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A Simple OpenMP Scheme for Parallel Iteration Solvers in
Finite Element Analysis

S.H. Ju1

Abstract: This study develops an OpenMP scheme to parallel the precondi-
tioned conjugate gradient methods (PCG) in shared memory computers. The pro-
posed method is simple and systematic, so a minor change in traditional PCG meth-
ods may produce effective parallelism. At first, the global stiffness matrix is re-
numbered in order to produce a parallel three-line form matrix, and a subroutine
only needs to be called once in the finite element analysis. Several basic OpenMP
commands are then added into the traditional incomplete Cholesky factorization
(ILU) and symmetric successive over-relaxation (SSOR) codes to make the proce-
dures of matrix multiplication, decomposition, forward substitution, and backward
substitution fully parallel.

Keywords: Finite element method; ILU; OpenMP; Parallel; Preconditioned
conjugate gradient methods; Shared memory computers; SSOR.

1 Introduction

For large finite element meshes, most parts of the stiffness matrix are zero, and the
preconditioned conjugate gradient methods (PCG) are efficient iteration schemes to
handle this sparse matrix. A review of this topic was undertaken by Benzi (2002),
who surveyed preconditioning techniques and parallel schemes for the iterative
solution of large linear systems. Although PCG methods are efficient for solv-
ing sparse matrices, the procedures are not parallel for common preconditioning
schemes, such as incomplete Cholesky factorization (ILU) and symmetric succes-
sive over-relaxation (SSOR). For parallel PCG schemes, the domain decomposition
method is commonly used, and the algorithm can be found in the reference (Smith
et al., 1996). Recently, Avery and Farhat (2009) used two domain decomposition
methods with Lagrange multipliers for solving iteratively quadratic programming
problems with inequality constraints. For ILU and SSOR preconditioning, a good
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degree of parallelism can be also achieved through graph coloring or disconnected
block techniques (Axelsson, 1994). There are several recent papers in these top-
ics. Yun (2003) used a block tridiagonal matrix scheme to generate parallelizable
block ILU on distributed-memory computers. Staff (2005) developed a framework
for solving the incompressible Navier-Stokes equations in parallel, and an unstruc-
tured mesh was decomposed into non-overlapping subdomains corresponding to
the number of processors. Gosselet and Cachan (2006) used non-overlapping do-
main decomposition methods to solve the linear equations. Koulaei and Toutounian
(2007) presented the recurrence formulae for computing the approximate inverse
factors of tridiagonal and pentadiagonal matrices using a bordering technique. Gor-
don and Gordon (2009) studied the convergent behavior of parallel-block schemes
for PCG, and the efficiency of several block methods was discussed. Currently,
computer chips are designed on maximizing the number of cores that access to a
common shared memory. This new metric is now taking the place of CPU fre-
quency for characterizing performance. Thus, investigation of parallel finite el-
ement schemes in these shared memory computers is more and more important.
Several researchers have used OpenMP to develop parallel finite element codes in
this shared memory system. For example, Dong and Li (2009) used the OpenMP
programming paradigm to parallelize the PCG solver for large-scale ground water
flow problems. Huang et al. (2008) developed a parallel Fortran and OpenMP code
to solve impact dynamic problems using the array expansion and domain decom-
position methods.

This study presents a simple OpenMP scheme to parallel the ILU and SSOR PCG
methods. First the global stiffness matrix is re-numbered in order to produce paral-
lel blocks, and this step is required only once in the finite element analysis. Then,
several OpenMP commands are added into the traditional ILU and SSOR codes to
make the two schemes parallel. The major advantages of this method are that it is
simple and systematic, so that the algorithm of parallel PCG methods is almost the
same as the traditional one after performing the re-numbering procedure.

2 Pre-conditioned conjugate gradient method

The algorithm for the preconditioned conjugate gradient method is shown in Table
1, which is very suitable for the solution of sparse matrices as well as for parallel
computing. However, steps 1 and 6 in Table 1 for the preconditioned matrix re-
quire solution procedures that are often difficult to perform parallel computations.
We will thus re-order the equation number of the stiffness matrix to obtain parallel
procedures for steps 1 and 6 using OpenMP commands. In this study, the global
stiffness matrix is stored in three arrays, the diagonal array (D) and the lower and
upper off-diagonal arrays of S and T, respectively. If the matrix is symmetric, only
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(a)  Arrays LL, D and T 
 
LLL=1,  2,  1,3,  1,4,  3,4,  2,3,6,  2,7,  4,5,6,8,  6,8. 

(b)  Array LLL 
 Figure 1: Structure of arrays D, T, LL and LLL for the conjugate gradient-like

methods

array S is required to store the lower triangular part. The diagonal array stores the
diagonal components of the global stiffness matrix. The off-diagonal array stores
the off-diagonal components of the lower and upper parts of the global stiffness
matrix, and only the non-zero components are included. Another two integral ar-
rays, LL and LLL, indicate the index of the global stiffness matrix. LL indicates
the total number of elements at the last off-diagonal element on each column for
the upper part of the global stiffness matrix. LLL indicates the row number of each
non-zero element for the upper part of the global stiffness matrix. The structures of
LL and LLL are the same for S and T. Figure 1 shows an example of the structure
of the T, LL and LLL arrays. The computer memory requirements of this matrix
arrangement can be minimized without losing computational efficiency.
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Table 1: The solution of Ax=b by the preconditioned conjugated gradient method,
where A is symmtric, B is preconditioning and bold characters are a matrix or
vector.

Step Procedures 
1 Initialization:  

m=0,   x0=0,   r0=b,     p0=z0=B-1r0 

2 αm = r z
p Ap

m
T

m

m
T

m

 

3 xm+1=xm+αmpm 
4 rm+1=rm+αmApm 
5 Convergence check 

      ║rm+1║/║r0║ < Eps  (Eps from input, usually Eps=1E-6) 
If OK  then return 
elseif  NG then continue 

6 zm+1=B-1rm+1 

7 βm = + +r z
r z

m 1
T

m 1

m
T

m

 

8 pm+1=zm+1+βmpm 

9 Let m=m+1; go to 2 

 

Part A

Part B

Part B

Part B

MA

MB

 
Figure 2: Three-line matrix form for parallel solvers
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Table 2: Matrix multiplication ({wrk2}=[T’DT]{wrk1}) using the matrix form in
Fig.1

1:  wrk2=0.0 

2:  do i=2,NDF !Loop from 2 to the number of DOF (NDF) 

3:    ii=LL(i-1)+1+NDF !the 1st element number for column i 

4:    jj=LL(i)+NDF    !the last element number for column i 

5:    aa=0.0          !aa,aa1=working real variables 

6:    aa1=wrk1(i) 

7:    do j=ii,jj      !Loop all non-zero elements 

8:       n=LL(j)      !Column or row number of this element 

9:       aa=aa+T(j)*wrk1(n) !for lower triangular part 

10:      wrk2(n)=wrk2(n)+T(j)*aa1 !for upper triangular part 

11:   enddo 

12:   wrk2(i)=wrk2(i)+aa+wrk1(i)*D(I)  !Result of row i 

13: enddo 

14: wrk2(1)=wrk2(1)+wrk1(1)*D(1)       !Result of row one 
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Figure 3: Forming the three-line matrix using wave front methods

3 Disconnection algorithm for SSOR and ILU pre-condition schemes

The most time consuming parts of PCG are the matrix multiplication (APm in step
2 of Table 1) and matrix solution (step 6 of Table 1). It is noted that not only the
matrix solution but also the matrix multiplication is difficult to be parallel using the
matrix form of Fig.1. Table 2 shows the Fortran codes of the matrix multiplication,
where the updating of wrk2(j) in line 10 of Table 2 may be simultaneous in each
processor, which causes parallel difficulty. However, it is very easy to modify
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these codes in Table 2 to become parallel using the proposed method, and we will
explain this in next section. For the SSOR preconditioned scheme, the Eisenstat’s
trick (Eisenstat, 1981) can be used to avoid matrix multiplication. However, the
majority of the CPU time is still used to obtain the matrix solution. Thus, even
through other parts of PCG can be fully parallel, the efficiency is still low. To
overcome this problem, the stiffness matrix is changed into the three-line form, as
shown in Fig.2. The matrix is categorized into two parts, where part-A contains the
blocks that are disconnected from each others, and part-B contains the blocks that
are connected sequentially to two part-A blocks. Since the matrix bands of part-B
are considerably large, the number of PCG iterations required is often increased.
Thus, we can enlarge the DOF of part-A (MA in Fig.2) and minimize the DOF in
part-B (MB in Fig.2). To form this type of matrix, a wave front method (George
and Liu, 1981) can be used. The nodal numbers are defined sequentially first from
the nodes in the region of the odd wave font numbers and then from those of the
even wave font numbers. An example is shown in Fig.3. The renumbering of
nodes to obtain the minimum band of the stiffness matrix is usually a necessary
procedure for finite element analyses, but this is often executed before one obtains
the matrix form, such as LL and LLL in Fig.1. To overcome this drawback, the
following systematic procedures were developed to obtain the three-line form of
the stiffness matrix using only the index arrays LL and LLL, so all the procedures
can be completed without going back to the element part.

(1) Renumber the nodes to obtain the minimum band of the stiffness matrix. In
this study, the reverse Cuthill-McKee (George and Liu, 1981) method is used.

(2) Obtain the index arrays LL and LLL of the stiffness matrix, as shown in Fig.1.

(3) Let i=1, and select the first block within the degrees of freedom (DOF) from 1
to KL(i), where KL(i) is the maximum degree of freedom of block i, and KL(1)
for the first block can be obtained from the input.

(4) Let i=i+1, and find the next block, whose DOF are within KL(i-1)+1 to KL(i),
where i is the current block number. KL(i) is obtained from the largest DOF to
KL(i) DOF until the LLL(1) of KL(i) DOF is smaller than or equal to KL(i-1).

(5) Go to step (4) for the next block, until no block can be found, and the remaining
DOF are the last block (defined as the nKLth block).

(6) Since we need to increase MA of part-A to obtain a more efficient solution
of PCG method, a number of the successful blocks (N) beginning with the
odd block number can be combined as a new odd number block. Finally, one
obtains the total number of blocks named as nKLN .
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(7) The nodal numbers are re-numbered sequentially, first from the nodes in the
region of the odd block numbers and then from those of even block numbers.

(8) Find LL and LLL according to the nodal number arranged in step (7).

For the above procedures, steps 1 and 2 are standard procedures that should be per-
formed in the traditional finite element method. Steps 3 to 8 can be just achieved
after completing step 2, and those require only the index arrays LL and LLL.
Appendix-A shows a Fortran module to perform this computation, in which only a
public subroutine (SPLLOK) needs to be called on to obtain the results of steps 3
to 8. The private subroutine NCPU is used to perform steps 3 to 7, and the private
subroutine SPLL is to perform step 8. This module contains only 150 lines with-
out difficult or trick algorithms. After calling subroutine SPLLOK, the three-line
form matrix shown in Fig.2 is obtained. This matrix can be fully parallel in the
procedures of the matrix multiplication, decomposition, forward substitution, and
backward substitution for ILU and SSOR PCG method. The parallel conditions are
explained as follows:

For the matrix multiplication and decomposition:

(1) Blocks in part-A can be fully parallel.

(2) Blocks with odd and even numbers in part-B can be fully parallel, after the pro-
cedures for part-A blocks are completed. One can first deal with odd number
blocks and then even number ones.

For the forward substitution

(1) Blocks in part-A can be fully parallel.

(2) Blocks in part-B can be fully parallel after the procedures for part-A blocks are
completed.

For the backward substitution

(1) Blocks with odd and even numbers in part-B can be fully parallel. One can first
deal with odd number blocks and then even number ones.

(2) Blocks in part-A can be fully parallel, after the procedures for part-B blocks
are completed.

Based on the above explanation, we will use the Open MP codes to perform the
parallel procedures. The programming is simple, so the parallel procedures are
almost the same as the traditional non-parallel ones.



98 Copyright © 2010 Tech Science Press CMES, vol.64, no.1, pp.91-108, 2010

4 Disconnection algorithm procedures using OpenMP

OpenMP (http://www.openmp.org) is an application program interface that may be
used to explicitly direct multithreaded, shared memory parallelism for Fortran, C,
or C++. A number of directives can be used for parallel computation in OpenMP.
In this study, only the most efficient one, !$OMP do schedule (dynamic), is used.
This directive makes the immediately following do-loop be executed in parallel,
and schedule (dynamic) means that when one thread finishes its piece of work, it
gets a new one immediately. It is simple to change traditional matrix multiplication,
decomposition, forward substitution, and backward substitution for the three-line
matrix using OpenMP. Moreover, calculation of element matrices and assembling
of the global matrix can also be performed without difficulty using OpenMP. These
procedures are described in more detail in the following subsections.

4.1 Matrix multiplication and ILU decomposition

For matrix multiplication and ILU decomposition, the traditional method contains
an outer loop, as shown in Table 2, where NDF is the total number of DOF. The
above loop is simply modified to an OpenMP parallel loop for the three-line matrix,
as shown in Table 3, for the matrix multiplication. The only change is that the outer
loop of the traditional method is modified to begin from the loop of the part-A
blocks, then the part-B odd blocks, and finally part-B even blocks. The codes
inside the loop i as shown in Tables 2 and 3 are identical, where the OpenMP
commands are optional, since it can still work as a non-parallel loop without them,
and with them, it is a parallel loop. Appendix-B shows the OpenMP codes for the
matrix decomposition, where the codes inside loop i are identical for non-parallel
traditional and parallel three-line matrix methods.

4.2 Forward substitution of the triangular matrix

The forward and backward substitutions of the triangular matrix to obtain a solution
vector are the major time-consuming steps for ILU and SSOR PCG, since they need
to be executed in each iteration. For the forward substitution, each part-A block can
be executed independently. After finishing the forward substitution of the part-A
blocks, each part-B block can also be executed independently. Thus, the traditional
forward substitution codes can be easily modified to parallel codes for the three-
line matrix. Table 4 shows the OpenMP Fortran codes, where only the outer loop
of the traditional scheme needs to be modified to the codes from lines 1 to 10. The
OpenMP commands are optional to indicate parallel or non-parallel computation.
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Table 3: Matrix multiplication ({wrk2}=[T’DT]{wrk1}) using the three-line matrix
and OpenMP directives

    wrk2=0.0d0 

    do kkp=1,3 

      if (kkp==3) then !for part-B even blocks 

         kk1=nbk2+2; kk2=nbk; inc=2 

      elseif (kkp==2) then !for part-B odd blocks 

         kk1=nbk2+1; kk2=nbk; inc=2 

      elseif (kkp==1) then !for part-A blocks 

         kk1=1; kk2=nbk2;  inc=1 

      endif 

!$OMP PARALLEL private(nb,aa,aa1,i,j,nb1,nb2,ii,jj,n)

!$OMP& shared(kk1,kk2,inc,kLL,ndf,LL,wrk1,wrk2,D,ts)

!$OMP do schedule (dynamic) 

      do nb=kk1,kk2,inc 

        nb1=kLL(nb-1)+1 

        nb2=kLL(nb) 

        do i=nb1,nb2 

          Exact the same as lines 3 to 12 in Table 3
        enddo 

      enddo 

!$OMP end do 

!$OMP end PARALLEL 

    enddo 

    wrk2(1)=wrk2(1)+wrk1(1)*D(1) 

 

4.3 Backward substitution of the triangular matrix

For the backward substitution, each part-B block with an odd number can first be
executed independently, and part-B block with an even number can then also be
executed independently. After finishing the procedures for the part-B blocks, all
the blocks in part-A can be parallel to perform the backward substitution. Thus, the
procedures of backward substitution are similar to those of matrix decomposition,
and the only change is that the outer loop of the traditional method is modified
to begin from the part-B odd blocks, then the part-B even blocks, and finally the
loop of part-A blocks. Table 5 shows the OpenMP Fortran codes, where the codes
inside loop i are identical for the non-parallel traditional and parallel three-line
matrix methods.
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Table 4: Forward substitution of the triangular matrix using the three-line matrix
and OpenMP directives (Italic parts are traditional ILU decomposition codes.)

  do kk=1,2 

   if (kk==1) then       !Part-A blocks 

    kk1=1; kk2=nbk2 

   else 

     kk1=nbk2+1; kk2=nbk !Part-B blocks 

   endif 

!$OMP PARALLEL private(nb,tmp,i,j,nb1,nb2,j1,j2) 

!$OMP& shared(r,T,kk1,kk2,kLL,LL,LLL) 

!$OMP do schedule (dynamic) 

   do nb=kk1,kk2 

    nb1=kLL(nb-1)+1; nb2=kLL(nb) 

    do i=nb1,nb2 !Begin. of traditional codes(nb1=2,nb2=ndf) 
      j1=LL(i-1)+1; j2=LL(i); tmp=0.0d0 
      do j=j1,j2 
        tmp=tmp+T(j)*r(LLL(j)) 
      enddo 
      r(i)=r(i)-tmp 
    enddo        !End of traditional codes 
   enddo 

!$OMP end do 

!$OMP end PARALLEL 

  enddo  

 

4.4 Calculation of element matrices and assembling the global matrix

The calculation of element matrices can be fully parallel, but assembling them into
the global matrix may not be parallel, since element matrices in two processors
can be added into a same DOF of the global matrix simultaneously. One can use
a similar disconnected block scheme as the three-line matrix to obtain a parallel
assembling procedure. However, the element number should be re-ordered, which
requires a complicated procedure. Alternative is to generate element matrices in
parallel and to assemble these into the global matrix sequentially. Since the former
requires much more CPU time than the latter, this method will not lose much par-
allel efficiency. Table 6 shows the OpenMP scheme, which changes only a small
part of the traditional method.
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Figure 4: Finite element mesh of a plate with a multi-material interface notch
for case 1 (Modeled by 20-node isoparametric elements with 282,612 nodes and
845,853 DOF)

 

Figure 5: Finite element mesh of the wave propagation in layered soils for case 2
(Modeled by 8-node isoparametric elements with 1,299,594 nodes and 3,895,674
DOF)

 

Figure 6: Finite element mesh of a cantilever beam subjected to a tip sine force
for case 3 (Modeled by 20-node isoparametric elements with 1,243,941 nodes, and
3,708,720 DOF)
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Table 5: Backward substitution of the triangular matrix using the three-line matrix
and OpenMP directives (Italic parts are traditional ILU codes.)

do kk=1,3 

  if (kk==1) then !Part-B odd blocks 

    kk1=nbk2+1; kk2=nbk; inc=2 

  elseif (kk==2) then !Part-B even blocks 

    kk1=nbk2+1+1; kk2=nbk; inc=2 

  else !Part-A blocks 

    kk1=1; kk2=nbk2; inc=1 

  endif 

!$OMP PARALLEL private(nb,tmp,i,j,nb1,nb2,j1,j2) 

!$OMP& shared(r,a,kk1,kk2,kLL,ndf,LL,inc) 

!$OMP do schedule (dynamic) 

  do nb=kk1,kk2,inc 

    nb1=kLL(nb-1)+1; nb2=kLL(nb) 

    do i=nb2,nb1,-1 !Begin. of traditional codes(nb1=1,nb2=ndf)
      j1=LL(i-1)+1; j2=LL(i); tmp=r(i) 
      do j=j1,j2 
        jj=LLL(j); r(jj)=r(jj)-T(j)*tmp 
      enddo 
    enddo !End of traditional codes  
  enddo  

!$OMP end do 

!$OMP end PARALLEL 

 enddo 

 
Table 6: A simple parallel procedure for the calculation of element matrices and
assembling them into the global matrix

!$OMP PARALLEL 
!$OMP& default (private) 
!$OMP& shared(give shared variables) 
!$OMP do 
 Do n=1,nelm  ! nelm=the total number of elements 
    Find element matrices 

!$OMP critical 
  Assembling element matrices into the global matrix  
!$OMP end critical 
Enddo  

!$OMP end do 
!$OMP end PARALLEL 
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5 Numerical experiments

There are three numerical experiments in this section. Case one is a 3D static finite
element analysis of a plate with multi-material notches, as shown in Fig.4. The bot-
tom boundary of the mesh is fixed, and the upper boundary is applied to a pressure
in the global X direction, as shown in Fig.4. The details of material properties and
dimensions can be found in the reference (Ju, 2010). The total number of nodes
is 282,612, and the total number of DOF is 845,853. Case two is a 3D dynamic
analysis of the wave propagation in layered soils, as shown in Fig.5, in which there
is a foundation with four reinforced concrete piles in the mesh. A shaker generating
a sine wave in the Y direction is installed on the top of the concrete foundation, and
absorbing boundary conditions are arranged along the mesh boundaries in order to
remove boundary reflection waves. The detail of material properties and dimen-
sions can be found in the reference (Ju and Ni, 2007). The total number of nodes
is 1,299,594, and the total number of DOF is 3,895,674. Case 3 is a 3D dynamic
analysis of a cantilever beam subjected to a tip sine wave force, as shown in Fig.6.
The material is steel with a Young’s modulus of 2E8 kN/m2, Poisson’s ratio of 0.29,
and mass density of 7.9 t/m3. The total number of nodes is 1,243,941, and the total
number of DOF is 3,708,720.

For the three cases, the reverse Cuthill-McKee renumbering procedure (George and
Liu, 1981) was first used to minimize the bands of the stiffness matrix. Then, steps
(3) to (5) in Section 3 were performed to find the three-line stiffness matrix. Table
7 shows the nKL of the four cases, where nKL is the maximum number of blocks
in parts A and B under N=1 (N is defined in step (3) of Section 3). It is noted that
N/4 is the maximum number of processors that can be set.

Table 7: The maximum number of blocks (nKL) in parts A and B under N=1 for
the three cases (Maximum number of processors=nKL/4)

Case 1 2 3
nKL 152 132 121

5.1 Comparison of the iteration number between traditional and parallel schemes

The current method changes the original stiffness matrix to the three-line form,
which may increase the number of iterations for PCG methods. Thus, this section
investigates the PCG efficiency due to this problem. The efficiency ratio (RN) is
defined as follows:

RN =
The number of iterations for the original matrix form

The number of iterations for the three - line matrix form under a certain N
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where N defined in step (3) of Section 3 is the number of blocks to be combined for
part-A blocks. RN<1 means that the three-line matrix form requires more iterations
than the original one.

 
Figure 7: Efficiency ratio (RN) changing with N for the three numerical experi-
ments.

 
Figure 8: Speedup ratio (RMP) changing with the number of processors (M) for the
three numerical experiments.
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Figure 7 shows the efficiency ratio (RN) changing with N for the three numerical
experiments. This figure indicates that the efficiency increases when N increases.
The number of iteration required for N=1 can be much larger that that of the original
matrix form, especially for the ILU scheme. However, when N is larger than or
equal to 3, the increase of RN is much slower, and this efficient ratio is about 0.8
to 1 in this situation. Thus, N equal to 3 is suggested to generate the three-line
matrix form, and this N value is also used in the next section. It is noted that using
a large N will decrease the total number of three-line matrix blocks, which reduces
the maximum number of processors for the parallel solver.

5.2 Comparison of CPU time for multi-processors

This section compares the CPU time for the three numerical experiments using
different numbers of processors. An AMD Athlon-II computer with four processor
cores and 8 GB RAM was used in the 64-bit Windows-XP operating system. Intel
Fortran 10.0 with OpenMP 2.5 was used to compile the finite element program
(http://myweb.ncku.edu.tw/∼juju). The results were very similar to these for the
64-bit Windows-7 and 64-bit Ubuntu Linux operating systems. The speedup ratio
(RMP) is defined as follows:

RMP =
CPU time of the matrix solution using a processor

CPU time of the matrix solution using M processors

Figure 8 shows the speedup ratio (RMP) changing with the number of processors
(M) used for the three numerical experiments. This figure indicates that the speedup
ratio increases when M increases. However, the efficiency gradually reduces as the
number of processors increases. The average speedup using four processors is
about 2.7, which is 33% lower than that of the ideal condition. A similar level of
efficiency was reported by Dong and Li (2009) for solving groundwater problems,
Smelyanskiy et al. (2009) with sparse parallel linear solvers, and González et al.
(2009) with three multi-threaded solvers. The parallel efficiency is fairly dependent
on program compliers, which has been discussed in these three earlier papers, and is
also affected by computer hardware. The speed of data transport between the CPU
and memory is important for parallel finite element solvers, since each procedure of
the matrix multiplication, forward substitution, and backward substitution requires
the transport of the global matrix, which often contains a huge amount of data. This
data communication between the CPU and memory is often not parallel for multi-
core processors. Thus, this same basic CPU time is required for both sequential
and parallel procedures, which causes the speedup efficiency to be smaller than the
ideal condition.
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6 Conclusions

An OpenMP scheme was developed to parallel the ILU and SSOR PCG methods
in shared memory computers. First the global stiffness matrix is renumbered in
order to produce the three-line form matrix, and this step requires only the index
arrays of the global stiffness matrix. A 150-line Fortran module was included to
perform this procedure, in which a subroutine only needs to be called once in the
finite element analysis. Additionally, this procedure can be easily added to any
traditional linear or nonlinear finite element codes. Several OpenMP commands
are than added into the traditional ILU and SSOR codes to make the procedures
of the matrix multiplication, decomposition, forward substitution, and backward
substitution fully parallel. The major advantages of this method are that it is simple
and systematic, so that the algorithm of parallel PCG methods is almost the same
as the traditional one after performing the renumbering procedure.
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Appendix-A  A Fortran module to find the three-line matrix for parallel solvers 

!**************************************************** 
    module nbkLL 
       integer*4, allocatable:: kLL(:) 
       integer*4 nbk,nbk2; public nbk,nbk2,kLL,SpLLOK 
    contains 
!******************************************************** 
!**  Find parallel data and re-arrange LL, LLL and NOSC 
!**  Output (in module nbkLL) 
!**  kLL(i)=the last DOF of block i; nbk=number of blocks 
!**  nbk2=the last block number of the first step 
!**  NOSC(node No., DOF of the node)=Global DOF,(=0)fixed 
!**  node=number of nodes, kdf=max.DOF per node 
!**  NDF=number of global DOF, LL & LLL in Fig.1 
!** 
     subroutine SpLLOK(LL,LLL,NOSC,node,ndf,kdf) 
     dimension LL(ndf),LLL(*),NOSC(node,kdf) 
     allocatable id(:); allocate (id(ndf)) 
!** 
!**  Find Id(old DOF)=new DOF 
!** 
     NLL=ndf/1000+5 
     call nCPU(LL,LLL,id,NLL,ndf) 
!** 
!**  Change LL,LLL, and Nosc due to Id(old-DOF)=new-DOF 
!** 
     call SpLL(LL,LLL,NOSC,NODE,NDF,KDF,id,LL(ndf)) 
     end subroutine 
!******************************************************** 
!**  Find Id(old-DOF)=new-DOF 
!**  kLL(1-nbk)=the last DOF of block i (in module nbkLL) 
!**  nbk=number of blocks; nbk2=the last PART-A block number 
!** 
     subroutine nCPU(LL,LLL,Id,NLL,ndf) 
     dimension LL(ndf),LLL(*),id(ndf) 
     allocatable kL1(:); allocate (kL1(0:ndf-1)) 
!** 
!**  NLL=the number of DOF for the first block 
!**  kLL(i)=the last DOF of block i; nbk=number of blocks 
!** 
     nbk=1; kL1(nbk)=NLL; i=NLL; nkLL=i 
     do 
       do j=ndf,nkLL+1,-1 
          if (LLL(LL(j-1)+1)<=nkLL) exit 
       enddo 
       nbk=nbk+1; i=j; if (i>ndf) i=ndf 
       kL1(nbk)=i; nkLL=i; if (i==ndf) exit 
     enddo 
     allocate (kLL(0:nbk)) 
!** 
!**  kL1(i)=the last DOF of block i, nbk blocks 
!**  inc is the number of part-A blocks to be combined 
!** 
     ii=1; inc=5; kk=0 
     do i=inc,nbk-1,inc 
        kLL(ii)=kL1(i); ii=ii+1; kLL(ii)=kL1(i+1); kk=i+1 
     enddo 
!** 
     if (kk<nbk) then 
        ii=ii+1; kLL(ii)=kL1(nbk) 
     endif 
!** 
     nbk=ii 
     do i=1,nbk 
        kL1(i)=kLL(i) 
     enddo 
!** 
!**  Find id(old DOF)=new DOF 
!** 
     kLL(0)=0; kL1(0)=0; ndof=0; nbk1=0 
     do i=1,nbk,2 !Begin from the odd blocks 
        do j=kL1(i-1)+1,kL1(i) 
           ndof=ndof+1; id(j)=ndof 
        enddo 
        nbk1=nbk1+1; kLL(nbk1)=ndof 
     enddo 
     nbk2=nbk1 
!** 
     do i=2,nbk,2 !Continuous for the even blocks 
        do j=kL1(i-1)+1,kL1(i) 

           ndof=ndof+1; id(j)=ndof 
        enddo 
        nbk1=nbk1+1; kLL(nbk1)=ndof 
     enddo 
     end subroutine 
!** 
!**************************************************** 
!**  Input id(old)=new, change LL,LLL, and Nosc 
!** 
     subroutine SpLL(LL,LLL,NOSC,NODE,NDF,KDF,Id,nnn) 
     dimension LL(ndf),LLL(nnn),Nosc(node,kdf),id(ndf) 
     allocatable L1(:),LL1(:),nosc1(:,:) 
!** 
!**  change Nosc according id(old)=new 
!** 
     allocate(nosc1(node,kdf)) 
     do i=1,node 
       do j=1,kdf 
         ii=nosc(i,j) 
         if (ii<=0) then 
           nosc1(i,j)=nosc(i,j) 
         elseif (ii>0) then 
           nosc1(i,j)=id(ii) 
         endif 
       enddo 
     enddo 
     nosc=nosc1; deallocate (nosc1) 
!** 
!**  change LL and LLL according id(old)=new 
!** 
     allocate (L1(ndf),LL1(ndf)); L1=0 
     do i=2,ndf 
        I1=LL(i-1)+1; I2=LL(i); ii=id(i) 
        do j=I1,I2 
           jj=id(LLL(j)) 
           if (ii>jj) then;      L1(ii)=L1(ii)+1 
           elseif (ii<jj) then ; L1(jj)=L1(jj)+1 
           endif 
        enddo 
     enddo 
!** 
     L1(1)=0 
     DO I=NDF,2,-1 
        L1(I)=L1(I-1) 
     ENDDO 
!** 
     DO i=2,ndf 
       L1(I)=L1(I)+L1(I-1)  
     ENDDO 
!** 
!**  change LLL according id(old)=new 
!** 
     do i=2,ndf 
        I1=LL(i-1)+1; I2=LL(i); ii=id(i) 
        do j=I1,I2 
           jj=id(LLL(j)) 
           if (ii>jj) then 
             L1(ii)=L1(ii)+1; LL1(L1(ii))=jj 
           elseif (ii<jj) then 
             L1(jj)=L1(jj)+1;LL1(L1(jj))=ii 
           endif 
        enddo 
     enddo 
!** 
!**  Sort LLL 
!** 
     L1(1)=0 
     do i=2,ndf 
       j=L1(i-1)+1; JJ=L1(i)-L1(i-1) 
       call sort(LL1(j),JJ) ! a Quick sort program  
     enddo 
!** 
!**  Give back to LL and LLL 
!** 
     LL=L1; LLL=LL1; deallocate (L1,LL1) 
!** 
     end subroutine 
   end module nbkLL 




