
T (x)Ψ̂ΨΨ(t) ,

ψ
h (x, t) = ψI 6= ψ̂I (t) ,x ∈Ωx

(3)

in which

Ψ̂ΨΨ(t) = [ψ̂1(t) ψ̂2(t) . . . ψ̂Nd (t)]
T

ΦΦΦ
T (x) = [φ1(x) φ2(x) . . . φNd (x)] = pT (x) A−1(x) B(x)

(4)

Where the matrices A(x) and B(x) are defined by

A(x) =
Nd

∑
I=1

wI(x)p(xI) pT (xI) (5)

B(x) = [w1(x)p(x1) w2(x)p(x2) · · · wNd (x)p(xNd )] (6)

Here Nd is the number of nodes in the neighborhood of x for which the weight func-
tion wI(x) has a nonzero value. A spline-type weight function, with a rectangular
support, is chosen in this work:

wI (x,xI) = wx
I (x,xI)×wy

I (y,yI) (7)

where wx
I (x,xI) , wy

I (y,yI) are the 1-D quartic spline functions in the x and y direc-
tions, respectively, and are defined as

wx
I (x,xI) =

1−6
(

dx
I

rx
I

)2
+ 8

(
dx

I
rx

I

)3
−3

(
dx

I
rx

I

)4
0 ≤ dx

I ≤ rx
I

0 dx
I ≥ rx

I

(8)

wy
I (y,yI) =

1−6
(

dy
I

ry
I

)2
+ 8

(
dy

I
ry

I

)3
−3

(
dy

I
ry

I

)4
0 ≤ dy

I ≤ ry
I

0 dy
I ≥ ry

I

(9)

where dx
I = |x− xI|, dy

I = |y− yI| are the distances from node I located at xI =
{xI, yI}T to point at x = {x, y}T and rx

I , ry
I are the size of support of the weight

functions wx
I , wy

I associated with node I in the xand y directions, respectively.

It can be easily seen in Fig. 1 that the spline weight functions given by Eqs. 9
and 10 possess C1 continuity. It can also be shown that the regularity of the weight
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function is inherited by the shape functions. The resulting approximation, em-
ployed throughout this paper, relies on the quadratic basis p(x), and the 4th-order
spline weight function, thus, the approximation is:

• C1 continuous over the entire domain;

• Second order complete.

 
 

 
Figure 1: Quartic spline weight function with a rectangular support, used in the
MLS approximation.

2.2 MLPG formulation of energy balance equation in a 2-D domain

A 2-D solid domain, Ω, made of isotropic linear thermo-elastic functionally graded
material is considered. It is bounded by Γ in a rectangular Cartesian coordinate
system (Ω = [0, lx]× [0, ly]). In the absence of sources of internal energy, the energy
balance of domain Ω writes

∇.(k∇T ) = ρ c ∂T
∂ t in Ω× [0, t]

T = T̃ (x, t) on ΓT × [0, t]
−k∇T = q̃(x, t) on Γq× [0, t] (10)

T (x,0) = T0 in Ω
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where T is the absolute temperature, ρ is the mass density, k is the heat conductivity
coefficient, c is the specific heat, t is the time variable and x = x êx +y êy is the space
coordinate vector. The initial temperature of the domain is assumed to be T0 and
the thermal boundary conditions may be defined as a prescribed temperature T̃ on
ΓT and given heat flux q̃ on Γq. In the preceding equations, ∇ is the vector gradient
operator defined by ∇ = ∂

∂x êx + ∂

∂y êy, in which êx and êy are the unit vectors in the
x and y directions of the coordinate system, respectively. It is more convenient to
introduce the above equations in dimensionless form:

x̄ =
x
l
, t̄ =

C2
1

κm
t, ȳ =

y
l
,

T̄ =
T −T0

Tre f
, q̄ =

l
km Tre f

q
(11)

in which

C1 =
√

(λc +2µc)/ρc, κm =
km

ρm cm
, l = κm/C1 (12)

where subscripts c and m are used to indicate ceramic and metal properties, respec-
tively and the overbar indicates dimensionless parameters. In the previous equa-
tions, κ is the thermal diffusivity, C1 is the purely elastic dilatational wave speed
in the ceramic material, l is a standard length, and Tre f is a reference temperature.
By using the dimensionless terms defined by Eqs. 11 and 12, Eq. 10 become (the
overbar is dropped for simplicity)

1
km

∇.(k∇T ) = ρ c
ρm cm

∂T
∂ t in Ω× [0, t]

T = T̃ (x, t) on ΓT × [0, t]

− k
km

∇T = q̃(x, t) on Γq× [0, t] (13)

T (x,0) = 0 in Ω

Instead of writing the global weak form of the governing equations, one version of
the MLPG method constructs the weak form over local overlapping subdomains,
which are here rectangles around each node as shown in Fig. 2. The interested
reader is referred to [Atluri, S N and Zhu, T. (1998); Atluri, S N, (2004)] for more
details on the formulation of the MLPG as well as [Fries, T P and Matthies, H G.
(2003)]. The local symmetric weak form over the I-th local thermal subdomain, ΩI

s
writes∫

ΩI
s

vI

(
1

km
∇.(k∇T ) − ρ c

ρm cm

∂T
∂ t

)
dΩ = 0 (14)
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 Figure 2: Meshless Local Petrov-Galerkin scheme for a two dimensional domain.

In the preceding equation, vI is the test function. In the MLPG method used in the
present work, the test function is chosen as the weight function used in the MLS
approximation but with a different support size. The test function, vI , associated
with node I, is defined as

vI(x,xI) = vx
I (x,xI)× vy

I (y,yI) (15)

By using the relation vI∇.(k∇T ) = ∇.(vI k∇T )− ∇vI .k∇T and applying the diver-
gence theorem to Eq. 14 we obtain∫

∂ΩI
s

vI
k

km
∇T.ndΓ−

∫
ΩI

s

∇vI .
k

km
∇T dΩ−

∫
ΩI

s

vI

(
ρ c

ρm cm

∂T
∂ t

)
dΩ = 0 (16)

in which n = nx êx + ny êy is the unit outward normal vector to the local subdomain
boundary ∂ΩI

s , see Fig. 2. Herein, the boundary ∂ΩI
s of the I-th local subdomain

consists of three parts, ∂ΩI
s = LI

s∪ΓI
sT ∪ΓI

sq where LI
s is the part of the local bound-

ary that is entirely inside the global domain, ΓI
sq is the part of the local boundary

that coincides with the global heat flux boundary, i.e. ΓI
sq = Γq ∩ ∂ΩI

s and ΓI
sT is

the part of the local boundary ∂ΩI
swhich coincides with the global temperature



38 Copyright © 2010 Tech Science Press CMES, vol.65, no.1, pp.27-74, 2010

boundary ΓT , i.e. ΓI
sT = ΓT ∩ ∂ΩI

s . Note that the test function will be zero on the
part of the local subdomain boundary which is entirely inside the global domain.
Thus, rearranging the unknown terms on the left side of Eq.16 gives

−
∫

ΓI
sT

vI
k

km
∇T.ndΓ+

∫
ΩI

s

∇vI.
k

km
∇T dΩ

+
∫

ΩI
s

vI
ρc

ρmcm

∂T
∂ t

dΩ = −
∫

ΓI
sq

vIq̃.ndΓ (17)

Eq. 17 expresses the overall energy balance equation on subdomain ΩI
s. By using

Eq. 3 and substituting the temperature trial function T h (x, t) instead of the temper-
ature variable, T , in Eq. 17, the discretized governing equations for the I-th local
subdomain becomes

HI T̂(t) +RI
d T̂(t)

dt
= PI(t) in Ω

I
s× [0, t] (18)

in which

HI =−
∫

LI
sT

vI
k

km
nDT h

ΦΦΦ
T h dΓ +

∫
ΩI

s

k
km

εεε
T h
I DT h

ΦΦΦ
T h dΩ

RI =
∫

ΩI
s

vI
ρ c

ρm cm
ΦΦΦ

T h dΩ ,

T̂ =
[
T̂1 T̂2 ... T̂N

] T , PI =−
∫

ΓI
sq

vI q̃.ndΓ

(19)

where T̂J (j=1,2, . . . , N) is the fictitious value of the temperature at node j and N
is the number of nodes that their weight functions have influence on subdomain I ,
i.e. w j(x) > 0; x ∈ΩI

s.

n =
[
nx ny

]
, εεε

T h
I =

[
∂vI/∂x ∂vI/∂y

]
,

DT h =
[
∂/∂x ∂/∂y

]T
, ΦΦΦ

T h =
[
φ1 φ2 . . . φN

] (20)

Eq. 18 is a ordinary differential equation that states the energy balance on the I-th
local subdomain. By writing the equations for all subdomains, we arrive at a set of
coupled ordinary differential equations which represent the energy balance on the
entire global domain and may be given in matrix form as

H̄ T̂(t) + R̄
d T̂(t)

dt
= P̄(t) in Ω× [0, t] (21)
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where

H̄ =


H̄1
H̄2
...

H̄Ntot

 , R̄ =


R̄1
R̄2
...

R̄Ntot

 , P̄ =


P1
P2
...

PNtot

 (22)

where H̄I and R̄I are the assembled coefficients of ordinary differential equations
that state the energy balance of the entire domain. Also, Ntot is the total nodes
distributed through the entire global domain.

2.3 MLPG formulation of dynamic thermoelastic deformation of a 2-D domain

In the absence of body forces, the dynamic thermoelastic deformation of an isotropic
domain is governed by

∇.σσσ = ρ
∂ 2u
∂ t2 in Ω× [0, t]

u = ũ on Γu× [0, t]
σσσ .n = t̃ on Γt × [0, t] (23)

u(x,0) = u0(x) in Ω

∂u(x,0)
∂ t

= ∂u0(x)
∂ t in Ω

where σσσ is the Cauchy stress tensor, u = ux êx +uy êy is the displacement vector, u0
is the initial displacement vector, ũ is the prescribed displacement on Γu and t̃ is the
given traction force on Γt . Also, n is the unit outward normal vector to the domain
boundary Γt . The preceding equations are complemented with the thermal stress-
strain relations and the kinematical strain-displacement equations to set the system
of equations of thermo-elasticity of the isotropic functionally graded domain. The
constitutive relations and the strain-displacement relationship in two dimensional
Cartesian coordinates are

σxx

σyy

σxy

=

λ̄ +2µ λ̄ 0
λ̄ λ̄ +2µ 0
0 0 2µ


εxx

εyy

εxy

−


ᾱ

ᾱ

0

 θ

 (24)

Here, εi j are the components of the strain tensor εεε , θ = T −T0 is the temperature
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change, ui is the component of the displacement vector and

λ̄ =

{
λ plane strain
λ

2µ

λ+2µ
plane stress

ᾱ =

{
α

3λ+2µ

2λ+2µ
plane strain

α plane stress

(25)

in which α is the coefficient of linear thermal expansion, and λ and µ are Lamé
constants.

Similarly to the energy balance equation, the system of Eqs. 23 and 24 may be
introduced in dimensionless form for convenience. To do so, it is useful to define
the following dimensionless terms, in addition to those of Eq. 11:

ε̄εε =
(λc +2µc)

βc Tre f
εεε , σ̄σσ =

σσσ

βc Tre f
, ū =

(λc +2µc) C1

κm βc Tre f
u (26)

in which

βc = αc (3λc +2 µc) (27)

Here, the material properties with subscript c refer to the ceramic material prop-
erties. With the help of dimensionless parameters and dropping the overbar for
convenience, the governing equations and boundary conditions become

∇.σσσ = ρ

ρc

∂ 2u
∂ t2 in Ω× [0, t]

u = ũ on Γu× [0, t]
σσσ .n = t̃ on Γt × [0, t] (28)

u (x,0) = u 0(x) in Ω

∂ u(x,0)
∂ t

= ∂ u0(x)
∂ t in Ω

Also, Eq. 24 can be recast in terms of the dimensionless parameters as
σxx

σyy

σxy

=

λ̄ +2µ λ̄ 0
λ̄ λ̄ +2µ 0
0 0 2µ

 1
λc +2µc


εxx

εyy

εxy

− 1
βc


ᾱ

ᾱ

0

T

 , (29)


εxx

εyy

εxy

=

 ∂/∂x 0
0 ∂/∂y

∂/2∂y ∂/2∂x

{ux

uy

}
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The local symmetric weak forms over the J−th local subdomain ΩJ
s write:∫

ΩJ
s

vJ

(
∇.σσσ − ρ

ρc

∂ 2u
∂ t2

)
dΩ = 0 (30)

Writing vJ∇.σσσ = ∇.(vJσσσ)−∇vJ.σσσ and using the divergence theorem, the local
symmetric weak formulation becomes∫

ΓJ
st

vJ t̃dΓ+
∫

ΓJ
su

vJ.ndΓ+
∫

LJ
s

vJ.ndΓ−
∫

ΩJ
s

(
∇vJ.+ vJ

ρ

ρc

∂ 2u
∂ t2

)
dΩ = 0 (31)

where t̃ is the traction vector on the part of local boundary that coincides with the
global traction boundary, Γt i.e. ΓJ

st = Γt ∩ ∂ΩJ
s ,ΓJ

su is the part of local boundary
that coincides with the global displacement boundary,Γu i.e. ΓJ

su = Γu∩ ∂ΩJ
s , and

n is the unit outward normal vector onΓJ
st . The test function will be zero on the

part of the local subdomain boundary that is completely inside the global domain.
Thus, rearranging the unknown terms on the left side of Eq. 31, we obtain∫

ΩJ
s

(
∇vJ.σσσ + vJ

ρ

ρc

∂ 2u
∂ t2

)
dΩ−

∫
ΓJ

su

vJ σσσ .n dΓ =
∫

ΓJ
st

vJ t̃ dΓ (32)

Substituting Eq. 29 into Eq. 32, and using Eq. 3 for the approximation of the
displacement vector, u, with the trial displacement vector, uh, gives

MJ
d2û
dt2 + KJ û = fJ (33)

In the preceding equation, û is the fictitious value of the nodal displacement vector
and MJ , KJ , fJ are the mass matrix, stiffness matrix and force vector of the J-th
subdomain, respectively, which are defined as follows

û =
{

ux1 ux2 · · · uxN uy1 uy2 · · · uyN
}T

,

KJ =
1

λc +2µc

∫
ΩJ

s

εεε
M
J CDM

ΦΦΦ
M dΩ − 1

λc +2µc

∫
ΓJ

su

vJ NCDM
ΦΦΦ

M dΓ

MJ =
1
ρc

∫
ΩJ

s

vJ ρ ΦΦΦ
M dΩ

fJ =
∫

ΓJ
st

vJ t̃ dΓ+
1
βc

∫
ΩJ

s

εεε
M
J Cααα T dΩ − 1

βc

∫
ΓJ

su

vJ NCααα T dΓ

(34)
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where

ΦΦΦ
M =

[
φ1 φ2 · · · φN 0 0 · · · 0
0 0 · · · 0 φ1 φ2 · · · φN

]

C =

λ̄ +2µ λ̄ 0
λ̄ λ̄ +2µ 0
0 0 2µ

 , N =
[

nx 0 ny

0 ny nx

]
, ααα =

{
ᾱ ᾱ 0

}T

DM =
[

∂/∂x 0 ∂/2∂y
0 ∂/∂y ∂/2∂x

]T

,εεεM
J =

[
∂ vJ/∂x 0 ∂ vJ/∂y

0 ∂ vJ/∂y ∂ vJ/∂x

]
(35)

Equation 33 consists of two ordinary differential equations with respect to time
which are the equations of motion of the J-th local subdomain. Thus, a set of
discretized coupled ordinary differential equations that represent the equation of
motion over the whole global domain can be derived as

M̄
d 2û
d t2 + K̄ û = f̄ (36)

where

M̄ =



M̄1
1

M̄1
2

...
M̄1

Ntot

M̄2
1

M̄2
2

...
M̄2

Ntot



2Ntot×2Ntot

, K̄ =



K̄1
1

K̄1
2

...
K̄1

Ntot

K̄2
1

K̄2
2

...
K̄2

Ntot



2Ntot×2Ntot

, f̄ =



f 1
1

f 1
2
...

f 1
Ntot

f 2
1

f 2
2
...

f 2
Ntot



2Ntot×1

in which, M̄1
J(M̄2

J) is the assembled form of the first (second) row of the mass ma-
trix of J-th subdomain, K̄1

J(K̄2
J) is the assembled first (second) row of the stiffness

matrix of the J-th subdomain, and f 1
J , f 2

J are the first and second components of the
force vector of the J-th subdomain, respectively.

3 Estimation of effective properties of FGMs

In this section, we briefly describe the method we use in this paper to estimate the
thermo-mechanical material properties of functionally graded materials [Mori, T
and Tanaka, K. (1973)], [Rosen, B W and Hashin, Z. (1970)] and [Hatta, H and
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Taya, M. (1985)]. For estimating the elastic properties of graded microstructures
with a well-defined continuous matrix and a discontinuous particulate phase, the
Mori–Tanaka scheme is an effective technique. The Mori–Tanaka scheme assumes
that the matrix phase is reinforced by spherical particles (the particulate phase).
The effective local bulk modulus K and the shear modulus µ obtained by the Mori–
Tanaka scheme for a random distribution of isotropic particles in an isotropic matrix
are

K−Km

Kc−Km
=

Vc

1+3(1−Vc)(Kc−Km)/(3Km +4µm)
(37)

µ−µm

µc−µm
=

Vc

1+(1−Vc)(µc−µm)/(µm + fm)
(38)

where

fm = µm (9Km +8µm)/6(Km +2µm) (39)

In the above, subscripts m and c denote the values of a quantity for metal and ce-
ramic constituents of the functionally graded domain, Vc is the volume fraction of
ceramic, and Vm = 1−Vc is the volume fraction of the metal constituent, respec-
tively. The volume fraction of ceramic constituent varies through the x-direction
and is assumed to obey the following relation

Vc = (x/lx)
p (40)

where parameter p characterizes the variation in ceramic content and the material
distribution throughout the geometry of the domain. Using the following relation,
the other mechanical material properties can be obtained

λ = K− 2µ

3
, E =

9Kµ

3K + µ
, ν =

3K−2µ

2(3K + µ)
(41)

The mass density ρ at a point is obtained by the simple rule of mixtures as

ρ = ρmVm +ρcVc (42)

The effective heat capacity per unit volume, ρ c, of the functionally graded domain
is also assumed to follow the rule of mixtures

ρ c = ρm cmVm +ρc ccVc (43)
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The effective thermal conductivity, k, is computed from the following relation pro-
posed by Hatta and Taya [Hatta, H and Taya, M. (1985)]

k− km

kc− km
=

Vc

1+(1−Vc)(kc− km)/3km
(44)

and the effective coefficient of thermal expansion α is given by [Rosen, B W and
Hashin, Z. (1970)]

α−αm

αc−αm
=

1/K−1/Km

1/Kc−1/Km
(45)

4 The Time Integration Scheme

In the present work, Eq. 21 is integrated with respect to time t by the Crank-
Nicholson method

T̂τ+∆τ = T̂τ +
∆τ

2

(
˙̂Tτ + ˙̂Tτ+∆τ

)
(46)

Since the Crank-Nicholson method is unconditionally stable, the time step size
may be determined by the desired accuracy. To solve Eq. 36, the Houbolt method
is applied. In the Houbolt finite difference scheme [Houbolt, J C. (1950)] the ac-
celeration is expressed as

d 2ûτ+∆τ

d t2 =
2ûτ+∆τ −5ûτ +4ûτ−∆τ − ûτ−2∆τ

∆τ2 (47)

where ∆τ is the time step.

Upon substitution of Eq. 46 into Eq. 21 and Eq. 47 into Eq. 36, we get the
system of algebraic equations for the unknown fictitious nodal temperatures and
displacements as

(H̄ +
2

∆τ
R̄)T̂τ+∆τ = P̄τ+∆τ +

2
∆τ

R̄ T̂τ + R̄ ˙̂Tτ(
2

∆τ2 M̄+ K̄
)

ûτ+∆τ = M̄
1

∆τ2 (5ûτ −4ûτ−∆τ + ûτ−2∆τ)+ f̄τ+∆τ

(48)

The value of the time step has to be appropriately selected with respect to material
parameters (wave propagation speed) and the time dependence of the boundary
conditions.
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5 Numerical experiment and discussion

5.1 Validation in the homogeneous isotropic case

We first compare our results with an analytical solution in the case of a homogenous
domain to validate the formulation. In the subsequent sections, we show results
for transient and dynamic thermo-elastic deformations of 2D FG domains. In the
remainder of this section, we provide a comparison between results obtained based
on the present formulation and the analytical evolution of temperature within a 2D
homogeneous isotropic domain subjected to mixed thermal boundary conditions. A
two-dimensional homogeneous square domain with length lx = 1m and width ly =
1m is considered. It is assumed that the temperature at both edges parallel to the
y-axis is prescribed, see Fig. 3. The left-hand side is kept at zero temperature while
the right-hand side experiences a Heaviside step time variation of temperature, i.e.
T (lx, t) = H (t). On the lateral (horizontal) sides, the domain is insulated. An
analytical solution can easily be obtained by the method of separation of variables
and reads

T (x, t) =
x
lx

+
2
π

∞

∑
n=1

cos nπ

n
sin
(

nπx
lx

)
× exp

(
−κ n2π2

l2
x

t
)

(49)

This solution is used to measure the accuracy of the present numerical method. Nu-
merical results are computed at four different locations along the x-axis, i.e. x=0.2,
0.4, 0.6 and 0.8. In Fig. 4 a comparison between the simulated and analytical tem-
perature evolution at different locations along the x-axis, are presented. It can be
observed in the figure that an excellent agreement between numerical and analytical
results is obtained.

Remark In this study 30 nodes were used in the x- direction and 5 nodes were used
in the y-direction.

5.2 Validation of the thermal stress solution in a functionally graded material

In this section, we compare our formulation with some data from the literature
to validate the thermal stress solution. For this purpose, we consider a simply
supported functionally graded beam of rectangular cross section (b×a) and length
L, with exponentially varying properties across the beam thickness as

E(y) = E0 exp(ξ1y/a)
α(y) = α0 exp(ξ2y/a)

(50)

Here E0 = 70GPa is a reference Young’s modulus and α0 = 23× 10−6◦C−1 is
a reference thermal expansion coefficient. In this case, ξ1 = 1.7, ξ2 = −1.13
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Figure 3: Sketch of the problem domain for validation of the temperature 
distribution computations in an isotropic homogeneous domain. Boundary 

conditions are also shown. Here, q denotes the heat flux and H the 
Heaviside step function. 
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Figure 4: Time variation of temperature in an isotropic homogeneous 2D 

domain for N x = 30 by N y = 5 array of nodes. 
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Figure 3: Sketch of the problem domain for validation of the temperature distribu-
tion computations in an isotropic homogeneous domain. Boundary conditions are
also shown. Here, q denotes the heat flux and H the Heaviside step function.
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Figure 4: Time variation of temperature in an isotropic homogeneous 2D domain
for Nx = 30 by Ny = 5 array of nodes.

a = 0.1 , b = 1 and Poisson’s ratio ν = 0.3 is considered to be constant across
the thickness. The beam is initially at temperature T0. This uniform temperature is
“slowly” raised to Tf , where the temperature difference is θ = Tf − T0 = 1 ◦C.

In Fig. 5 the normal stress σxx across the thickness of the beam provided by the
analytical solution of Reference [Hetnarski, R B and Eslami, M R. (2008) ] and the
present MLPG formulation have been compared. It can be seen that the MLPG re-
sult agrees very well with that from the analytical solution. Note that the analytical
solution is based on Euler-Bernoulli assumption and the MLPG solution is based
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on classical thermo-elasticity equations.

Remark detailed studies were performed to show that the solution converges with
mesh refinement, but are not reported here for conciseness. The interested reader
is referred to the extensive theoretical and numerical work [Kim, H G and Atluri,
S N., (2000)], where details on the numerical behavior of the MLPG method are
provided. The results of Fig. 5 are obtained with a total of 100 nodes, i.e. 10 nodes
through the length and height of the beam.
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 Figure 5: Normal stress σxx along the cross section at the middle of the FG beam.

5.3 Dynamic thermo-elastic simulation of functionally graded materials

In this section, we employ the proposed numerical technique to analyze the dy-
namic thermo-elastic behavior of rectangular functionally graded domains. To do
so, we consider a two dimensional FG square domain with non-dimensional length
lx = 1 and width ly = 1 subjected to the following boundary conditions (cf. Fig. 6):

Mechanical B.C. and I.C. Thermal B.C. and I.C.

u(0.y, t) = 0
u(x,y,0) = 0
∂u(x,y,0)

∂ t = 0
The free boundaries are assumed to
be traction free

q(x,0, t).n = 0
q(x, ly, t).n = 0
T (0,y, t) = 0
T (lx,y, t) = 100 f (t)
T (x,y,0) = 0
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where f (t) = 1− e−5
C2

1
κm

t andC1 and κm are defined in Eq. 12.

 23

 
Figure 6:. Thermal and mechanical boundary conditions of a two 
dimensional FG domain. The ceramic-rich region is on the right-hand side 
of the plate. 
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Figure 6: Thermal and mechanical boundary conditions of a two dimensional FG
domain. The ceramic-rich region is on the right-hand side of the plate.

To carry out the numerical studies, Aluminum (Al) and Alumina (Al2O3) are con-
sidered as ceramic and metal constituents, respectively, and the following material
properties and computational parameters are chosen

Al : ρm = 2707kg / m3, cm = 903J / kg◦C
km = 204W / m◦C, αm = 23×10−6 / ◦C
Em = 70GPa, νm = 0.3

Al2O3 : ρc = 3800kg / m3, cc = 765J / kg◦C
kc = 10.4W / m◦C, αc = 7.4×10−6 1 / ◦C
Ec = 380GPa, νc = 0.17

m = 6, rx
I = 3hx

I , ry
I = 3hy

I , ∆τ = 0.05, Nx = Ny = 31

where hx
I , is the distance from node I to the nearest neighbor node in the x-direction

andhy
I is the distance from node I to the nearest neighbor in the y-direction. Also,

E is the Young’s modulus and v is the Poisson’s ratio. With the use of uniform node
generation, 961 nodes with 31 nodes in the x-direction and 31 in the y-direction are
generated to cover the domain, and rx

I = ry
I = 0.1. The size of support of the test

function vI , is
[
hx

I × hy
I

]
and the size of domain of definition of the shape function

is chosen as [3.5hx
I × 3.5hy

I ]. Also, 144 quadrature points are employed to evaluate
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area integrals and 100 integration points are used for the trapezoid integral method
employed to evaluate line integrals.

Remark these high-order quadrature schemes are required because the moving
least squares (MLS) shape functions defined in Section 2.1. are non-polynomial.
This is one of the drawbacks of MLS-based “meshfree” methods, since the need for
high order quadrature increases the computational time significantly compared to
standard finite element methods which rely on low-order polynomial interpolants.
Nonetheless, the added advantages provided by extra smoothness and the simplic-
ity with which adaptivity can be performed can offset these disadvantages. It is
important to note that the influence of point placement on the quality of the MLS
approximation is in general not very well understood, and requires further study
[Nguyen, V P; Rabczuk, T; Bordas, S; Duflot, M. (2008) ].

Note that the value of p controls the material composition. Two extremes are at-
tained for p = 0 (pure Alumina/ceramic) and p approaching to positive infinity
(pure Aluminum/metal).

The steady state temperature distribution along the x-axis is shown in Fig. 7, from
which the following conclusions can be drawn:

• Higher values of p (i.e. larger Aluminum volume fraction in the domain) de-
crease the temperature on the left-hand side of the domain, and lead to larger
temperature gradients on the right-hand side. In this case (for instance p = 5
in Fig. 7, the temperature distributes less evenly throughout the domain;

• For a homogeneous material, i.e. p = 0, the steady state temperature distribu-
tion is almost exactly linear for a, which is the expected solution to Laplace
equation to which the problem at hand degenerates in this case.

Fig. 8 depicts the variation of the temperature at points located on vertical mid-line
of the domain for different values of the power law index, p. One key observation
can be made from these results: Aluminum has larger thermal diffusivity coeffi-
cient than Alumina, which means that the temperature rise in pure Aluminum (case
p=inf.) is faster than for any other material distribution. This is clearly identified
in Fig. 8 where it is apparent that for larger values of the power law index, p,
steady state is attained faster (5 times faster for the pure Aluminum case than for
p=0.5). Therefore, in the case of thermal shock loads, application of FGMs can
be considered as a material strategy to avoid distribution of undesired thermally
induced stresses, which can result in void growth and crack propagation through
the structure.

The heat flux variation at different positions in the domain is shown in Fig.9 for the
case p = 0.5. From this figure, the following conclusions can be inferred:
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 Figure 7: Distribution of steady state temperature along the x-direction for various
material compositions. Large values of p indicate large volume fractions of metal.

 
 
 

Figure 8: Time variation of temperature at points lying along the vertical mid-line
(x=0.5) of the domain. The Aluminum case is equivalent to p approaching towards
positive infinity.
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• At the primary stages of thermal excitation, the boundary where the thermal
load is applied experiences a large heat flux magnitude;

• At any given time, the magnitude of the heat flux decreases with distance
from the heat source;

• At any given point along the domain, the same steady state heat flux magni-
tude is reached;

• The manner in which steady state is reached is not the same throughout the
domain. For points located further away from the heat source, steady state
is reached monotonously (the heat flux continuously decreases from 0 to the
(negative) steady state value). On the contrary, for points located close to the
heat source, the heat flux initially overshoots the steady state value, and the
steady state is not reached monotonously (x = 0.9 and x = 1.0) in the figure.

 
 Figure 9: Time variation of heat flux at some points of FG domain (p=0.5). Recall

that the thermal excitation is applied at x = 1. It is clear from this figure that the
largest heat fluxes are observed in the vicinity of the thermal excitation boundary.
Throughout the domain, these dimensionless heat fluxes reach a steady state value
around negative 20.

Fig. 10 shows the steady state heat flux in the x-direction for two types of domain:
an FGM domain and a domain made of two metal and ceramic layers. In the two
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 Figure 10: Comparison of the steady state heat flux for a functionally graded do-

main and a domain with only two Aluminum and Alumina layers. The comparison
is shown for various volume fractions, f , of ceramic material. It is apparent that
the steady state heat flux is largest for pure Aluminum (p=inf ), smallest for pure
ceramics (p = 0), and always larger for the functionally graded material than for
the bi-material layers (for the same volume fraction of ceramics).

layer domain, the Aluminum layer is located on the left-hand side and the ceramic
layer is located on the right-hand side. The temperature and heat flux both reach
steady state. From Fig. 10, the following conclusions can be drawn:

• The steady state heat flux for the pure Aluminum domain is approximately
204, which is, as expected, greater than those obtained for all other domains;

• By increasing the Alumina volume fraction (p = 5), the steady state heat flux
in the FG domain decreases to 70.96, and to 49.75 in the two layer material.
This shows that adding a small amount of ceramic as a thermal barrier can
reduce the heat flux considerably and it also shows that heat flux in a two
layer domain is smaller than heat flux in an FG domain with same mean
volume fractions of components.
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Remark The mean volume fraction of ceramic in an FGM domain is obtained as
follows

f =
1
lx

∫ lx

0
(x/lx)pdx (51)
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 Figure 11: Distribution of σxx along the horizontal mid-line of domain (y=0.5) at

dimensionless time t=0.7.

The distribution of thermal stress, σxx, along the horizontal mid-line of the domain
at dimensionless time t=0.7 for five various cases of material distributions (p=0,
0.5, 1, 5 and ∞) is shown in Fig. 11. The following conclusions can be inferred
from these results:

• For the pure ceramics domain (p=0), the σxx stress component propagates
within the domain at a larger speed than for the other material compositions.
By increasing the amount of Aluminum, the stress wave speed decreases.
This is explained by smaller elastic modulus of Aluminum compared to Alu-
mina. The larger thermal diffusivity coefficient of Aluminum compared to
Alumina decreases the rising time for the transient thermal stress σxx;

• When p increases, due to the larger thermal expansion coefficient of Alu-
minum and a greater energy absorption into the body, larger amplitudes of
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σxx are obtained. According to Fig. 11, even a very small amount of ce-
ramics (p=5) in the material effectively acts as a thermal barrier, leading to a
considerably lower thermal stress amplitude.
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 Figure 12: Longitudinal propagation of stress component σxx and variation of mean

speed of the wave along line y=1/6 of the FG domain when p=1. The ceramics rich
side is on the right-hand side of the domain.

The longitudinal wave propagation of σxx in an FG domain with power index p = 1
is shown in Fig. 12. The main conclusion of this figure is that the mean speed of
stress wave propagation near the ceramic rich side (right-hand side) is larger than
that in the vicinity of metal rich side (left-hand side). The reason for this is that
near the ceramic rich side, the elastic modulus of the FG material is larger, which
results in larger elastic wave speed.

Figures 13-15 show transverse wave propagation of σxx along the y direction for
p=1 at x=0, 0.5 and for p=5 at x=0.5. According to the results shown in Figs. 13,
14, the transverse wave speed at x=0.5 is about V̄ = 0.667 and at x=0 is about
V̄ = 0.5 for p=1. As shown in Fig. 15, the transverse wave speed on x=0.5 is about
V̄ = 0.33 for p=5. It indicates that with increase of the amount of Aluminum in the
FG material, the speed of transversely propagating stress waves decreases, which
can be attributed to a decrease in effective shear modulus of FGM in presence of
more metal constituent.
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Figure 13: Transverse wave propagation of σxxalong y direction at x=0.5 of the FG
domain (p=1); t is dimensionless time.
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 Figure 14: Transverse wave propagation of σxxalong y direction on the left-hand

side (x=0) of FG domain (p=1); t is dimensionless time.
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Figure 15: Transverse wave propagation of σxx along y direction at x=0.5 of the of
FG domain (p=5); t is dimensionless time.

 
 

Figure 16: Variation of σxx and σyy at point (0,0.5) of the FG domain (p=1) and
Poisson’s ratio effect.
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Fig. 16 shows the time evolution of the x- and y- components of the stress in the
domain. The following conclusions can be drawn from these results:

• Due to the thermal and mechanical boundary conditions, the displacement in
the y direction of all points on the x=0 edge of the domain are zero; accord-
ingly, the dynamic change of σyy is only affected by the dynamic variation
of σxx because of the Poisson’s ratio effect. For all values of power index,
p > 0, at point (0, 0.5) which is located at Aluminum rich side, the stress
ratio equals to 0.3, i.e. the Poisson’s ratio of Aluminum;

• The first stress peak is in compression while the second one is in tension.
Due to the fixed and free boundaries on the left and right hand sides of the
domain and their effects on reflection of the waves, it can be seen in the figure
that the sign of stresses successively change.
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 Figure 17: Variation of σyy at point (1,0.5) for several values of p at primary stages

of thermal excitation.

The time history of σyy at point (1, 0.5) for several values of p is plotted in Fig. 17.
According to the results shown in this figure, up to time t∼0.75, the normal stress
σyyvariation in the ceramic rich side of the FGM domain is the same as for the fully
ceramic domain. By increasing the power law index value, the Aluminum volume
fraction increases and, consequently, the coefficient of thermal expansion increases
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in the vicinity of point (1,0.5), which influences the stress magnitude at this point.
It can be seen in the figure that the amplitude of σyy increases with p.

The thermal stress σyy distribution along the vertical mid-line of the FG domain
(x=0.5) for several values of p is plotted in Fig. 18 at dimensionless time t=0.7.
These results show that

• The ceramic domain experiences the smallest σyy amplitude, and that by in-
creasing the amount of Aluminum, σyy increases. Alumina (ceramics) has
a smaller thermal expansion coefficient than Aluminum and considering the
results shown in Fig. 8, the mid-line temperature in the pure ceramics case
is less than for any other FG material at dimensionless time t=0.7, which
explains the small thermal stress magnitude (σyy) in the case where p=0;

• At the top and bottom of the domain (y=0, y=1), σyy is equal to zero and the
boundary conditions are indeed satisfied.
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 Figure 18: Thermal stress σyy distribution along vertical mid-line (x=0.5) of the

domain for several values of p at dimensionless time t=0.7.

At dimensionless times t=0.7 and t=1, the transverse distribution of σyy on the hori-
zontal mid-line of the domain (y=0.5) is plotted in Figs. 19a. and 19b, respectively.
It can be concluded from the results shown in these figures that the speed of trans-
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verse wave propagation of σyy in the pure ceramics domain is faster than that in the
FG domains and that this speed decreases with increasing p.

Transverse wave propagation of σyyalong the horizontal mid-line (y=0.5) of the FG
domain (p=1) at several dimensionless times t=0.65, 0.85, 1.05, and 1.45 is shown
in Fig. 20. The wave front can be clearly detected in the figure.

Thermal stress σyy distribution along the y-direction at the ceramic rich side of
the FG domain (p=1) is shown in Fig. 21. This figure shows that at the top and
bottom of fully ceramic edge the thermal stress σyy is equal to zero and the stress
distribution along this edge successively changes from positive to negative values.
It can be inferred from this figure that:

• The maximum value of σyy occurs at the midpoint of the thermally loaded
edge;

• Since all the points along this edge experience the same thermal load, the
normal stress σyy does not propagate as a dilatational wave in the y-direction.

Distributions of thermal stress σxx at dimensionless times t=0.35, 0.75 in a fully
Aluminum domain and a FG domain are shown in Figs. 22 and 23, respectively.
In Figs. 22a and 23a two arrows are shown which indicate the path of the two
peaks and in Figs. 22b and 23b two peaks are shown that move in the x and y
directions simultaneously. The propagation of the σxx peak in the x-direction is
a longitudinal propagation and its propagation in the y-direction is a transverse
propagation. Therefore, the total speed of the normal stress wave in a 2D domain
is results in the combination of longitudinal and transverse wave propagation.

Contours of the peak points of the σxxdistribution are shown in Figs. 24 and 25
at dimensionless times t=0.35, 0.55, 0.75, 0.95. According to the results shown in
Figs. 24 and 25, the speed of the σxxwave propagation in the x-direction is larger
than that in the y-direction. Also, comparing theσxx longitudinal and transverse
wave speeds in the fully Aluminum domain and the FG domain shown in Figs 24
and 25 reveals that both longitudinal and transverse wave speeds in pure Aluminum
are smaller and that in the FG domain they are position dependent.

The time history of the variations of the displacement in the x-direction, ux, at point
(1,0.5) and the displacement in the y-direction, uy, at point (1,1) for various values
of p are plotted in Figs. 26 and 27, respectively. The maximum displacement
occurs in the Aluminum domain while the full ceramics domain shows minimum
displacement amplitude in both figures. It can be concluded from the results for
the pure Aluminum case, p = ∞, and the case with small amount of ceramic con-
stituent, p=5, that the displacement amplitude considerably decreases so that it ap-
proaches the displacement amplitude of the pure ceramic domain, p = 0. As shown
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Figure 19: Thermal stress yyσ distribution along horizontal mid-line (y=0.5) of 

the domain for several values of p: a) at dimensionless time t=0.7    b) at 
dimensionless time t=1. 

 

Figure 19: Thermal stress σyy distribution along horizontal mid-line (y=0.5) of the
domain for several values of p: a) at dimensionless time t=0.7 b) at dimensionless
time t=1.
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Figure 20: Transverse wave propagation of σyy along horizontal mid-line (y=0.5)
of the FG domain for p=1; t is dimensionless time.
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 Figure 21: Thermal stress σyy distribution along the ceramic rich side, x=1 of the
FG domain (p=1) at several times; t is the dimensionless time.
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Figure 22: Thermal stress xxσ  distribution on 2D fully Aluminum domain at 
dimensionless times a) t=0.35   b) t=0.75. 
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Figure 22: Thermal stress σxx distribution on 2D fully Aluminum domain at di-
mensionless times a) t=0.35 b) t=0.75.
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Figure 23: Thermal stress xxσ  distribution on a 2D FG domain (p=1) at 
dimensionless times a) t=0.35   b) t=0.75. 

Contours of the peak points of the xxσ distribution are shown in Figs. 24 and 25 
at dimensionless times t=0.35, 0.55, 0.75, 0.95. According to the results shown in 
Figs. 24 and 25, the speed of the xxσ wave propagation in the x-direction is larger 
than that in the y-direction. Also, comparing the xxσ  longitudinal and transverse 
wave speeds in the fully Aluminum domain and the FG domain shown in Figs 24 
and 25 reveals that both longitudinal and transverse wave speeds in pure 
Aluminum are smaller and that in the FG domain they are position dependent. 
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Figure 23: Thermal stress σxx distribution on a 2D FG domain (p=1) at dimension-
less times a) t=0.35 b) t=0.75.
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Figure 24: Peak point contours of xxσ  on 2D full Aluminum domain at several 
dimensionless times t=0.35, 0.55, 0.75, 0.95. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 25: Peak point contours of xxσ  on 2D FG domain (p=1) at several 
dimensionless times t=0.35, 0.55, 0.75, 0.95. 

The time history of the variations of the displacement in the x-direction, xu , at 
point (1,0.5) and the displacement in the y-direction, yu , at point (1,1) for various 
values of p are plotted in Figs. 26 and 27, respectively. The maximum 
displacement occurs in the Aluminum domain while the full ceramics domain 
shows minimum displacement amplitude in both figures. It can be concluded 
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Figure 24: Peak point contours of σxx on 2D full Aluminum domain at several
dimensionless times t=0.35, 0.55, 0.75, 0.95.
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Figure 25: Peak point contours of xxσ  on 2D FG domain (p=1) at several 
dimensionless times t=0.35, 0.55, 0.75, 0.95. 

The time history of the variations of the displacement in the x-direction, xu , at 
point (1,0.5) and the displacement in the y-direction, yu , at point (1,1) for various 
values of p are plotted in Figs. 26 and 27, respectively. The maximum 
displacement occurs in the Aluminum domain while the full ceramics domain 
shows minimum displacement amplitude in both figures. It can be concluded 
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Figure 25: Peak point contours of σxx on 2D FG domain (p=1) at several dimen-
sionless times t=0.35, 0.55, 0.75, 0.95.
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in Figs. 26 and 27, the frequency of the displacement variation in the x-direction,
ux, is lower than the frequency of the displacement variation in the y-direction, uy.

It may be observed from the figures that while the temperature field in the domains
reaches the steady state after time t=10, the displacements or stresses continue to
oscillate.
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 Figure 26: Variation of uxat point (1,0.5) for various values of p.

In Fig. 28, the displacement wave front in the fully ceramic domain, p=0, is shown
to propagate faster than the waves in the other domains while its amplitude is
smaller. Thus, it can be concluded that by increasing the amount of Aluminum
in the material, the wave speed will decrease due to the decreasing elastic modu-
lus, while its amplitude will increase owing to increase in the coefficient of thermal
expansion.

Fig. 29 shows the vertical displacements distribution on the top edge of the FG
domain at dimensionless time t=1. High thermal diffusivity and thermal expansion
of the FG domain with larger amount of Aluminum constituent (p=5) causes faster
rise and larger displacement amplitudes compared to the other compositions (p<5).
Even though in the FG domain (p=5) the volume fraction of Aluminum rapidly
increases from the ceramic rich side to the metal rich side, including a very small
amount of ceramic on the edge x=1 prevents vary large vertical displacements.

The rate of convergence for uniform node distribution is presented in Fig.30. In the
convergence study the following error is introduced for normal stress, σx, over the
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 Figure 27: Variation of uyat point (1,1) for various values of p.
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 Figure 28: displacement field along the x-direction on horizontal mid-line of 2D

domains (y=0.5) at dimensionless time t=1
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 Figure 29: Displacement field along the y-direction on the top edge of the 2D

domains (y=1) at dimensionless time t=1 for several values of p.

free boundary in right hand side:

Error =
∫ 300∆τ

0

∫ ly

0
σ

2
xx dydt (52)

In the free boundary in right hand side, exact normal stress is zero, so the error
can be defined as Eq. 52. Errors are calculated for several numbers of nodes:
Nx = Ny = 7, 11, 21, 31. According to this figure, the rate of convergence decreases
by increasing the nodes.

The errors of normal stress in free boundary in right hand side, x = lx, for two type
of node distribution are obtained as stated by Eq. 52, the errors are compared in
Fig.31. In concentrated node distribution, density of nodes near to the free bound-
ary, x = lx, is greater than other regions, but the number of nodes in concentrated
distribution is same as in uniform distribution. Fig.31 shows that error in the free
boundary decreases by increasing of node density around there, so that error in
concentrated 21 by 21 nodes distribution is less than uniform 31 by 31 nodes dis-
tribution.

Influence of size of support domain on the error of normal stress for 21 by 21 node
FG domain is shown in Fig.32. In this figure, r = rx

I = ry
I , h = hx

I = hy
I and errors are

obtained by Eq. 52. This figure shows that r/h = 3 introduce the minimum error.
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Figure 30: Rate of convergence of normal stress (error) over free boundary, x = lx,
for uniform node distribution in FG domain (p=1).

6 Conclusions

In this paper, two-dimensional thermo-elastic wave propagation in functionally
graded (FG) materials under thermal loads was studied. To solve the nonlinear
set of partial differential governing equations, the meshless local Petrov-Galerkin
(MLPG) method was employed. By varying the volume fraction of the material
constituents different material compositions have been achieved and the effect of
the material composition on the thermo-elastic behavior of 2D FG domains was
investigated.

The distribution and time evolution of temperature, displacements and stresses were
presented and analyzed. The thermal field distribution throughout the geometry of
the FG domain was obtained and the relevant longitudinal and transverse wave
propagation were plotted.
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Figure 31: Compare of rate of error convergence in uniform node distribution and
concentrated node distribution over free boundary, x = lx, for FG domain (p=1).

The capability of the MLPG formulation to simulate the temperature distribution
and predict thermal stresses in functionally graded materials was first verified be-
fore fully two-dimensional thermo-elasto-dynamic problems were solved. The
main results of the analyses were:

• The wave propagation speed through a functionally graded material changes
with position;

• The longitudinal wave speed is larger than the transverse wave speed;

• The wave speed is reduced from the ceramics rich side to the metal-rich side;

• While the speed of wave propagation decreases by increasing the amount
of metal constituent, the temperature, displacement and stress amplitudes
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Figure 32: Influence of size of support domain on the normal stress (error) in the
free boundary, x = lx , for FG domain (p=1).

can increase, owing to more absorption of the energy into the domain and
increased thermal expansion coefficients.

Based on these first results, future work includes:

• Simulation of cracked functionally graded materials;

• Inverse analysis for crack detection in functionally graded materials;

• Three-dimensional implementation and validation of the algorithm.
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