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The MLPG for Bending of Electroelastic Plates

J. Sladek1, V. Sladek1, P. Stanak1 and E. Pan2

Abstract: The plate equations are obtained by means of an appropriate ex-
pansion of the mechanical displacement and electric potential in powers of the
thickness coordinate in the variational equation of electroelasticity and integration
through the thickness. The appropriate assumptions are made to derive the un-
coupled equations for the extensional and flexural motion. The present approach
reduces the original 3-D plate problem to a 2-D problem, with all the unknown
quantities being localized in the mid-plane of the plate. A meshless local Petrov-
Galerkin (MLPG) method is then applied to solve the problem. Nodal points are
randomly spread in the mid-plane of the plate and each node is surrounded by a
circular subdomain. The weak forms for the governing equations on subdomains
with appropriate test functions are applied to derive local integral equations. The
meshless approximation based on the moving least-squares (MLS) method is em-
ployed for the implementation. After performing the spatial MLS approximation, a
system of ordinary differential equations for the nodal unknowns is obtained. The
corresponding system of ordinary differential equations of the second order result-
ing from the equations of motion is solved by the Houbolt finite-difference scheme
as a time-stepping method.

Keywords: Local integral equations, Kirchhoff theory, MLS approximation, Houbolt
method, piezoelectric material, orthotropic properties

1 Introduction

Piezoelectric materials are considered as smart materials since they have a capa-
bility of converting the energy from one type to other between electric, and me-
chanical (Berlingcourt et al. 1964; Landau et al. 1984). Such materials com-
bine superior mechanical properties of composite materials, as well as incorporate
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inherent capability to sense and adapt their static and dynamic response. Many
piezoelectric components have plate-like shapes. Some of these components like
resonators and filters are used for the purpose of frequency control. Several ver-
sions of linear piezoelectric plate theories for these applications were derived by
Tiersten and Mindlin (1962), Mindlin (1972), Lee et al. (1987) and Batra & Vi-
doli (2002). The literature on higher-order theories of piezoelectric plates has been
summarized in a review article by Wang and Yang (2000). There have been many
theories and models proposed for analysis of laminated composite plates contain-
ing active and passive piezoelectric layers (Lammering 1991; Lee and Moon 1990;
Lee 1990; Tzou and Tseng 1990; Saravanos et al. 1997). Analytical solutions of
piezoelectric plates are available only for simple boundary conditions due to the
high mathematical complexity. Vel and Batra (2000) presented an analytical solu-
tion for multilayered piezoelectric plates in terms of the double Fourier series to
handle more general boundary conditions at the edges.

Advanced numerical methods are required since the electric and mechanical fields
are coupled. Besides the well established finite element method (FEM), the bound-
ary element method (BEM) provides an efficient and popular alternative to the
FEM. The conventional BEM is accurate and efficient for many engineering prob-
lems. However, it requires the availability of the fundamental solutions or Green’s
functions to the governing partial differential equations (PDE). The material anisotropy
increases the number of elastic constants in Hooke’s law, and hence makes the
construction of the fundamental solutions cumbersome. The BEM up to date has
not been applied to a piezoelectric plate bending problem. There is no particu-
lar difficulty in applying FEM to piezoelectric plates except, that the material is
highly anisotropic and electromechanical coupling needs to be considered (Lerch
1990;Yong and Stewart 1991). However, the FEM has some drawbacks. The elim-
ination of shear locking in thin walled structures by FEM is difficult and the devel-
oped techniques are less accurate. In the conventional discretization methods there
is a discontinuity of secondary fields (gradients of primary fields) on the interface of
elements. Meshless methods for solving PDE in physics and engineering sciences
are a powerful new alternative to the traditional mesh-based techniques. Focusing
only on nodes or points instead of elements used in the conventional FEM or BEM,
meshless approaches have certain advantages. The moving least squares (MLS) ap-
proximation is generally considered as one of many schemes to interpolate discrete
data with a reasonable accuracy. The smoothness of the shape functions is deter-
mined by that of the basis functions and of the weight functions. Since the order of
the continuity of shape functions, being given by the minimum of the orders of con-
tinuity of the basis and weight functions, can be easily tuned. Although the MLS
approximations showed in many applications excellent convergence of numerical
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results, it has not been applied to piezoelectric plate problems up to date.

One of the most rapidly developed meshfree methods is the meshless local Petrov-
Galerkin (MLPG) method. The MLPG method has attracted much attention during
the past decade [Atluri and Zhu, 1998; Atluri at al. 2000; Atluri, 2004; Han et al.,
2005; Mikhailov, 2002; Sellountos et al., 2005; Liu et al., 2006; Vavourakis and
Polyzos, 2007] for many problems of continuum mechanics. A variety of meshless
methods has been proposed so far with some of them being applied to piezoelectric
and magnetoelectroelastic problems (Liu et al. 2002; Ohs and Aluru 2001; Sladek
et al. 2006a, 2007a, 2008). The MLPG method with a Heaviside step function
as the test functions [Atluri et al. (2003); Sladek et al., (2004)] was been applied
to solve two-dimensional (2-D) homogeneous and continuously nonhomogeneous
piezoelectric solids [Sladek et al., (2007b)]. The MLPG has been successfully ap-
plied also to plate problems. Long and Atluri (2002) applied the meshless local
Petrov Galerkin method to solve the bending problem of a thin plate. Later, the
MLPG method has been applied to Reissner-Mindlin plates and shells under dy-
namic load by Sladek et al. (2006b, 2007c). Soric et al. (2004) have performed a
three-dimensional (3-D) analysis of thick plates, where a plate is divided by small
cylindrical subdomains for which the MLPG is applied. Qian et al. (2004) extended
the MLPG for 3-D deformations in thermoelastic bending of functionally graded
isotropic plates.

In this paper, we will present for the first time a meshless method based on the lo-
cal Petrov-Galerkin weak-form to solve dynamic problems for piezoelectric plates.
The plate equations (Tiersten 1969, Yang 1999) are obtained by means of an appro-
priate expansion of the mechanical displacement and electric potential in powers of
the thickness coordinate in the variational equation of electroelasticity and inte-
gration through the thickness. The power expansion contains terms up to cubic
in the electric field and linear in the mechanical variables. Since only the lowest
frequency approximations are considered, the appropriate assumptions are made
and the uncoupled equations of the extensional and flexural motion are obtained
(Yang 1999). The present approach reduces the original 3-D plate problem to a
2-D problem. All unknown quantities are localized in the mid-plane of the plate.
The weak-forms for the governing partial differential equations on small subdo-
mains with appropriate test functions are applied to derive local integral equations.
Applying the Gauss divergence theorem to the weak-forms, the order of derivatives
in governing equations is decreased. The spatial variations of the displacements
and electric potential are approximated by the moving least-squares scheme (MLS)
(Atluri 2004). After performing the spatial MLS approximation, a system of or-
dinary differential equations for certain nodal unknowns is obtained. Then, the
system of the ordinary differential equations of the second order resulting from the
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equations of motion is solved by the Houbolt finite-difference scheme (Houbolt
1950) as a time-stepping method.

2 Basic equations

Consider an anisotropic piezoelectric plate of constant thickness 2h, with the mean
surface occupying the domain Ω in the plane (x1, x2). The constitutive relations
represent the coupling of the mechanical and the electrical fields. The constitutive
equations for the stress σi j and electric displacement Di can be written as [Parton
and Kudryavtsev (1988)]

σi j(x,x3) = ci jkl(x,x3)εkl(x,x3)− eki j(x,x3)Ek(x,x3), (1)

D j(x,x3) = e jkl(x,x3)εkl(x,x3)+ k jk(x,x3)Ek(x,x3), (2)

whereci jkl(x,x3) , e jkl(x,x3)and k jk(x,x3)are the elastic, piezoelectric and dielec-
tric material tensors in a continuously nonhomogeneous piezoelectric medium, re-
spectively, and the in-plane vector x is represented by the Cartesian components
xα , (α = 1, 2), while latin indices take values 1,2,3. The strain tensor εi j and the
electric field vector E j are related to the displacements ui and the electric potential
ψ by

εi j =
1
2

(ui, j +u j,i) , (3)

E j =−ψ, j . (4)

Polarized ceramics are transversely isotropic. For ceramics poled in the x3 direc-
tion, the constitutive equations (1) and (2) are expressed by



σ11
σ22
σ33
σ23
σ13
σ12

=



c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c66





ε11
ε22
ε33
2ε23
2ε13
2ε12

−


0 0 e31
0 0 e31
0 0 e33
0 e15 0

e15 0 0
0 0 0


E1

E2
E3



= [C] [ε]− [e] [E] , (5)
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D1
D2
D3

=

 0 0 0 0 e15 0
0 0 0 e15 0 0

e31 e31 e33 0 0 0




ε11
ε22
ε33
2ε23
2ε13
2ε12

+

k11 0 0
0 k22 0
0 0 k33

E1
E2
E3



= [G] [ε]+ [k] [E] . (6)

The governing equations for piezoelectric solids are given by the equations of mo-
tion for the mechanical displacements and by the first Maxwell equation for the
vector of electric displacements [Parton and Kudryavtsev (1988)]

σi j, j +Xi = ρ üi, D j, j−R = 0, (7)

where üi , Xi , R and ρ denote the acceleration, body force vector, volume density
of free charges and mass density, respectively. Further, we assume vanishing body
forces and volume density of free charges.

Following the well known approach [Reddy (2004), Batra and Vidoli (2002)] for
plate and shell structures, the primary fields are represented as products of in-plane
quantities varying in (x1,x2, t) and polynomial terms varying x3 direction. This as-
sumption reduces original 3-D problem to 2-D one with more unknown quantities.
The idea is leading to the derivation of 2-D governing equations for the mid-plane
of the plate. For this purpose, we shall consider the governing equations in the
variational form with integrating through the plate thickness

h∫
−h

(σik,i−ρ ük)δukdx3 = 0,

h∫
−h

D j, jδψdx3 = 0. (8)

in which we shall assume polynomial expansions for the dependence of uk and ψ

on x3. Since only the lowest frequency approximations are of interest here, the
extensional and flexural deformations are uncoupled for thin plates. Then, one can
use truncated series [Yang (1999)]

uk(x,x3, t) = u(0)
k (x, t)+ x3u(1)

k (x, t)+ x2
3u(2)

k (x, t), (9a)

ψ(x,x3, t) = ψ
(0)(x, t)+

x3

2h
ψ

(1)(x, t)+
(

x2
3

h2 −1
)

ψ
(2)(x, t)

+
x3

h

(
x2

3
h2 −1

)
ψ

(3)(x, t). (9b)
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Since in an electroded region of the plate, the potential difference, or voltage, across
the electrode is independent of position in the plate, the electric potentials ψ(0)

and ψ(1) must be independent of the coordinates xα (α = 1, 2). However, in an
unelectroded region ψ(0) and ψ(1) are in general, functions of xα . That is why a
special rearrangement is employed in the expansion series (9b).

In view of eqs. (9), the governing equations (8) become

2

∑
n=0

δu(n)
k (x, t)

h∫
−h

(
xn

3σαk,α(x,x3, t)+ xn
3σ3k,3(x,x3, t)−ρ

2

∑
m=0

xn+m
3 ü(m)

k (x, t)

)
dx3

= 0 (10a)

3

∑
n=0

δψ
(n)(x, t)

h∫
−h

(
X (n)(x3)Dα,α(x,x3, t)+X (n)(x3)D3,3(x,x3, t)

)
dx3 = 0, (10b)

where the notations for the functions X (n)(x3) are polynomial factors in (9b) and
depending on x3. Bearing in mind the definitions

σ
(n)
ik :=

h∫
−h

xn
3σikdx3, F(n)

k := [xn
3σ3k]

h
−h , Hmn :=

h∫
−h

xn+m
3 dx3 =

xn+m+1
3

n+m+1

∣∣∣∣∣
h

−h

,

D(n)
k :=

h∫
−h

xn
3Dkdx3, d(n)

3 :=
1
2h

[xn
3D3]

h
−h ,

one can rewrite eqs. (10) as

2

∑
n=0

δu(n)
k

[
σ

(n)
αk,α −nσ

(n−1)
3k +F(n)

k −ρ

2

∑
m=0

Hmnü(m)
k

]
= 0

δψ
(0)
[
D(0)

α,α +2hd(0)
3

]
+δψ

(1)
[

1
2h

D(1)
α,α −

1
2h

D(0)
3 +d(1)

3

]
+

+δψ
(2)
[

1
h2 D(2)

α,α −
2
h2 D(1)

3 +
2
h

d(2)
3 −

(
D(0)

α,α +2hd(0)
3

)]
+

+δψ
(3)
[

1
h3 D(3)

α,α −
3
h3 D(3)

3 +
2
h2 d(3)

3 −
(

1
h

D(1)
α,α −

1
h

D(0)
3 +2d(1)

3

)]
= 0,
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hence one can get nine equations of motion and four two-dimensional electric
charge equations

σ
(n)
αk,α −nσ

(n−1)
3k +F(n)

k = ρ

2

∑
m=0

Hmnü(m)
k , n = 0,1,2, (11)

D(0)
α,α +2hd(0)

3 = 0,

1
2h

D(1)
α,α −

1
2h

D(0)
3 +d(1)

3 = 0,

1
h2 D(2)

α,α −D(0)
α,α −

2
h2 D(1)

3 = 0,

1
h3 D(3)

α,α −
1
h

D(1)
α,α −

3
h3 D(2)

3 +
1
h

D(0)
3 = 0, (12)

where we have utilized the relationships

d(2)
3 =−h

2
D(0)

a,a, d(3)
3 =

h
2

D(0)
3 −

h
2

D(1)
α,α

resulting from the definition of d(n)
3 and the first two equations in (12). Recall that

H00 = 2h, H01 = H10 = 0, H11 =
2
3

h3, H02 = H20 =
2
3

h3,

H12 = H21 = 0, H22 =
2
5

h5.

Substituting eq. (9a) into the strain-displacement relation (3) and rearranging terms,
one can write

εi j =
2

∑
n=0

xn
3ε

(n)
i j , ε

(n)
i j =

1
2

[
u(n)

i, j +u(n)
j,i +(n+1)(δi3u(n+1)

j +δ j3u(n+1)
i )

]
. (13)

The electric field vector is obtained from eq. (4) on the base of approximation (9b)

Eα =−ψ,α =−ψ
(0)
,α −

x3

2h
ψ

(1)
,α −

(
x2

3
h2 −1

)
ψ

(2)
,α −

x3

h

(
x2

3
h2 −1

)
ψ

(3)
,α α = 1,2

E3 =− 1
2h

ψ
(1)− 2x3

h2 ψ
(2)−

(
3x2

3
h3 −

1
h

)
ψ

(3). (14)
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The term ε
(2)
i j will not be needed, since we are interested in obtaining only the un-

coupled equations of anisotropic extension and elementary flexure, which is pos-
sible in this lowest order approximation. Moreover, in order to complete the re-
duction to the elementary theory of flexure, one must take the thickness-shear plate
strains ε

(0)
3α

to vanish as in Mindlin (1955). Then, from eq. (13), one has directly

u(1)
α =−u(0)

3,α . (15)

In order to eliminate the free-plate deformations ε
(0)
33 = u(1)

3 , we exclude the dis-
placements u(1)

3 . After some uncoupling assumptions on extensional and flexural
deformations nine equations of motion can be reduced to two equations for the
extension and one for the flexural motion [Yang (1999)]

σ
(0)
αβ ,α +F(0)

β
= 2ρhü(0)

β
, (16)

σ
(1)
αβ ,αβ

+F(1)
β ,β +F(0)

3 = 2ρhü(0)
3 . (17)

The 2-D electric charge equations (12) are unchanged after mechanical assump-
tions. Now, we should find constitutive equations for integral stress σ

(n)
i j and elec-

trical displacement D(n)
i quantities. In view of equations (5) and (6) as well as

exclusion of ε
(2)
i j , we obtain the integral representations of σ

(m)
p and D(m)

j

σ
(m)
p =

h∫
−h

xm
3 σpdx3 =

h∫
−h

xm
3 cpq

1
∑

n=0
xn

3ε
(n)
q dx3−

h∫
−h

xm
3 (eα pEα + e3pE3)dx3,(m = 0, 1),

(p = 1, 2,6)

D(m)
j =

h∫
−h

xm
3 e jq

1
∑

n=0
xn

3ε
(n)
q dx3 +

h∫
−h

xm
3 (k jαEα + k j3E3)dx3,(m = 0, 1, 2, 3), ( j = 1, 2, 3)

where the compressed matrix notations are used for the stress and strain tensors in-
dices (the pairs of indices ik = 11, 22, 33, 23, 13,12 are replaced by p = 1, 2, 3, 4, 5,6,
respectively). Bearing in mind equations (13) and (14) and performing integration
through the plate thickness, we obtain the electroelastic plate constitutive equations
in the form

σ
(0)
p = 2hcpqε

(0)
q +2heα pψ

(0)
,α −

4
3

heα pψ
(2)
,α + e3pψ

(1),

σ
(1)
p =

2
3

h3cpqε
(1)
q +

h2

3
eα pψ

(1)
,α −

4
15

h2eα pψ
(3)
,α +

4
3

he3pψ
(2) (18)

D(0)
j = 2he jqε

(0)
q −2hk jαψ

(0)
,α +

4
3

hk jαψ
(2)
,α − k j3ψ

(1),



The MLPG for Bending of Electroelastic Plates 275

D(1)
j =

2
3

h3e jpε
(1)
p −

1
3

h2k jαψ
(1)
,α +

4
15

h2k jαψ
(3)
,α −

4
3

hk j3ψ
(2),

D(2)
j =

2
3

h3e jpε
(0)
p −

2
3

h3k jαψ
(0)
,α +

4
15

h3k jαψ
(2)
,α −

1
3

h2k j3ψ
(1)− 8

15
h2k j3ψ

(3),

D(3)
j =

2
5

h5e jpε
(1)
p −

1
5

h4k jαψ
(1)
,α +

4
35

h4k jαψ
(3)
,α −

4
5

h3k j3ψ
(2). (19)

Substituting equations (18) and (19) into the governing equations (16), (17) and
(12) and considering relations (13) and (15) we obtain 7 equations for 7 variables
u(0)

j , ψ(0), ψ(1), ψ(2), ψ(3). In the next paragraph we present computational method
to solve the derived governing equations.

3. Local integral equations and numerical solution
In the previous paragraph, we have derived the governing equations for piezoelec-
tric plate bending problem which transform original 3-D problem into 2-D one.
All unknown quantities are dependent only on Cartesian coordinates x = (x1,x2)
in mid-plane of the plate. Instead of writing the global weak-form for the above
governing equations, the MLPG method constructs a weak-form over the local fic-
titious subdomains such as Ωs, which is a small region constructed for each node
inside the global domain [Atluri, (2004)]. The local subdomains overlap each other,
and cover the whole global domain Ω (Fig. 1). The local subdomains could be of
any geometrical shape and size. In the present paper, the local subdomains are
taken to be of a circular shape for simplicity. The local weak-form of the governing
equation (16) can be written as∫
Ωs

[
σ

(0)
αβ ,α(x, t)+F(0)

β
(x, t)−2hρ(x)ü(0)

β
(x, t)

]
u∗

βγ
(x) dΩ = 0, (20)

where u∗
βγ

(x) is the weight or test functions.

Applying the Gauss divergence theorem to the first domain integral in equation (20)
one obtains∫
∂Ωi

s

σ
(0)
αβ

(x, t)nα(x)u∗
βγ

(x)dΓ−
∫
Ωi

s

σ
(0)
αβ

(x, t)u∗
βγ,α(x)dΩ

+
∫
Ωi

s

(
F(0)

β
−2hρ ü(0)

β

)
u∗

βγ
(x)dΩ = 0, (21)

where ∂Ωi
s is the boundary of the local subdomainΩi

scentered at the node yi and
nα is the unit outward normal vector to the boundary ∂Ωi

s. The local weak-forms
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(20) and (21) are the starting point for deriving local boundary integral equations
on the basis of appropriate test functions. By choosing the test function as

u∗
βγ

(x) = [1−H(r− r0)]δβγ , (22)

with H(z) being the Heaviside unit step function (H(z) = 1 for z > 0, H(z) = 0 for
z≤ 0), r =

√
rαrα , rα = xα − yi

α and r0 being the radius of the circular subdomain
Ωi

s, the first domain integral in (21) is vanishing and the local integral equation can
be rewritten into the form∫
∂Ωi

s

σ
(0)
αβ

(x, t)nα(x)dΓ+
∫
Ωi

s

(
F(0)

β
−2hρ ü(0)

β

)
dΩ = 0, (β = 1, 2) (23)

subdomain =Ω Ωs s
i '

∂Ωs

∂  Ω Γs s s
i i i=L U

∂Ωs =  i ∂ Li
s Ωs=

Ωs
''

Li
s

Γi
sM    , Γi

sw

ri

node xi

support of node xi

local boundary '

x
Ωx

 

Figure 1: Local boundaries for weak formulation, the domain Ωx for MLS ap-
proximation of the trial function, and support area of weight function around node
xi

Similarly, one can derive the local integral equation from the governing equation
(17)∫
∂Ωi

s

(
nβ σ

(1)
αβ ,α(x, t)w∗(x)−nασ

(1)
αβ

(x, t)w∗,β (x)
)

dΓ+
∫
Ωi

s

σ
(1)
αβ

(x, t)w∗,αβ
(x)dΩ+

+
∫
Ωi

s

(
F(1)

β ,β (x, t)+F(0)
3 (x, t)−2hρ ü(0)

3 (x, t)
)

w∗(x)dΩ = 0. (24)
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Making use of the weight function asw∗(x) = (r− r0)
κ , r =

∣∣x−xi
∣∣ , then

w∗,β (x) = κ (r− r0)
κ−1 r,β ,

w∗,αβ
(x) = κ (r− r0)

κ−1
[

κ−1
r− r0

r,αr,β +
1
r

(
δαβ − r,αr,β

)]
(25)

and the boundary integral in the local integral equation (LIE) is missing as long as
κ > 1, i.e.∫
Ωi

s

σ
(1)
αβ

(x, t)w∗,αβ
(x)dΩ+

∫
Ωi

s

(
F(1)

β ,β (x, t)+F(0)
3 (x, t)−2hρ ü(0)

3 (x, t)
)

w∗(x)dΩ = 0.

(26)

The local weak-forms of the set of governing equations (12) for xi ∈ Ωi
s after ap-

plication of Gauss divergence theorem can be written as∫
∂Ωi

s

nα(x)D(0)
α (x, t)ψ∗(x)dΓ−

∫
Ωi

s

D(0)
α (x, t)ψ∗,α(x)dΩ+

∫
Ωi

s

2hd(0)
3 (x, t)ψ∗(x)dΩ = 0,

∫
∂Ωi

s

nα(x)D(1)
α (x, t)ψ∗(x)dΓ−

∫
Ωi

s

D(1)
α (x, t)ψ∗,α(x)dΩ

+
∫
Ωi

s

(
2hd(1)

3 −D(0)
3

)
ψ
∗(x)dΩ = 0,

∫
∂Ωi

s

nα(x)
[
D(2)

α (x, t)−h2D(0)
α (x, t)

]
ψ
∗(x)dΓ

+
∫
Ωi

s

[
h2D(0)

α (x, t)−D(2)
α (x, t)

]
ψ
∗
,α(x)dΩ−

∫
Ωi

s

2D(1)
3 (x, t)ψ∗(x)dΩ = 0,

∫
∂Ωi

s

nα(x)
[
D(3)

α (x, t)−h2D(1)
α (x, t)

]
ψ
∗(x)dΓ

+
∫
Ωi

s

[
h2D(1)

α (x, t)−D(3)
α (x, t)

]
ψ
∗
,α(x)dΩ

+
∫
Ωi

s

[
h2D(0)

3 (x, t)−3D(2)
3 (x, t)

]
ψ
∗(x)dΩ = 0. (27)
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Choosing the weight function as ψ∗(x) = [1−H(r− r0)], then

ψ
∗(x)|

Ωi
s∪∂Ωi

s
= 1, ψ

∗
,α(x)

∣∣
Ωi

s
= 0, (28)

and the LIE become∫
∂Ωi

s

nα(x)D(0)
α (x, t)dΓ+

∫
Ωi

s

2hd(0)
3 (x, t)dΩ = 0, (29)

∫
∂Ωi

s

nα(x)D(1)
α (x, t)dΓ+

∫
Ωi

s

(
2hd(1)

3 −D(0)
3

)
dΩ = 0, (30)

∫
∂Ωi

s

nα(x)
[
D(2)

α (x, t)−h2D(0)
α (x, t)

]
dΓ−

∫
Ωi

s

2D(1)
3 (x, t)dΩ = 0, (31)

∫
∂Ωi

s

nα(x)
[
D(3)

α (x, t)−h2D(1)
α (x, t)

]
dΓ+

∫
Ωi

s

[
h2D(0)

3 (x, t)−3D(2)
3 (x, t)

]
dΩ = 0.

(32)

Again the in-plane unknowns are localized on ∂Ωi
s. Substituting constitutive equa-

tions (18) and (19) into the local integral equations (23), (26) and (29-32) and
considering relations (13) and (15) we have to solve 7 equations for 7 variables
u(0)

j , ψ(0), ψ(1), ψ(2), ψ(3). For this purpose it is convenient to apply a meshless
method. In general, a meshless method uses a local interpolation to represent the
trial function with the values of the unknown variable (or the fictitious values) at
some randomly located nodes. The moving least-squares (MLS) approximation
[Lancaster and Salkauskas, 1981; Nayroles et al., 1992; Belytschko, 1996] used in
the present analysis may be considered as one of such schemes.

The approximated functions for the mechanical displacements and the electric po-
tential can be written as [Atluri, 2004]

u(0)(x, t) = ΦΦΦ
T (x) · û(0)(t) =

s

∑
a=1

φ
a(x)ûa(0)(t), u(0) = (u(0)

1 , u(0)
2 )T

u(0)
3 (x, t) =

s

∑
a=1

φ
a(x)ûa(0)

3 (t)

ψ
(n)(x, t) =

s

∑
a=1

φ
a(x)ψ̂a(n)(t), (n = 0, 1, 2, 3) (33a)
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where the nodal values ûa(0)(t), ûa(0)
3 (t) and ψ̂a(n)(t) are fictitious parameters for

the displacements and the electric potential, respectively, and φ a(x) is the shape
function associated with the node a. In order to decrease the order of derivatives of
the shape functions (in the approximation of σ

(1)
αβ

), we assume also the approxima-
tion

u(1)(x, t) =
s

∑
a=1

φ
a(x)ûa(1)(t), u(1) = (u(1)

1 , u(1)
2 )T

with u(1)(x, t) =−

(
u(0)

3,1

u(0)
3,2

)
, i.e.

s

∑
a=1

φ
a(x)ûa(1)(t) =−

s

∑
a=1

Pa(x)ûa(0)
3 (t) , Pa(x) =

(
φ a

,1
φ a

,2

)
. (33b)

The number of nodes s used for the approximation at the point x is determined by
the weight functions wa(x). The fourth order spline-type weight function is applied
in the present work

wa(x) =

{
1−6

(da

ra

)2
+8
(da

ra

)3−3
(da

ra

)4
, 0≤ da ≤ ra

0, da ≥ ra
, (a = 1, 2, ..., Nt) (34)

where da = ‖x−xa‖, ra is the radius of the support domain and Nt is the total
number of nodal points. It is seen that the C1-continuity is ensured over the entire
domain, therefore the continuity conditions of the tractions and the electric charge
are satisfied.

The stresses σσσ (0)(x, t) = (σ (0)
11 , σ

(0)
22 , σ

(0)
12 )T and σσσ (1)(x, t) = (σ (1)

11 , σ
(1)
22 , σ

(1)
12 )T at

a boundary point x ∈ ∂Ωs are approximated in terms of the nodal values ûa(0)(t),
ûa(0)

3 (t), ψ̂a(n)(t) as follows

σσσ
(0)(x, t) = 2hC(x)

s

∑
a=1

Ba(x)ûa(0)(t) +F(x)
s

∑
a=1

φ
a(x)ψ̂a(1)(t), (35)

σσσ
(1)(x, t) =

2
3

h3C(x)
s

∑
a=1

Ba(x)ûa(1)(t) +
4
3

hF(x)
s

∑
a=1

φ
a(x)ψ̂a(2)(t), (36)

where the matrix Ba is represented by the gradients of the shape functions and C,
F are matrices of the material coefficients

Ba(x) =

φ a
,1 0
0 φ a

,2
φ a

,2 φ a
,1

 , C(x) =

c11 c12 0
c12 c22 0
0 0 c66

 , F(x) =

e31
e31
0

 .
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Similarly the electrical displacements D(n)(x, t) = (D(n)
1 , D(n)

2 )T can be approxi-
mated by

D(0)(x, t) = K2(x)
s

∑
a=1

Pa(x)
[
−2hψ̂

a(0)(t)+
4
3

hψ̂
a(2)(t)

]
, (37)

D(1)(x, t) = K2(x)
s

∑
a=1

Pa(x)
[
−h2

3
ψ̂

a(1)(t)+
4

15
h2

ψ̂
a(3)(t)

]
, (38)

D(2)(x, t) = K2(x)
s

∑
a=1

Pa(x)
[
−2

3
h3

ψ̂
a(0)(t)+

4
15

h3
ψ̂

a(2)(t)
]
, (39)

D(3)(x, t) = K2(x)
s

∑
a=1

Pa(x)
[
−1

5
h4

ψ̂
a(1)(t)+

4
35

h4
ψ̂

a(3)(t)
]
, (40)

where the matrix K2 is defined as

K2(x) =
[

k11 0
0 k22

]
.

The third component of the electrical displacement is approximated by

D(0)
3 (x, t) = 2hG3(x)

s

∑
a=1

B3a(x)ûa(0)(t) − k33(x)
s

∑
a=1

φ
a(x)ψ̂a(1)(t), (41)

D(1)
3 (x, t) =

2
3

h3G3(x)
s

∑
a=1

B3a(x)ûa(1)(t) − 4
3

hk33(x)
s

∑
a=1

φ
a(x)ψ̂a(2)(t), (42)

D(2)
3 (x, t) =

2
3

h3G3(x)
s

∑
a=1

B3a(x)ûa(0)(t)

− 1
15

h2k33(x)
s

∑
a=1

φ
a(x)

[
5ψ̂

a(1)(t)+8ψ̂
a(3)(t)

]
, (43)

D(3)
3 (x, t) =

2
5

h5G3(x)
s

∑
a=1

B3a(x)ûa(1)(t) − 4
5

h3k33(x)
s

∑
a=1

φ
a(x)ψ̂a(2)(t), (44)

where

G3(x) = (e31, e31), B3a(x) =
[

φ a
,1 0
0 φ a

,2

]
.
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Then, insertion of the MLS-discretized stress fields (35), (36) and electrical dis-
placements (37-44) into the local integral equations (23), (26) and (29-32) yields
the discretized LIEs

2h
Nt

∑
a=1

 ∫
∂Ωi

s

N̄(x)C(x)Ba(x)dΓ

 ûa(0)(t) +
Nt

∑
a=1

 ∫
∂Ωi

s

N̄(x)F(x)φ a(x)dΓ

 ψ̂
a(1)(t)

−2h
Nt

∑
a=1

∫
Ωi

s

ρ(x)φ a(x)dΩ

 ¨̂ua(0)
(t) = 0, N̄(x) =

(
n1 0 n2
0 n2 n1

)
(45)

since F(0)
β

= σ3β

∣∣ h
−h = 0;

2
3

h3
Nt

∑
a=1

∫
Ωi

s

W∗(x)C(x)Ba(x)dΩ

 ûa(1)(t)

+
4
3

h
Nt

∑
a=1

∫
Ωi

s

W∗(x)F(x)φ a(x)dΩ

 ψ̂
a(2)(t)

−2h
Nt

∑
a=1

∫
Ωi

s

w∗(x)ρ(x)φ a(x)dΩ

 ¨̂ua(0)
3 (t)+

∫
Ωi

s

[
σ

+
33−σ

−
33

]
w∗(x)dΩ = 0,

W∗(x) = (w∗,11, w∗,22,w
∗
,12) (46)

since F(1)
β

=
(
x3σ3β

)∣∣ h
−h = 0, F(0)

3 = σ33| h−h = σ
+
33−σ

−
33;

s

∑
a=1

 ∫
∂Ωi

s

N(x)K2(x)Pa(x)dΓ

[2hψ̂
a(0)(t)− 4

3
hψ̂

a(2)(t)
]
−
∫
Ωi

s

[
D+

3 −D−3
]

dΩ = 0,

N(x) = (n1, n2) (47)

Nt

∑
a=1

 ∫
∂Ωi

s

N(x)K2(x)Pa(x)dΓ

[−h
6

ψ̂
a(1)(t)+

2
15

hψ̂
a(3)(t)

]
−
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−
Nt

∑
a=1

∫
Ωi

s

G3(x)B3a(x)dΩ

 ûa(0)(t) +
1

2h

Nt

∑
a=1

∫
Ωi

s

k33(x)φ a(x)dΩ

 ψ̂
a(1)(t)

+
1
2

∫
Ωi

s

[
D+

3 +D−3
]

dΩ = 0, (48)

Nt

∑
a=1

 ∫
∂Ωi

s

N(x)K2(x)Pa(x)dΓ

[4
3

hψ̂
a(0)(t)− 16

15
hψ̂

a(2)(t)
]

− 4
3

h
Nt

∑
a=1

∫
Ωi

s

G3(x)B3a(x)dΩ

 ûa(1)(t) +
8
3h

Nt

∑
a=1

∫
Ωi

s

k33(x)φ a(x)dΩ

 ψ̂
a(2)(t)

= 0, (49)

h2
Nt

∑
a=1

 ∫
∂Ωi

s

N(x)K2(x)Pa(x)dΓ

[ 2
15

ψ̂
a(1)(t)− 16

105
ψ̂

a(3)(t)
]

+
8
5

Nt

∑
a=1

∫
Ωi

s

k33(x)φ a(x)dΩ

 ψ̂
a(3)(t) = 0. (50)

Having used 7+2 variables (u(0)
j , ψ(0), ψ(1), ψ(2), ψ(3)) + u(1)

α , we need to in-
corporate also eq. (33b) into the set of discretized governing equations given by
(45)-(50).

Equations (45-50) are considered on the subdomains adjacent to the interior nodes
xi lying in the mid-plane of plate. For the source point xi located on the global
boundary of the mid-plane,Γ, the boundary conditions are satisfied by the collo-
cation directly from the approximation of corresponding quantities. For in-plane
deformations, the boundary conditions are prescribed in a standard way by speci-
fying either in-plane displacements or in-plane tractions on Γ, i.e.

u(0)
α = ūα on ΓD, nβ σ

(0)
αβ

= t̄α on ΓN , with Γ = ΓD∪ΓN .

In the discretized form, the in-plane boundary conditions are given as

s

∑
a=1

φ
a(xi)ûa(0)(t) =

(
ū1
ū2

)
,
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N̄(xi)

[
2hC(xi)

s

∑
a=1

Ba(xi)ûa(0)(t) +F(xi)
s

∑
a=1

φ
a(xi)ψ̂a(1)(t)

]
=
(

t̄1
t̄2

)
.

If no in-plane loading is considered, then the in-plane displacements are given by
gradients of transversal displacement (deflection). For simply supported plate the
deflection and bending moment have to vanish at the collocation nodes xi ∈ Γ

u(0)
3 = 0, (51a)

nαnβ σ
(1)
αβ

= 0. (51b)

Moreover, it can be seen that

ταu(1)
α =−ταu(0)

3,α =−τα

[
nα

∂u(0)
3

∂n
+ τα

∂u(0)
3

∂τττ

]
=−

∂u(0)
3

∂τττ
≡ 0, (51c)

where n and τττ are the normal and tangential unit vectors on the boundary contour
of the plate. The last equality in (51c) results from (51a).

Substituting approximations (33) and (35) into boundary conditions (51) we obtain
collocation equations for nodes on the global boundary

s

∑
a=1

φ
a(xi)ûa(0)

3 (t) = 0, (52)

N(x)N̄(x)

[
2
3

h3C(x)
s

∑
a=1

Ba(x)ûa(1)(t) +
4
3

hF(x)
s

∑
a=1

φ
a(x)ψ̂a(2)(t)

]
= 0, xi ∈ Γ

(53a)

T(xi)
s

∑
a=1

φ
a(xi)ûa(1)(t) = 0, T(xi) = (τ1, τ2). (53b)

Collocation equations (52) and (53) represent 3 equations for three unknown me-
chanical quantities u(0)

3 , u(1)
1 , u(1)

2 . The clamped boundary conditions are given by
vanishing deflection and rotations. Then, equations (53) are replaced by(

u(1)
1

u(1)
2

)
=

s

∑
a=1

φ
a(xi)ûa(1)(t) = 0. (54)

Electrical boundary conditions are represented either by essential

ψ(n) = 0 (n = 0,1,2,3)
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or by natural conditions

D(n)
β

nβ = 0.

In the discretized form, the boundary conditions are given as

s

∑
a=1

φ
a(xi)ψ̂a(n)(t) = 0, (n = 0,1,2,3) (55)

or

N(xi)K2(xi)
s

∑
a=1

Pa(xi)
[
−2hψ̂

a(0)(t)+
4
3

hψ̂
a(2)(t)

]
= 0 , (56)

N(xi)K2(xi)
s

∑
a=1

Pa(xi)
[
−h2

3
ψ̂

a(1)(t)+
4
15

h2
ψ̂

a(3)(t)
]

= 0 , (57)

N(xi)K2(xi)
s

∑
a=1

Pa(xi)
[
−2

3
h3

ψ̂
a(0)(t)+

4
15

h3
ψ̂

a(2)(t)
]

= 0 , (58)

N(xi)K2(xi)
s

∑
a=1

Pa(xi)
[
−1

5
h4

ψ̂
a(1)(t)+

4
35

h4
ψ̂

a(3)(t)
]

= 0 . (59)

The problem can be significantly simplified if both electrical displacements D+
3 and

D−3 on the top and bottom plate surfaces are vanishing. From eq. (47) it follows
directly

ψ̂
a(0) =

2
3

ψ̂
a(2), (60)

provided that det(M··2 ) 6= 0, where Mai
2 :=

( ∫
∂Ωi

s

N(x)K2(x)Pa(x)dΓ(x)

)
.

For vanishing in-plane deformations the unknown linear parameter ψ̂a(1) has to
equal zero as it follows from eq. (45) provided that det(M··1 ) 6= 0, where Mai

1 :=( ∫
∂Ωi

s

N̄(x)F(x)φ a(x)dΓ(x)

)
. Of course, the mentioned determinants are different

from zero as long as the unique solution exists for the considered problem.

Then, from eq. (48) it follows, that ψ̂a(3) = 0 provided that det(M··2 ) 6= 0. The
system of equations (45)-(50) is reduced for this special case into the following
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equations:

2
3

h3
s

∑
a=1

∫
Ωi

s

W∗(x)C(x)Ba(x)dΩ

 ûa(1)(t)

+
4
3

h
s

∑
a=1

∫
Ωi

s

W∗(x)F(x)φ a(x)dΩ

 ψ̂
a(2)(t)

−2h
s

∑
a=1

∫
Ωi

s

w∗(x)ρ(x)φ a(x)dΩ

 ¨̂ua(0)
3 (t)+

∫
Ωi

s

[
σ

+
33−σ

−
33

]
w∗(x)dΩ = 0, (61)

−
s

∑
a=1

 ∫
∂Ωi

s

N(x)K2(x)Pa(x)dΓ

 8
45

hψ̂
a(2)(t)

−4
3

h
s

∑
a=1

∫
Ωi

s

G3(x)B3a(x)dΩ

 ûa(1)(t)

+
8
3h

s

∑
a=1

∫
Ωi

s

k33(x)φ a(x)dΩ

 ψ̂
a(2)(t) = 0, (62)

In the system of equations (61) and (62) we have only three unknowns, namely two
rotations ûa(1)

1 , ûa(1)
2 and the potential parameter ψ̂a(2).

If the electric potential is prescribed on the plate surfaces as ψ(x,±h, t) = ψ̄±(x, t),
it is necessary to express D±3 = D3(x,±h, t) in terms of nodal unknowns by using

D3(x,x3, t) = G3(x)
s

∑
a=1

B3a(x)
[
ûa(0)(t)+ x3ûa(1)(t)

]
− k33(x)

2h

[
ψ̄

+(x, t)− ψ̄
−(x, t)

]
in the domain integrals in eqs. (47) and (48).

Collecting the discretized local boundary-domain integral equations together with
the discretized boundary conditions for the displacements and potential, one obtains
a complete system of ordinary differential equations and it can be rearranged in
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such a way that all known quantities are on the r.h.s. Thus, in the matrix form, the
system becomes

Aẍ+Cx = Y. (63)

Recall that the system matrix has a block structure. There are many time integra-
tion procedures for solution of this system of ordinary differential equations. In
the present work, the Houbolt method is applied. In the Houbolt finite-difference
scheme [Houbolt (1950)], the “acceleration” ẍ is expressed as

ẍ=
τ+∆τ

2xτ+∆τ −5xτ +4xτ−∆τ −xτ−2∆τ

∆τ2 , (64)

where ∆τ is the size of the time-step.

Substituting eq. (61) into eq. (60), we obtain the following system of algebraic
equations for the unknowns xτ+∆τ[

2
∆τ2 A+C

]
xτ+∆τ =

1
∆τ2 5Axτ +A

1
∆τ2 {−4xτ−∆τ +xτ−2∆τ}+Y . (65)

The value of the time-step has to be appropriately selected with respect to material
parameters (elastic wave velocities) and time dependence of the boundary condi-
tions.

3 Numerical examples

In this section, numerical results are presented for piezoelectric plates under a me-
chanical and/or electrical load. In order to test the accuracy, the numerical results
obtained by the present method are compared with the results provided by the FEM-
ANSYS code using a very fine mesh. In all numerical calculations, the plates with
homogeneous properties are considered. We first consider a clamped square plate
with a side-length a = 0.254m and the plate thicknesses 2h/a = 0.05. The origin
of the coordinate system for x3 is localized in the midplane of the plate. In the
first case, on the top surface of the plate, a pure mechanical load with a uniform
distribution and intensity σ

+
33 = 2.07 ·106N/m2 is considered. The bottom surface

is kept at vanishing mechanical load. Both the top and bottom surfaces are kept at
vanishing electrical displacements, D+

3 = D−3 = 0. Material properties correspond
to the PZT ceramic [Mitchell and Reddy (1995)] with

c11 = c22 = 14.8×1010Nm−2 , c12 = 7.62×1010Nm−2 ,

c13 = c23 = 7.42×1010Nm−2 ,
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c44 = c55 = 2.54×1010Nm−2 , c66 = 3.59×1010Nm−2 ,

e31 = e32 =−2.1Cm−2 , e33 = 9.5Cm−2 ,

k11/k0 = k22/k0 = 460 , k33/k0 = 235, k0 = 8.85×10−12C2/Nm2

ρ = 7500kg/m3 .

In our numerical calculations, 441 nodes with a regular distribution were used for
the approximation of 9 variables u(0)

j , u(1)
α , ψ(0), ψ(1), ψ(2), ψ(3) (Fig. 2, where w

stands for u3(x,x3 = 0, t) = u(0)
3 (x, t)). The variation of the deflection with the x1-

coordinate at x2 = a/2 of the plate is presented in Fig. 3. The deflection value
is normalized by the corresponding central deflection of the same elastic plate
welast

3 (a/2) = 0.475 · 10−3m with vanishing piezoelectric parameters. The numer-
ical results are compared with the results obtained by the FEM-ANSYS code 3-D
analysis with a fine mesh of (4x40x40) solid 20-node elements. Four elements are
considered along the thickness of the plate. Our numerical results are in a good
agreement with those obtained by the FEM. One can observe that the deflection
value is slightly reduced for the piezoelectric plate with respect to the elastic plate
(vanishing piezoelectric parameters).

21

441

1

420 w=0 w =0
,n,

x1

x2

w,w =0
,n

w,w =0,n

w,w =0,n  

Figure 2: Node distribution for numerical analyses of a clamped square plate

The variations of the electric potential along the x1 -coordinate in the mid plane and
along the thickness of the plate at its center (x1 = x2 = a/2) are presented in Figs.
4 and 5. One can see again a good agreement of results obtained by the present
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Figure 3: Variation of the deflection with thex1 -coordinate for a clamped square
plate under a uniform static load
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Figure 4: Variation of the potential with thex1 -coordinate for a clamped square
plate under a uniform static load
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MLPG and FEM methods. Relative errors of potentials in each point with respect
to FEM results are less than 2%.

In the next numerical example we have considered a pure electrical charge load on
the top of the plate, D+

3 = 1C/m2, and D−3 = 0. The deflection value is normalized
by the same central deflection welast

3 (a/2) = 0.475 · 10−3m as in the previous case
for the pure mechanical load to compare influences of mechanical and electrical
loads. Numerical results are presented in Fig. 6. One can see that considered
electrical charge is leading to significantly higher deflections than in the case of the
pure mechanical load. The MLPG numerical results are again compared with FEM
ones and a good agreement is received. The variation of the electrical potential in
the mid plane of the plate along the x1 coordinate is presented in Fig. 7. Small
discrepancies of the MLPG and FEM results are observed in the vicinity of the
plate center but they are smaller than 4%.

Next, the piezoelectric square plate under an impact load is analyzed. The top
surface of the plate is under uniform impact pure mechanical compression load with
Heaviside time variation, σ

+
33 = −2.07× 106H(t− 0)N/m2. The geometrical and

material parameters are the same as in the static case. For the numerical modelling
we have used again 441 nodes with a regular distribution. Numerical calculations
are carried out for a time-step ∆τ = 0.1×10−4s. The time variation of the central
deflection is given in Fig. 8. The results for the pure elastic and piezoelectric plates
are compared there. The MLPG results are compared with those obtained by FEM-
ANSYS computer code 3-D analysis with 3600 solid 20-node elements and 200
time steps. One can observe a good agreement between the FEM and MLPG results
for the pure elastic plate. Since the mass density and elastic material parameters
are the same for both the pure elastic and piezoelectric plates, the wave velocity is
also the same in both plates. Therefore, the peaks of the deflection amplitudes are
at the same time instants. A small amplification of the deflection is observed for
the pure elastic plate.

Next, the simply supported piezoelectric square plate is analyzed. The geometrical
and material parameters are the same as for the clamped plate. The variation of the
deflection with the x1-coordinate at x2 = a/2 of the plate is presented in Fig. 9. The
deflection value is normalized by the corresponding central deflection of the same
elastic plate welast

3 (a/2) = 1.47× 10−3m with vanishing piezoelectric parameters.
The numerical results are compared with the results obtained by the FEM-ANSYS
code with a fine mesh of (4x40x40) solid 20-node elements. To analyze the in-
fluence of piezoelectric parameter on the plate deflection, we have considered also
e31 = e32 = −5.1Cm−2 . One can see that smaller deflections are achieved for the
plate with higher piezoelectric parameter.

Finally, the piezoelectric simply supported plate under an impact load is analyzed.
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Figure 5: Variation of the potential along the thickness of the clamped square plate
at x1 = x2 = a/2
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Figure 6: Variation of the deflection with thex1 -coordinate for a pure electrical
charge load
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Figure 7: Variation of the potential with thex1 -coordinate for a pure electrical
charge load
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Figure 8: Time variation of the deflection at the center of a clamped piezoelectric
plate subjected to a suddenly applied load
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Figure 9: Variation of the deflection with thex1 -coordinate for a simply supported
piezoelectric plate under a uniform static load
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Figure 10: Time variation of the deflection at the center of a simply supported
piezoelectric plate subjected to a suddenly applied load



The MLPG for Bending of Electroelastic Plates 293

The top surface of the plate is under uniform impact pure mechanical compression
load with Heaviside time variation, σ

+
33 = −2.07× 106H(t− 0)N/m2. Numerical

calculations are carried out for a time-step ∆τ = 0.2× 10−4s. The time variation
of the central deflection is given in Fig. 10. One can observe a good agreement
between the FEM and MLPG results for the pure elastic plate. The plate deflection
is only slightly reduced for a finite value of the piezoelectric parameter with respect
to the pure elastic plate.

4 Conclusions

A meshless local Petrov-Galerkin method is applied to piezoelectric plates under
a mechanical or electrical load. The governing equations for the mid-plane of the
plate are derived on the base of an appropriate expansion of the mechanical dis-
placement and electric potential in powers of the thickness coordinate in the varia-
tional equations of electroelasticity and integration through the thickness. Thus, the
original 3-D thick plate problem is reduced to a 2-D problem. Nodal points are ran-
domly distributed over the mean surface of the considered plate. Each node is the
center of a circle surrounding this node. The weak forms on the small subdomains
with a Heaviside step function and the radial basis function as the test functions
are applied to derive local integral equations. After performing the spatial MLS
approximation, a system of ordinary differential equations for the nodal unknowns
is obtained. The corresponding system of the ordinary differential equations of
the second order resulting from the equations of motion is solved by the Houbolt
finite-difference scheme as a time-stepping method.

The proposed method is truly meshless, which requires neither domain elements
nor background cells in either the interpolation or the integration. Numerical tests
demonstrate a very good quality of the results obtained by the proposed MLPG
method for both clamped and simply supported plates. The method is applicable for
a general plate geometry and arbitrary load distribution. Successful application of
the MLPG for bending of piezoelectric plates can be further extended to laminated
plates and also for magneto-electro-elastic plates in future.
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