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An Iterative and Adaptive Lie-Group Method for Solving
the Calderón Inverse Problem

Chein-Shan Liu1 and Satya N. Atluri2

Abstract: We solve the Calderón inverse conductivity problem [Calderón (1980,
2006)], for an elliptic type equation in a rectangular plane domain, to recover an
unknown conductivity function inside the domain, from the over-specified Cauchy
data on the bottom of the rectangle. The Calderón inverse problem exhibits three-
fold simultaneous difficulties: ill-posedness of the inverse Cauchy problem, ill-
posedness of the parameter identification, and no information inside the domain
being available on the impedance function. In order to solve this problem, we
discretize the whole domain into many sub-domains of finite strips, each with a
small height. Thus the Calderón inverse problem is reduced to an inverse Cauchy
problem and a parameter identification problem in each finite strip. An effective
combination of the Lie-group adaptive method (LGAM), together with a finite-
strip method is developed, where the Lie-group equation can adaptively solve the
semi-discretized ODEs to find the unknown conductivity coefficients through it-
erations. The success of the present method hinges on a rationale that the local
ODEs and the global Lie-group equation have to be self-adaptive during the itera-
tion process. Thus, we have a computationally inexpensive mathematical algorithm
to solve the Calderón inverse problem. The feasibility, accuracy and efficiency of
present method are evaluated by comparing the estimated results for the unknown
impedance function in the domain, in the Calderón inverse problem, with some
postulated exact solutions. It may be concluded that the iterative and adaptive Lie-
group method presented in this paper, may provide a simple and effective means of
solving the Calderón inverse problem in general domains.

Keywords: Calderón’s inverse problem, Inverse Cauchy problem, Parameter
identification problem, Lie-group adaptive method, Iterative method

1 Department of Civil Engineering, National Taiwan University, Taipei, Taiwan. E-mail: li-
ucs@ntu.edu.tw

2 Center for Aerospace Research & Education, University of California, Irvine



300 Copyright © 2010 Tech Science Press CMES, vol.64, no.3, pp.299-326, 2010

1 Calderón’s inverse problems [Calderón (1980, 2006)]

The electrical impedance tomography (EIT) is a diffuse imaging process, in which
the resistivity inside the body is estimated by electrical measurements of the cur-
rent and the potential taken on the boundary. In a similar context, Kaup, Santosa
and Vogelius (1996) have modeled the effects of material losses due to corrosion,
and then, Santosa, Vogelius and Xu (1999) related the effects of damage to the
impedance condition.

Corrosion of metals may change the impedance coefficient, and thus induces an un-
known Robin [or impedance] condition in the inaccessible part of the body. Iden-
tifying the impedance coefficient may be an effective way to find the location of
corrosion, and one may possibly assess the level of corrosion according to the exte-
rior measurements, and then using the solution of the inverse problem by the EIT.
In a simpler corrosion model, the Robin coefficient quantifies the level of corro-
sion of some inaccessible part of the boundary [Liu (2009a)]. The model problem
was to recover the Robin coefficient by means of the current flux and potential
measurements on a partialy accessible boundary in a finite annulus.

The computerized tomography is by now a standard tool in medical diagonstics
and non-destructive testing of materials. Besides the well-established methods of
X-ray and MRI, the last three decades have witnessed an increasing interest in the
new imaging technique of EIT, due to its easy implementation and low cost. A
comprehensive review of EIT was given by Borcea (2002). In EIT, the electri-
cal conductivity distribution inside an object is determined from measurements of
currents and voltages on the surface of the object.

Calderón (1980) was the first to coin the phrase of an inverse boundary value prob-
lem for studying the EIT technique by mathematical modeling, since the conduc-
tivity appears as a variable coefficient of diffusion in an elliptic partial differential
equation. In fact it is an inverse problem of the Neumann to Dirichlet mapping
by knowing the voltage and current on the boundary. There have been numerous
papers in the mathematical and engineering literature addressing such diverse top-
ics as the identifiability and stability of solutions for conductivity, the design of
measurement devices, mathematical modeling of electrodes, and methods of nu-
merical reconstruction: to name a few, Adler and Guardo (1994), Borcea, Gray
and Zhang (2003), Brown and Uhlmann (1997), Francini (2000), Knowles (1998),
Kohn and McKenney (1990), Levy, Adam and Bresler (2002), Meeson, Killing-
back and Blott (1995), Murai and Kagawa (1985), Nachman (1988, 1996), Siltanen,
Mueller and Isaacson (2000), Stasiak, Sikora, Filipowicz and Nita (2007), Sylvester
and Uhlmann (1987), Wexler, Fry and Neuman (1985), Yorkey, Webster and Tomp-
kins (1987), Zlochiver, Rosenfeld and Abboud (2003), and Zadehkoochak, Hames
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and Blott (1990). In this paper we attempt to approach this difficult inverse problem
of numerical reconstruction of the conductivity function in the interior of a domain,
by reformulating the Lie-group shooting method in its more general versions.

More specifically, we consider a computational modeling of this problem, and give
an effective numerical algorithm to infer the conductivity function inside the body
by measuring an electrical field on the boundary. Given the Cauchy data on u(x,y)
and ∂u/∂n(x,y) at the point (x,y) ∈ R2 with an unit outward normal n(x,y) on the
boundary Γ of a simply connected domain Ω, we consider Calderón’s model inverse
problem [Calderón (1980, 2006)] of finding σ(x,y) from the following equations:

O · (σOu) = h, (x,y) ∈Ω, (1)

u(ρ,θ) = h1(θ), 0≤ θ ≤ 2π, (2)

un(ρ,θ) = h2(θ), 0≤ θ ≤ 2π, (3)

where h(x,y) is specified in Ω, h1(θ) and h2(θ) are the specified Cauchy data on the
boundary, O is the gradient operator, and σ(x,y) is to be determined. Specifically,
the presently considered Calderón inverse problem is defined as follows:
The presently solved inverse problem: Find the unknown function σ(x,y) in the
interior of a rectangular domain Ω := {(x,y) | 0 ≤ x ≤ `x, 0 ≤ y ≤ `y} under an
over-specified Cauchy set of data on the bottom of Ω, and the function σ(x,y) on
the left- and right-boundary of Ω are known, as shown in Fig. 1.

This paper is organized as follows. In Section 2 we describe a "finite-strip" method,

-

6

(0, 0)
x

`x

y

`y

σ(`x, y) given
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u(0, y) = u0(y)

Measured u(x, 0) = f0(x)
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Figure 1: A schematic diagram of the presently solved Calderón inverse problem of
identifying σ(x, y) inside a rectangle.

Figure 1: A schematic diagram of the presently solved Calderón inverse problem
of identifying σ(x,y) inside a rectangle.
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wherein a generic j-th strip of finite thickness in the y-direction, y j ≤ y ≤ y j+1, is
considered, and σ(x,y j) = σ j(x) [σ is a function of x alone] is assumed to be
approximately valid. Section 3 gives a semi-discretization method in the j-th strip
whereby the governing PDE in (x,y) is reduced to a system of ODEs in y alone. Sec-
tion 4 deals with the numerical solution of the ODEs derived in Section 3, through
developing a Lie-group formulation, including a group-preserving scheme for the
inverse Cauchy problem along each line (xi,y), a one-step Lie-group transforma-
tion, and a two-point Lie-group equation. The Lie-group method is described in
Section 5. In Section 6, we enhance the Lie-group shooting method to be a Lie-
group adaptive method, which is suitable for the estimation of an unknown param-
eter, without having a real target. In Section 6 the numerical procedures are also
described. The numerical verifications with four numerical examples are carried
out in Section 7. Finally, some significiant conclusions are drawn in Section 8.

2 The present finite strip method

In order to treat the Calderón inverse problem in a rectangular domain Ω := {(x,y) |
0 ≤ x ≤ `x, 0 ≤ y ≤ `y}, we divide the 2-D domain into m strips along the y-
direction, and σ(x,y) in the j-th strip is approximated by σ(x,y j) = σ j(x), which
is viewed as a function only of x. The domain Ω is now decomposed into m sub-
domains of Ω = ∪ j=m

j=1 Ω j with Ω j = {(x,y) | 0 ≤ x ≤ `x, y j ≤ y ≤ y j+1} where
y j = ( j−1)δy = ( j−1)`y/m, and we can simplify the above elliptic equation (1)
defined in a whole domain into that defined in each finite strip, and solve an inverse
Cauchy problem as well as a parameter identification problem in each strip, based
on the data calculated from the ( j−1)-th strip. In Fig. 2 we give a schematic plot
to show the above idea. Therefore, the solution of the original Calderón inverse
problem is obatined by piecing together all the solutions obtained in each strip.

Now, the equations in the j-th strip can be simplified to

σ
′(x)

∂u(x,y)
∂x

+σ(x)
[

∂ 2u(x,y)
∂x2 +

∂ 2u(x,y)
∂y2

]
= h(x,y), (x,y) ∈Ω j, (4)

u(x,y j) = f (x)
uy(x,y j) = g(x)

}
Cauchy data at the bottom of the j-th strip, (5)

u(0,y) = u0(y), (6)

u(`x,y) = u`x(y), (7)

where h(x,y), u0(y) and u`x(y) are all specified functions. Here, to simplify notation
we write σ(x) instead of σ j(x), and σ(x) > 0 is to be determined in each strip. The
term σ ′(y)∂u/∂y disappears from Eq. (4), because in a finite strip of small height
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Figure 2: A schematic diagram of the reduced Calderón’s inverse problem to identify
σ(x) in a finite-strip.
Figure 2: A schematic diagram of the reduced Calderón’s inverse problem to iden-
tify σ(x) in a finite-strip.

y j+1− y j, σ can be approximated by σ(x,y j), which is a function of x alone, and
hence, σ ′(y) = 0. In the above, f (x) and g(x) are obtained from the computation
performed in the ( j−1)-th strip. For the first strip, f (x) and g(x) are provided by
the Cauchy data, i.e., measurements carried out on the bottom of Ω. In the case
when σ(x) is given, the above problem is a typical inverse Cauchy problem in each
strip with the data on the upper side of the strip being unknown, but the data on the
bottom of the strip being over-specified by Eq. (5) [Cauchy data].

Thus, the Calderón inverse problem in a rectangular domain possesses three-fold si-
multaneous difficulties: ill-posedness of the inverse Cauchy problem, ill-posedness
of the parameter identification, and no information on the impedance function in-
side the domain being available.

The finite-strip method described here is somewhat similar to that used by Sylvester
(1992), and Somersalo, Cheney, Isaacson and Isaacson (1991) in other situations.



304 Copyright © 2010 Tech Science Press CMES, vol.64, no.3, pp.299-326, 2010

3 The numerical method of lines, to reduce the problem to a system of ODEs

Now, we treat the inverse Cauchy problem and the parameter identification problem
in the j-th strip by using the group-preserving scheme, and a Lie-group adaptive
method to solve the resulting system of ODEs. Liu (2006) has extended the group
preserving scheme (GPS) developed previously by Liu (2001) for ODEs, to solve
the boundary value problems (BVPs). In the construction of the Lie-group method
for the calculations of BVPs, Liu (2006) has introduced the idea of one-step GPS
by utilizing the closure property of the Lie group, and hence, the resulting shooting
method has been named the Lie-group shooting method (LGSM). The Lie-group
method possesses a great advantage over other numerical methods, due to its group
structure, and it is a powerful technique to solve the inverse problem of parameter
identification [Liu (2008a, 2008b)].

To simplify the notations, we use y0 and y f to denote y j and y j+1, respectively.
First, let v(x,y) = ∂u(x,y)/∂y, and then Eq. (4) can be rewritten as

∂u(x,y)
∂y

= v(x,y), (8)

∂v(x,y)
∂y

=
1

σ(x)

[
h(x,y)−σ

′(x)
∂u(x,y)

∂x
−σ(x)

∂ 2u(x,y)
∂x2

]
. (9)

-

6

yj

yj+1

u(x, yj) = f(x), uy(x, yj) = g(x)

xi xi+1

x

y

6

System of 2n ODEs in y in each strip

Figure 3: Lie-group shooting method to solve 2n coupled ODEs along these dotted
lines.

Figure 3: Lie-group shooting method to solve 2n coupled ODEs along these dotted
lines.

Second, we use a semi-discretization method1 of finite-differences to discretize the
quantities of u(x,y) and v(x,y) along the x-direction, and thus we can obtain a

1 While a finite-difference method is used in the x-direction, as an illustration in the present paper,
any number of alternate weak-solution methods may be employed in the x-direction in each strip.
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system of 2n-ODEs for u and v, with y as an independent variable [see Fig. 3]:

u′i(y) = vi(y), [at xi, i = 1, . . . ,n], (10)

v′i(y) =
1
σi

[
hi(y)−

1
(∆x)2 (σi+1[ui+1(y)−ui(y)]−σi[ui(y)−ui−1(y)])

]
,

[at xi, i = 1, . . . ,n], (11)

where the prime denotes the differential with respect to y, ∆x = `x/(n + 1) is a
uniform spatial grid length in the x-direction with n the number of interior grid
points in a strip, and xi = i∆x are the discretized coordinates of x, at which ui(y) =
u(xi,y), vi(y) = v(xi,y), hi(y) = h(xi,y), and σi = σ(xi).
When i = 1 in Eq. (11), the term u0(y) appearing there is determined by the bound-
ary condition in Eq. (6). Similarly, when i = n, the term un+1(y) = u`x(y) is deter-
mined by the boundary condition in Eq. (7). On the other hand, the term σn+1 is
supposed to be measurable at the right-boundary.

The two over-specified boundary conditions on the bottom of the j-th strip are given
by

ui(y j) = f (xi), i = 1, . . . ,n, (12)

vi(y j) = g(xi), i = 1, . . . ,n, (13)

which are obtained from Eq. (5) by the discretizations at the spatial points xi.
Eqs. (12) and (13) are available through measurements for the first strip, and af-
ter that the boundary conditions on the bottom of each other strip are obtained by
solving a combination of the inverse Cauchy problem and the parameter identifica-
tion problem from the previous strip.

Eqs. (10) and (11) constitute a system of 2n coupled ODEs involving the discrete
values of the unknown function σi [at xi, i = 1, . . . ,n in the j-th strip in the y-
direction]; see Fig. 3. We propose to solve these equations through a Lie-group
shooting method [Liu (2006)], which is adaptively modified further in the present
paper, as described in the following Sections 4-6.

4 A Lie-group formulation

In order to explore the present method of solving the Calderón problem, in a rea-
sonably self-contained fashion, we first briefly sketch the group-preserving scheme
(GPS) and the one-step GPS for a general system of ODEs, in this section.
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4.1 The group-preserving scheme

We write Eqs. (10) and (11) in a vector form:

z′ = f(y,z), (14)

where

z :=
[

u
v

]
, f =

[
f1
f2

]
:=
[

v
f2(y,u)

]
, (15)

in which u = (u1, . . . ,un)t and v = (v1, . . . ,vn)t with the superscript t for the trans-
pose. The components of f2 represent the right-hand side of Eq. (11).

When both the vector z and its magnitude ‖z‖ :=
√

ztz =
√

z · z are combined into
a single augmented vector

X =
[

z
‖z‖

]
, (16)

Liu (2001) has transformed Eq. (14) into an augmented system:

X′ = AX :=

[
02n×2n

f(y,z)
‖z‖

ft(y,z)
‖z‖ 0

]
X, (17)

where A is an element of the Lie algebra so(2n,1) satisfying

Atg+gA = 0, (18)

and

g =
[

I2n 02n×1
01×2n −1

]
(19)

is a Minkowski metric. Here, I2n is the identity matrix.

The augmented variable X can be viewed as a point in the Minkowski space M2n+1,
satisfying the cone condition:

XtgX = z · z−‖z‖2 = 0. (20)

Accordingly, Liu (2001) has developed a group preserving scheme (GPS) to guar-
antee that each Xk automatically locates on the cone:

Xk+1 = G(k)Xk, (21)



An Iterative and Adaptive Lie-Group Method 307

where Xk denotes the numerical value of X at the discrete point yk, and G(k) ∈
SOo(2n,1) satisfies

GtgG = g, (22)

det G = 1, (23)

G0
0 > 0, (24)

where G0
0 is the 00-th component of G.

4.2 One-step Lie-group transformation

Throughout this paper we use the superscripted symbol z0 to denote the value of z
at y = y0, and z f the value of z at y = y f .

Applying scheme (21) to Eq. (17) with the condition X(y0) = X0 we can compute
X(y) by the GPS. Assuming that the stepsize used in the GPS is ∆y = (y f −y0)/K,
and starting from an augmented condition X0 = ((z0)t,‖z0‖)t 6= 0 we will calculate
the value of X f = ((z f )t,‖z f ‖)t at a final y = y f .

By applying Eq. (21) to Eq. (17) step-by-step we can obtain

X f = GK · · ·G1X0. (25)

Because each Gi, i = 1, . . . ,K, is an element of the Lie group SOo(2n,1), and by
the closure property of the Lie group, GK · · ·G1 is also a Lie-group element denoted
by G. Hence, from Eq. (25) it follows that

X f = GX0, (26)

which is a one-step Lie-group transformation from X0 to X f [Liu (2009b); Liu
(2010a)].

The above property is crucial for our development of the Lie-group method. It
should be stressed that the one-step Lie-group transformation property is usually
not shared by other numerical methods, because those methods do not belong to
the Lie-group schemes.

The remaining problem is how to calculate G. While an exact solution of G is
not available, we can calculate G through the numerical algorithm of a generalized
mid-point rule, which is obtained from an exponential mapping of A by taking the
values of the argument variables of A at a generalized mid-point. The Lie-group
element generated from such an A ∈ so(2n,1) by an exponential mapping is

G(r) =

 I2n + a−1
‖f̂‖2 f̂f̂t bf̂

‖f̂‖

bf̂t
‖f̂‖ a

 , (27)
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where

ẑ = rz0 +(1− r)z f , (28)

f̂ = f(ŷ, ẑ), (29)

a = cosh

(
(y f − y0)‖f̂‖
‖ẑ‖

)
, b = sinh

(
(y f − y0)‖f̂‖
‖ẑ‖

)
. (30)

Here, we have derived a single-parameter Lie-group element G(r) in terms of
r ∈ [0,1], and ŷ = ry0 +(1− r)y f .

4.3 A two-point Lie-group equation

Upon defining

F :=
f̂
‖ẑ‖ , (31)

Eqs. (27) and (30) can be expressed as

G =

 I2n + a−1
‖F‖2 FFt bF

‖F‖

bFt
‖F‖ a

 , (32)

a = cosh[(y f − y0)‖F‖], b = sinh[(y f − y0)‖F‖]. (33)

From Eqs. (16), (26) and (32) it follows that

z f = z0 +ηF, (34)

‖z f ‖= a‖z0‖+b
F · z0

‖F‖ , (35)

where

η :=
(a−1)F · z0 +b‖z0‖‖F‖

‖F‖2 . (36)

Eq. (34) is written as

F =
1
η

(z f − z0). (37)

Substituting F into Eq. (35), and dividing both the sides by ‖z0‖, we can obtain

‖z f ‖
‖z0‖ = a+b

(z f − z0) · z0

‖z f − z0‖‖z0‖ , (38)
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where, after inserting Eq. (37) for F into Eq. (33), a and b are written as

a = cosh
(

(y f − y0)‖z f − z0‖
η

)
, b = sinh

(
(y f − y0)‖z f − z0‖

η

)
. (39)

Let

cosθ :=
(z f − z0) · z0

‖z f − z0‖‖z0‖ , (40)

S := (y f − y0)‖z f − z0‖, (41)

and from Eqs. (38) and (39) it follows that

‖z f ‖
‖z0‖ = cosh

(
S
η

)
+ cosθ sinh

(
S
η

)
. (42)

Upon defining

Z := exp
(

S
η

)
, (43)

we can derive [Liu (2008b, 2010a, 2010b)]

Z =
(cosθ −1)‖z0‖

cosθ‖z0‖+‖z f − z0‖−‖z f ‖ . (44)

From Eqs. (43) and (41) it follows that

η =
(y f − y0)‖z f − z0‖

lnZ
. (45)

Therefore, we arrive to an important result that between any two points (z0,‖z0‖)
and (z f ,‖z f ‖) on the cone, there exists a Lie-group element G ∈ SOo(2n,1) map-
ping (z0,‖z0‖) onto (z f ,‖z f ‖), which is given by[

z f

‖z f ‖

]
= G(y0,y f )

[
z0

‖z0‖

]
. (46)

G(y0,y f ) is uniquely determined by z0 and z f through the following equations:

G(y0,y f ) =

 I2n + a−1
‖F‖2 FFt bF

‖F‖

bFt
‖F‖ a

 , (47)

a = cosh[(y f − y0)‖F‖], b = sinh[(y f − y0)‖F‖], (48)

F =
1
η

(z f − z0) =
lnZ

y f − y0

z f − z0

‖z f − z0‖ . (49)
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We should emphasize that the above G(y0,y f ) is different from the G(r) in Eq. (27).
In order to feature its property as being a Lie-group mapping between the quantities
spanned a whole interval of [y0,y f ] we write it to be G(y0,y f ), which is independent
on f and r. Conversely, G(r) is a function of r and f. However, these two Lie-group
elements G(r) and G(y0,y f ) are necessary in our development of the Lie-group
method, which is coined as the following two-point Lie-group equation:

z f = z0 +
η

‖ẑ‖ f̂. (50)

By Eq. (45) a more symmetric form can be obtained:

z f − z0

‖z f − z0‖ =
y f − y0

lnZ
f̂
‖ẑ‖ . (51)

In the next section for the inverse problem of recovering an unknown coefficient,
we employ the above equation to derive a system of non-linear algebriac equations
to solve for σ(x).

5 The Lie-group method

From Eqs. (10)-(13) it follows that

u′ = v, (52)

v′ = f2(y,u), (53)

u(y0) = u0, u(y f ) = u f , (54)

v(y0) = v0, v(y f ) = v f , (55)

where u0 and v0 are specified as in Eqs. (12) and (13).

By using Eq. (15) for z we have

z0 =
[

u0

v0

]
, z f =

[
u f

v f

]
, (56)

and by Eq. (50) we can derive

u f = u0 +
η

‖ẑ‖ v̂, (57)

v f = v0 +
η

‖ẑ‖ f̂2, (58)
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where

‖ẑ‖=
√
‖û‖2 +‖v̂‖2

=
√
‖ru0 +(1− r)u f ‖2 +‖rv0 +(1− r)v f ‖2, (59)

f̂2 =



ĥ1
σ1
− 1

σ1(∆x)2 [σ2(û2− û1)−σ1(û1− û0)]

ĥ2
σ2
− 1

σ2(∆x)2 [σ3(û3− û2)−σ2(û2− û1)]

...

ĥn−1
σn−1
− 1

σn−1(∆x)2 [σn(ûn− ûn−1)−σn−1(ûn−1− ûn−2)]

ĥn
σn
− 1

σn(∆x)2 [σn+1(ûn+1− ûn)−σn(ûn− ûn−1)]


, (60)

where ûi = ru0
i +(1− r)u f

i , ĥi = hi(ŷ), and û0 = u0(ŷ) and ûn+1 = u`x(ŷ).
From Eqs. (58) and (60) we can derive a formula to calculate σi:

σi =
1

ûi−ûi−1
(∆x)2 − ‖ẑ‖η

(v f
i − v0

i )

[
ûi+1− ûi

(∆x)2 σi+1− ĥi

]
. (61)

Eq. (61) can be used sequentially to find σi, i = n, . . . ,1, if we know σn+1 a priori.
Here, σn+1 is the right-boundary value of σ in the j-th strip, which is supposed to
be measurable. Because η is a nonlinear function of u f

i and v f
i , Eq. (61) provides

us a mathematical tool to calculate σi.

6 An iterative Lie-group method to compute σ(x) in the Calderón inverse
problem

Now, the numerical procedures for estimating σi are described as follows. First,
we assume a "guess" value for σi, for example, a linear variation σi = σ(0) +
xi/`x[σ(`x)−σ(0)]. Here, σ(0) and σ(`x) are the given boundary values of σ in
the j-th strip. Substituting σi into Eqs. (10) and (11) we can apply the GPS to
integrate them from y = y0 to y = y f . Then, we can obtain u f

i and v f
i , and inserting

them into Eq. (61) we can calculate a new σi, which is then compared with the
old σi. If the difference of these two sets of σi is smaller than a given criterion,
then we stop the iteration, and the final σi is obtained. The numerical processes are
summarized as follows:
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Step 1: Give an initial "guess" value for σi.
Step 2: For k = 1,2 . . . we repeat the following calculations. Calculate u f

i and v f
i

by using the GPS to integrate Eqs. (10) and (11) from y = y0 to y = y f .
Step 3: Insert the above calculated u f

i and v f
i , denoted respectively by u f

i (k) and
v f

i (k), together with u0
i and v0

i given by Eqs. (12) and (13) into

σi(k) =
1

ûi(k)−ûi−1(k)
(∆x)2 − ‖ẑ(k)‖

η(k) [v f
i (k)− v0

i ]

[
ûi+1(k)− ûi(k)

(∆x)2 σi+1(k)− ĥi

]
, (62)

where η(k) and ‖ẑ(k)‖ are calculated from Eqs. (45) and (59) by inserting u f
i (k),

v f
i (k), u0

i and v0
i . If σi(k) converges according to a given convergence criterion:

Ck =:

√
n

∑
i=1

[σi(k +1)−σi(k)]2 < ε, (63)

then stop; otherwise, go to Step 2. Ck measures the convergence speed.

Basically, in the present method we have derived Eq. (62) by supposing a fictitious
target u f

i (k) and v f
i (k) at y f . We can repeatedly use the y-direction GPS integrator

on Eqs. (10) and (11), to obtain the new final data, which are not obtained through
the measurements, and then we can adjust σi by Eq. (62). Because we have used
the iteration process as a combination of the GPS and the two-point Lie-group
equation with a fictitious target, the present algorithm is quite different from other
algorithms. In order to differentiate the present method from the earlier ones, we
may call it an iterative and adaptive Lie-group method, wherein the adaptations are
performed by the governing equations themselves.

Although there is a number of numerical algorithms to treat the inverse Cauchy
problem, we found that the GPS presented in Section 4.1 is the simplest one, which
is a stable scheme for the inverse Cauchy problem in a small strip.

In summary, the methodology used in this paper is the use of a simple and stable
GPS method to treat the inverse Cauchy problem, and then using the iterative Lie-
group method to find σi in each strip. These procedures are repeated in the whole
domain by solving the above problems strip-by-strip. The philosophy of the solu-
tion methodology of the iterative and adaptive Lie-group method is that the local
differential equation (11) and the global algebraic equation (61) must self-adapt
to a situation that they are compatible, such that σi can be computed from them
through a self-adaptive process.
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7 Numerical verifications

From the above discussions one can appreciate that the present method, which rep-
resents a combination of the finite strip method, the GPS and the iterative and adap-
tive Lie-group method, quite simple and straightforward, is easy to implement nu-
merically and the computational cost is very low. In order to assess the performance
of the present method, we test the following numerical examples of Calderón in-
verse problems.

7.1 Example 1

This numerical example is a simplified one of identifying a function of σ(x) in a
finite strip, which is designed to validate and test the presently proposed method
for the inverse Cauchy problem and the parameter identification problem. We first
consider the model problem when u(x,y), σ(x), and h(x,y) are taken to be

u(x,y) = (x−3)2e−y, (64)

σ(x) = (x−3)2, (65)

h(x,y) = 6(x−3)2e−y +(x−3)4e−y. (66)

From Eq. (64), we can derive the following boundary conditions:

u(0,y) = 9e−y, u(1,y) = 4e−y, (67)

and the over-specified Cauchy boundary conditions on the bottom of the strip:

u(x,0) = (x−3)2, uy(x,0) =−(x−3)2. (68)

We use the boundary conditions (67) and (68) and h(x,y) in Eq. (66) to solve the
Calderón’s inverse problem of finding σ(x), and compare it to the presumed exact
solution σ(x) = (x−3)2.

We first directly apply the GPS to integrate Eqs. (10) and (11), taking σ(x) to be
as given in Eq. (65). We use the GPS to compute the data on the upper side of
the strip with a depth y f = 0.05, given the boundary data as in Eqs. (67) and (68).
In Figs. 4(a) and 4(b) we show the numerical errors by comparing the numerically
computed results for u at the top of the strip, with the exact solutions for u as
derived from Eq. (64) by inserting y = 0.05. In this calculation by the GPS, we
use ∆x = 1/40, and ∆y = 0.05/100, where ∆y is a stepsize used in the integration
of Eqs. (10) and (11) by the GPS. It can be seen that the numerical error of the
Dirichlet data at the top of the strip is quite small, in the order of 10−5, while the
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Figure 4: For example 1 of the inverse Cauchy problem, the numerical errors obtained 
by the GPS are shown for (a) the Cauchy data, and (b) the Neumann data. 
 
 

Figure 4: For example 1 of the inverse Cauchy problem, the numerical errors ob-
tained by the GPS are shown for (a) the Dirichlet data, and (b) the Neumann data.

numerical error of the Neumann data at the top of the strip is small in the order of
10−3.

Now, we use the above example again to identify the parameter σ(x) in a small
strip with y f = 0.03, given h(x,y) as in Eq. (66) and the boundary-data on the strip
as in Eqs. (67) and (68). We apply the iterative and adaptive Lie-group method
of this paper to this problem, where we fix r = 0 in Eq. (62), ∆x = 1/30, and
∆y = 0.03/100. Under an exit criterion with ε = 10−3, the process is convergent
within 212 iterations. In Fig. 5(a) we show the rate of convergence, and in Fig. 5(b)
we compare the numerically recovered σi with the postulated exact one of Eq. (65).
The numerically recovered σi is almost coincident with the exact one.
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Figure 5: For example 1: (a) the rate of convergence, and (b) numerical and exact 
solutions are shown. 
 

Figure 5: For example 1: (a) the rate of convergence, and (b) numerical and exact
solutions are shown.

7.2 Example 2

We now consider the problem of recovering the conductivity function σ(x,y) in
the entire domain. We consider the case when the exact solution u(x,y) [0 ≤ x ≤
`x, 0≤ y≤ `y] and when σ(x,y) are taken to be

u(x,y) = (x−3)2e−y, (69)

σ(x,y) = (x−3)2 + y2, (x,y) ∈ (0,1)× (0,1). (70)

Hence, we have

h(x,y) = (6−2y)(x−3)2e−y +(x−3)4e−y. (71)
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The conditions on the boundary of Ω, corresponding to the ones schematically
shown in Fig. 1 are taken from Eqs. (67) and (68).

We apply the numerical method of iterative and adaptive Lie-group method in Sec-
tion 6, solve for u(x,y) and σ(x,y), given h(x,y) as in Eq, (71), and the boundary
conditions are as in Eqs. (67) and (68), and σ(0,y) = 9 + y2 and σ(1,y) = 4 + y2.
The domain is divided into 40 strips with each strip having a depth δy = 0.025.
The convergence criterion ε is fixed to be ε = 10−4. In addition we take ∆x = 1/40
and ∆y = 0.025/20, where ∆y is the stepsize used in the integration by the GPS.
In Fig. 6 we compare the exact and numerically recovered conductivity functions,
which can be seen to be close. We show the relative errors of the recovery of
the above σ(x,y) in Fig. 7. The relative error is defined as the absolute value of
the difference between numerical solution and exact solution, divided by the value
of exact solution. The results are accurate with the maximal relative error being
smaller than 0.2. It can be seen that the accuracy for the recovery of σ(x,y) is ac-
ceptable for the most of the domain (x,y) in the plane of 0 ≤ x,y ≤ 1, except very
near the corner (x,y) = (1,1).

7.3 Example 3

In this example we consider a hypothetical exact solution

u(x,y) = exp(2x+2y), (72)

σ(x,y) = exp(−x−3y), (x,y) ∈ (0,1)× (0,2), (73)

which leads to h(x,y) = 0.

We now consider the inverse Calderón problem of finding u(x,y) and σ(x,y), given
only the boundary conditions on u and σ as shown in Fig. 1, and derived from
Eqs. (72) and (73). We apply the iterative and adaptive Lie-group method to this
example. The domain is divided into 40 strips with each strip having a depth
δy = 0.05. We let the convergence criterion ε be quite large, such that there is
only one iteration in Step 3. We take ∆x = 1/100 and ∆y = 0.05/50, where ∆y
is the stepsize used in the integration of Eqs. (10) and (11) by the GPS. The exact
and numerically recovered conductivity functions are compared in Fig. 8, and can
be seen to be rather close to each other. We show the errors of the recovery of the
above σ(x,y) in Fig. 9. In Fig. 9(a) the absolute errors are projected onto the plane
along the y-axis, while in Fig. 9(b) the abolute errors are projected onto the plane
along the x-axis. The results are rather accurate with the maximal absolute error
being smaller than 7.8× 10−2. Starting from the 15-th strip on, the absolute error
is smaller than 0.01 and gradually tends to 2.24×10−4.
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Figure 6: For example 2: (a) exact conductivity function , and (b) numerically 
recovered conductivity function are compared. 
 
 
 

Figure 6: For example 2: (a) exact conductivity function, and (b) numerically re-
covered conductivity function are compared.



318 Copyright © 2010 Tech Science Press CMES, vol.64, no.3, pp.299-326, 2010

 
 
 
 
 

 
 
Figure 7: For example 2, the relative errors over the plane of (x,y) are shown. 
 
 
 
 
 
 
 
 

Figure 7: For example 2, the relative errors over the plane of (x,y) are shown.

7.4 Example 4

Next, we test a more difficult problem, with the hypothetical exact solution for
u(x,y) as in Eq. (72), and a hypothetical σ(x,y) assumed as

σ(x,y) = 10+exp
[
−(x−0.5)2

0.05

]
exp
[
−(y−0.5)2

0.05

]
, (x,y)∈ (0,1)×(0,1). (74)

Hence, h(x,y) can be calculated as:

h(x,y) =
∂σ(x,y)

∂x
∂u(x,y)

∂x
+

∂σ(x,y)
∂y

∂u(x,y)
∂y

+σ(x,y)
[

∂ 2u(x,y)
∂x2 +

∂ 2u(x,y)
∂y2

]
.

(75)

The explicit expression for the right-hand side of Eq. (75) is quite lengthy, and
we do not write it here. Over the plane (x,y), the profile of σ(x,y) described by
Eq. (74) is a steep hump concentrated at the point (x,y) = (0.5,0.5) with a base
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Figure 8: For example 3: (a) exact conductivity function , and (b) numerically 
recovered conductivity function are compared. 

Figure 8: For example 3: (a) exact conductivity function, and (b) numerically re-
covered conductivity function are compared
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Figure 9: For example 3: (a) the absolute errors by a projection along y-axis, and (b)  
the absolute errors by a projection along x-axis are shown. 
 

Figure 9: For example 3: (a) the absolute errors by a projection along y-axis, and
(b) the absolute errors by a projection along x-axis are shown

value of σ = 10. Outside the hump, the values of σ are decaying fast to the base
value σ = 10.

We then consider the inverse problem of finding σ(x,y) along with u(x,y) for the
problem in a unit square [0 ≤ x,y ≤ 1], when h(x,y) is given as in Eq. (75) and
the boundary conditions on σ and u, corresponding to Fig. 1, are derived from
Eqs. (74) and (72), respectively. The domain is divided into 50 strips with each
strip having a depth δy = 0.02. We let the convergence criterion ε to be quite large,
such that there is only one iteration in Step 3. In addition we take ∆x = 1/50 and
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Figure 10: For example 4: (a) exact conductivity function , and (b) numerically 
recovered conductivity function are compared. 
 

Figure 10: For example 4: (a) exact conductivity function, and (b) numerically
recovered conductivity function are compared.
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Figure 11: For example 4: (a) the relative errors by a projection along y-axis, and (b)  
the relative errors by a projection along x-axis are shown. Figure 11: For example 4: (a) the relative errors by a projection along y-axis, and

(b) the relative errors by a projection along x-axis are shown.

∆y = 0.02/20, where ∆y is the stepsize used in the integration of the GPS. The ex-
act and numerically recovered conductivity functions are coincident very good as
shown in Fig. 10. We show the errors of the recovery of the above σ(x,y) in Fig. 11.
In Fig. 11(a) the relative errors are projected onto the plane along the y-axis, while
in Fig. 11(b) the relative errors are projected onto the plane along the x-axis. The
results are quite accurate with the maximal relative error being smaller than 0.006.
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8 Conclusions

A finite-strip technique was employed here to transform the inverse Calderón prob-
lem in a rectangle, into many inverse Cauchy problems and parameter identification
problems within the small strips lying along the x-direction, and of a small finite
height in the y-direction. The group-preserving scheme and an iterative and adap-
tive Lie-group method were then developed for solving the inverse Cauchy prob-
lem and the inverse estimation of spatially-dependent conductivity function, in each
two-dimensional strip. Specially, we have considered the inverse Calderón prob-
lem with over-specified boundary data on the bottom of a rectangle only. Eq. (61)
is a critical equation, which plays an important role to adjust the parameter σ(xi)
in a strip, through iterations. The unknown conductivity function can be solved
explicitly in a closed-form sequential formula, which can generate the correct con-
ductivity coefficients. The advantages of the present method are that no a priori
information about the functional form of conductivity function is necessary, and
no extra measurement of data inside the domain is required. Indeed, we have suc-
cessfully solved a quite difficult problem of the Calderón type, as a combination
of the inverse Cauchy problem and the parameter identification problem of σ(x,y)
defined in each finite strip, without being given the data inside the domain. The
accuracy and efficiency of the present algorithm are confirmed by comparing the
estimated results with exact solutions in diverse situations. The methods presented
in the present paper appear quite promising to solve the inverse Calderón problem
in domains of arbitrary shape, which are of significiant importance in engineering.
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