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On the Solution of an Inverse Problem for an
Integro-differential Transport Equation
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Abstract: In this paper, the solvability conditions for an inverse problem for an
integro-differential transport equation are obtained and a numerical approximation
method based on the finite difference method is developed. A comparison between
the numerical solution and the exact solution of the problem is presented. Experi-
mental results show that proposed method is robust to data noises.
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1 Introduction

Inverse problems for differential equations arise in a variety of important applica-
tions in science and technology. In these applications the aim is to estimate some
unknown attributes of interest, given measurements that are only indirectly related
to these attributes. For instance, in medical computerized tomography, one wishes
to image structures within the body from measurements of X-rays that have passed
through the body. In groundwater flow modelling, one estimates material param-
eters of an aquifer from measurements of pressure of a fluid that immerses the
aquifer. Unfortunately, a small amount of noise in the data can lead to enormous
errors in the estimates. This instability phenomenon is called ill-posedness, [Vo-
gel (2002)]. The general theory of ill-posed problems and their applications is
developed by A. N. Tikhonov, V. K. Ivanov, M. M. Lavrent’ev and their students,
[Ivanov, Vasin, and Tanana (1978), Lavrent’ev, Romanov, and Shishatskii (1986),
Tikhonov and Arsenin (1979)].

In this work, we consider the transport equation

ux1 cosϕ +ux2 sinϕ +uϕ f (x,ϕ)+
∫ 2π

0
K
(
x,ϕ,ϕ ′

)
u
(
x,ϕ ′

)
dϕ
′ = λ (x) , (1)
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in the domain Ω = {(x,ϕ) : x ∈ D⊂ R2, ϕ ∈ (0,2π), ∂D ∈C3},
where f (x,ϕ) = f1 (x,ϕ)cosϕ + f2 (x,ϕ)sinϕ .

Problem 1 Find a pair of functions (u,λ ) defined in Ω from equation (1), provided
that the functions f1 (x,ϕ), f2 (x,ϕ), K (x,ϕ,ϕ ′) are given, u(x,ϕ) is 2π-periodic
in ϕ and the trace of u(x,ϕ) is known on Γ1 = ∂D× (0,2π).

Inverse problems for transport equations have a great importance both from theo-
retical and practical points of view. Some of the application areas of these problems
are medical imaging and optical tomography, radiative transfer in the atmosphere
and the ocean, neutron transport, as well as the propagation of seismic waves in the
earth crust, [Bal (2009)]. Interesting results in this field are presented in [Amirov
(1986), Amirov (2001), Anikonov, Kovtanyuk, and Prokhorov (2002), Natterer
(1986), Isakov (2006), Klibanov and Yamamoto (2007)].

In this paper, we prove the existence, uniqueness and stability of the solution of
Problem 1. Here the main difficulty is overdeterminancy of the problem. In the
theory of inverse problems, usually "overdeterminancy" means that the number of
free variables in the data exceeds the number of free variables in the unknown co-
efficient or right-hand side of the equation (λ (x)), and this is not the case here. In
fact, Problem 1 is related to a certain problem of integral geometry (IGP) along
regular curves and the underlying operator of this IGP is compact and its inverse
operator is unbounded. Therefore, it is impossible to prove general existence re-
sults. This is the true reason why for existence of solution to Problem 1 need such
special conditions on the data u0, so we use the term "overdeterminacy" in this
sense here.

There is a continuing and increasing interest in investigating the numerical solu-
tion of inverse and ill-posed problems. In these studies, the main goal is to im-
prove the convergence and ease of implementation of different numerical algo-
rithms. In this paper, we present a finite difference approach to solve Problem 1
numerically. In literature, there have been many studies devoted to numerical solv-
ing of second order partial differential equations using finite difference method.
But here, the way of proving the solvability of Problem 1 leads to a Dirichlet
type problem for a third order equation. So finite difference scheme is applied
to this problem. Here, it is assumed that a family of regular curves {Γ} passing
from each point x ∈ D and in any direction ν = (cosϕ,sinϕ) is given by curvature
f (x,ϕ) = f1 (x,ϕ)cosϕ + f2 (x,ϕ)sinϕ , and there exists a curve passing from ev-
ery x ∈ D in the arbitrary direction ν , with endpoints on the boundary of D. The
functions f1, f2 in the statement of the curvature depend on two variables, Problem
1 corresponds to an IGP along geodesics when K (x,ϕ,ϕ ′) = 0. Such problems
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have not been investigated numerically before. Also the way of specifying depen-
dence of λ upon ϕ (or determining L̂, see section 2) and the spaces where the
problem is investigated are new and original.

In order to obtain more accurate numerical results, several numerical methods have
been developed in recent years. For example, Beilina and Klibanov (2008) devel-
oped a globally convergent numerical method for a multidimensional coefficient
inverse problem for a hyperbolic PDE. On each iterative step, they solve the Dirich-
let boundary value problem for a second-order elliptic equation. Ling and Takeuchi
(2008) have combined the method of fundamental solutions (MFS) and boundary
control technique to solve the inverse Cauchy problem of Laplace equation. Liu
and Atluri (2008a) reformulated the inverse Cauchy problem of Laplace equation
in a rectangle as an optimization problem, and applied a fictitious time integration
method to solve an algebraic equations system to obtain the data on an unspecified
portion of boundary. In [Liu and Atluri (2008b)], a novel method was proposed for
computing the unknown potential function, the unknown impedance function, or
the unknown weighting function in the Sturm-Liouville operator, when the discrete
eigenvalues are specified. They employed a SL(2,R) Lie-group shooting method
(LGSM), combined with the use of Fictitious Time Integration Method (FTIM), for
solving the inverse Sturm-Liouville problems.

2 Solvability of the Problem

In [Amirov (2001)], a general scheme is presented for investigating the solvabil-
ity of such problems: using some extension of the class of unknown functions λ ,
overdetermined problem is replaced by a determined one. This is achieved by as-
suming the unknown function λ depends not only upon the space variable x, but
also upon the direction ϕ in a specific way such that λ (x,ϕ) satisfies a certain
differential equation (L̂λ = 0) with the following properties:

i) Problem 1 with the function λ (x,ϕ) becomes a determined one,

ii) The sufficiently smooth functions λ depending only on x satisfy this equation.

Remark 1 It should be noted the special dependence of λ (x,ϕ) upon the direc-
tion ϕ can not be arbitrarily, because in the opposite case the problem would be
underdetermined and the nonuniqueness examples of a solution can be easily con-
structed, [Amirov (2001)].

Some important definitions and notations which are used in studying the solvability
of the problem are presented below. The function spaces Ck(Ω), L2(Ω) and Hk(Ω)
are well known standart spaces and described in detail, for example, in [Lions and
Magenes (1972), Mikhailov (1978)].
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C3
π(Ω) denotes the space of all real-valued functions u(x,ϕ) ∈ C3(Ω) which are

2π-periodic with respect to the argument ϕ in the domain Ω, i.e. the values of the
function u and its derivatives up to third order at ϕ = 0 are equal to those at ϕ = 2π .
The scalar product:

(u,z)1,c =
∫

Ω

[
uz+

(
ux1 + f1uϕ

)(
zx1 + f1zϕ

)
+
(
ux2 + f2uϕ

)(
zx2 + f2zϕ

)]
dΩ,

is defined in C3
π(Ω), where dΩ = dx1dx2dϕ , and the norm

‖u‖1,c = [(u,u)1,c]1/2

is introduced. The completions of the set C3
π(Ω) with respect to the norms ‖ · ‖1,c

and ‖ · ‖Hm(Ω) (m = 1,2,3) are denoted by Hπ
1,c(Ω) and Hπ

m(Ω), respectively. The
set of functions ψ (x,ϕ)∈C3

π(Ω) such that ψ = 0 on Γ1 is denoted by C3
π0 (Ω). The

spaces H̊π
1,c(Ω) and H̊π

m(Ω) are the completions of the set C3
π0 with respect to the

norm ‖ · ‖1,c and ‖ · ‖Hm(Ω) (m = 1,2,3), [Amirov (2001)].

Furthermore, we introduce the following notations:

Au≡ L̂Lu,

where

L̂Lu =
∂ 2

∂ l∂ϕ
(Lu) ,

∂

∂ l
= sinϕ

(
∂

∂x1
+ f1ϕ + f2

)
−cosϕ

(
∂

∂x2
− f1 + f2ϕ

)
+( f1 sinϕ− f2 cosϕ)

∂

∂ϕ
.

Here the conjugate of the operator ∂

∂ l in the sense of Lagrange can be obtained as(
∂

∂ l

)∗
=−sinϕ

(
∂

∂x1
+ f1

∂

∂ϕ

)
+ cosϕ

(
∂

∂x2
+ f2

∂

∂ϕ

)
.

Γ′′(A) is the set of all functions u(x,ϕ) ∈ L2(Ω) with the property that for any
u∈ Γ′′(A), there exists a function y∈ L2(Ω) such that ∀η ∈C∞

0 (Ω), (u,A∗η)L2(Ω) =
(y,η)L2(Ω) and y = Au. Here (u,v)L2(Ω) is a scalar product of functions u and v in
L2(Ω), A∗ is the differential expression conjugate to A in the sense of Lagrange,
and C∞

0 (Ω) is the set of all functions defined in Ω which have continuous partial
derivatives of order up to all k < ∞, whose supports are compact subsets of Ω. So
the equality y = Au is satisfied in the sense of generalized functions.

The subset Γ(A)⊂ Γ′′(A) is such that for any u ∈ Γ(A) there is a sequence
{uk} ⊂C3

π0 with the following properties:
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i) uk→ u weakly in L2(Ω),
ii) (Auk,uk)L2(Ω)→ (Au,u)L2(Ω) as k→ ∞.

We now replace Problem 1 by the following determined problem.

Problem 2 Find a pair of functions (u,λ ) defined in Ω that satisfies

Lu≡ ux1 cosϕ +ux2 sinϕ +uϕ f +
∫ 2π

0
K
(
x,ϕ,ϕ ′

)
u
(
x,ϕ ′

)
dϕ
′ = λ (x,ϕ) , (2)

u|
Γ1

= u0, u(x,ϕ) = u(x,ϕ +2π), (3)

L̂λ = 0 (4)

provided that the functions f and K are known.

Remark 2 Equation (4) is satisfied in generalized functions sense, i.e. for any
function η ∈C∞

0 (Ω), the equality
(

λ , L̂∗η
)

L2(Ω)
= 0 is hold. Here L̂∗ is the conju-

gate operator to L̂ in the Lagrange sense.

We shall prove the existence of the solution of the problem using Galerkin method.
So we need the homogeneous boundary condition. Since u0 ∈C3(Γ1) and ∂D ∈C3

then from by Theorem 2, p. 130 in [Mikhailov (1978)], Problem 2 can be reduced
to the following problem with homogeneous data.

Problem 3 Find a pair of functions (u,λ ) defined in Ω that satisfies

Lu = λ +G, (5)

u|
Γ1

= 0, u(x,ϕ) = u(x,ϕ +2π), (6)

L̂λ = 0 (7)

provided that the functions f , K and G are known.

Theorem 1 If the functions

f1(x,ϕ), f2(x,ϕ) ∈C2(D̄× (0,2π)), K
(
x,ϕ,ϕ ′

)
∈C1 (D̄× (0,2π)× (0,2π))

are given and the inequality f1x2− f2x1 + f1ϕ f2− f1 f2ϕ > 0 holds for all x ∈ D̄ then
Problem 3 has a unique solution (u,λ ), such that u ∈ Γ(A)∩ H̊π

1 (Ω), λ ∈ L2(Ω).
Also, the inequality

‖u‖H̊π
1 (Ω) +‖λ‖L2(Ω) ≤C(‖G‖L2(Ω) +

∥∥Gϕ

∥∥
L2(Ω)) (8)

holds, where G ∈Hπ
2 (Ω), C > 0 depends on f1, f2 and the Lebesgue measure of D,

and D̄ is the closure of D.
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Proof. We first prove the uniqueness of the solution of Problem 3. Let us assume
(u,λ ) is a solution to the homogeneous version of Problem 3 (G = 0) such that
u ∈ Γ(A)∩ H̊π

1 (Ω) and λ ∈ L2(Ω). Equation (5) and condition (7) imply Au = 0.
Since u ∈ Γ(A), there exists a sequence {uk} ⊂ C3

π0 such that uk → u weakly in
L2(Ω) and (Auk,uk)L2(Ω)→ 0 as k→ ∞. It can be easily verified that

2(Auk,uk)L2(Ω) =
∫

Ω

I(∇uk)dΩ

+
∫

Ω

(−sinϕ
(
ukx1 + f1ukϕ

)
+ cosϕ

(
ukx2 + f2ukϕ

)
)
∫ 2π

0
Kϕu

(
x,ϕ ′

)
dϕ
′dΩ, (9)

where

I(∇uk) = (ukx1 + f1ukϕ)2 +(ukx2 + f2ukϕ)2 +( f1x2− f2x1 + f1ϕ f2− f1 f2ϕ)u2
kϕ .

If we take into account the following estimates for I(∇uk),

2 f1ukx1ukϕ ≥ −εu2
kx1
− ε
−1 f 2

1 u2
kϕ , 0 < ε < 1

2 f2ukx2ukϕ ≥ −εu2
kx2
− ε
−1 f 2

2 u2
kϕ ,

and the conditions of the theorem, we obtain the following inequalities,

I(∇uk) ≥ (1− ε)
(
u2

kx1
+u2

kx2

)
+
(
1− ε

−1)`u2
kϕ +η0u2

kϕ

≥ (1− ε) |∇xuk|2 +
(
η0 + `

(
1− ε

−1))u2
kϕ ,

where η0, ` ∈ R such that f1x2 − f2x1 + f1ϕ f2− f1 f2ϕ ≥ η0 > 0 and f 2
1 + f 2

2 ≤ `.

For sufficiently close value of ε to 1 we have η0 + `
(
1− ε−1

)
>

η0

2
, hence

I(∇uk)≥ (1− ε) |∇xuk|2 +
η0

2
u2

kϕ ≥ γ0

(∣∣∇x,ϕuk
∣∣2) , (10)

where γ0 = min
{
(1− ε),

η0

2

}
, |∇xuk|2 = u2

kx1
+u2

kx2
,
∣∣∇x,ϕuk

∣∣2 = u2
kx1

+u2
kx2

+u2
kϕ

.
Now we estimate the second term on the right-hand side of (9) using Cauchy-
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Schwartz and Steklov inequalities:∫
Ω

(−sinϕ
(
ukx1 + f1ukϕ

)
+ cosϕ

(
ukx2 + f2ukϕ

)
)
(∫ 2π

0
Kϕu

(
x,ϕ ′

)
dϕ
′
)

dΩ

≥ −1
2

∫
Ω

[
−sinϕ

(
ukx1 + f1ukϕ

)
+ cosϕ

(
ukx2 + f2ukϕ

)]2 dΩ

−1
2

∫
Ω

(∫ 2π

0
Kϕ

(
x,ϕ,ϕ ′

)
u
(
x,ϕ ′

)
dϕ
′
)2

dΩ

≥ −
∫

Ω

[
(sinϕ

(
ukx1 + f1ukϕ

)
)2 +(cosϕ

(
ukx2 + f2ukϕ

)
)2]dΩ

−
∫

D

(∫ 2π

0
u2 (x,ϕ ′)dϕ

′
∫ 2π

0

∫ 2π

0
K2

ϕ

(
x,ϕ,ϕ ′

)
dϕ
′dϕ

)
dx

≥ −2
∫

Ω

[
u2

kx1
+u2

kx2
+
(

f 2
1 + f 2

2
)

u2
kϕ

]
dΩ−M2

∫
Ω

∣∣∇x,ϕuk
∣∣2 dΩ

≥ −2l1
∫

Ω

(
u2

kx1
+u2

kx2
+u2

kϕ

)
dΩ−M2

∫
Ω

∣∣∇x,ϕuk
∣∣2 dΩ

≥ −M
∫

Ω

∣∣∇x,ϕuk
∣∣2 dΩ, (11)

where M = max{l1,M2} ,M2 = M1l1, M1 = max
x∈D̄

{∫ 2π

0

∫ 2π

0
K2

ϕ (x,ϕ,ϕ ′)dϕ ′dϕ

}
.

Then, from (10) and (11) we obtain

2(Auk,uk)L2(Ω) ≥
∫

Ω

γ0

(∣∣∇x,ϕuk
∣∣2)dΩ−M

∫
Ω

∣∣∇x,ϕuk
∣∣2 dΩ

= (γ0−M)
∫

Ω

∣∣∇x,ϕuk
∣∣2 dΩ. (12)

From the Steklov inequality, we have ‖uk‖2
L2(Ω) ≤C0

∫
Ω

∣∣∇x,ϕuk
∣∣2 dΩ, so

‖uk‖2
L2(Ω) ≤C2 (Auk,uk)L2(Ω) , (13)

where C2 = 2C0
1

(γ0−M)
and C0 > 0 is independent of k and depends on Lebesgue

measure of D. Consequently, by virtue (13) and the definition of Γ(A) we have

‖u‖2
L2(Ω) ≤ lim

k→∞

‖uk‖2
L2(Ω) ≤C2 lim

k→∞

(Auk,uk)L2(Ω) = 0. (14)

From (14), it folllows that ‖u‖2
L2(Ω) = 0, i.e. u = 0 and from (5), λ = 0. Hence, the

uniqueness of the solution of the problem is proven.
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Now we prove the existence of the solution of the problem in the set:

(Γ(A)∩ H̊π
1 (Ω))×L2(Ω).

Select a set {e1,e2,e3, ...} ⊂C3
π0 which is complete and orthonormal in L2(Ω). We

may assume here that the linear span of this set is everywhere dense in H̊π
1,c(Ω).

In fact, the space H̊π
1,c(Ω)∩ H̊1(Ω) being seperable, there exists a countable set

{ϕ i}
∞

i=1 ⊂ C3
π0 which is everywhere dense in this space. If necessary, this set up

can be extended to a set which is everywhere dense in L2(Ω). Orthonormalizing
the latter in L2 (Ω), we obtain {e1,e2,e3, ...}.We denote the orthogonal projector of
L2 (Ω) onto Mn by Pn, where Mn is the linear span of {e1,e2, ...,en}.
Using the relations (5)-(7), we obtain the following problem:

Au = L̂G = F , (15)

u|Γ1 = 0, u(x,ϕ) = u(x,ϕ +2π). (16)

We seek the approximate solution of problem (15)-(16) in the form

uN =
N

∑
i=1

αNiei(x,ϕ); αN = (αN1 ,αN2 , ...,αNN ) ∈ RN

with the help of the following relations:∫
Ω

L̂(LuN−G)e jdΩ = 0, j = 1,2, ...,N, dΩ = dx1dx2dϕ . (17)

The unknown coefficients αNi are determined from system of linear algebraic equa-
tions (17). We now prove that when G = 0, system (17) has a unique solution for
any G ∈Hπ

2 (Ω). Let’s substitute ᾱN for αN , multiply the jth equation by 2ᾱN j and
sum with respect to j from 1 to N, then we obtain

2
∫

Ω

L̂LūN ūNdΩ = 0, (18)

where ūN =
N
∑

i=1
ᾱNiei. Then equalities (9) and (18) yield

∫
Ω

[
(ūNx1 + f1ūNϕ)2 +(ūNx2 + f2ūNϕ)2 +( f1x2− f2x1 + f1ϕ f2− f1 f2ϕ)ū2

Nϕ

]
dΩ

+
∫

Ω

(−sinϕ
(
ūNx1 + f1ūNϕ

)
+ cosϕ

(
ūNx2 + f2ūNϕ

)
)
∫ 2π

0
Kϕ ūNdϕ

′dΩ = 0. (19)
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Using inequality (12) and the condition ūN = 0 on Γ1, from (19) we have ūN = 0
in Ω. Since the system {ei} is linearly independent, we get ᾱNi = 0, i = 1,2, ...,N.
Thus, the homogeneous version of system (17) has only trivial solution and there-
fore the original inhomogeneous system (17) has a unique solution αN for any
G ∈ Hπ

2 (Ω).
Now we estimate the solution uN of system (17) in terms of the right hand side G.
If we multiply the jth equation of (17) by 2αN j and sum from 1 to N with respect
to j, then we obtain

2
∫

Ω

uN L̂LuNdΩ = 2
∫

Ω

uN L̂GdΩ. (20)

The right-hand side of (20) can be obtained as follows:

2
∣∣∣∣∫

Ω

uN L̂GdΩ

∣∣∣∣≤ α0

∫
Ω

G2
ϕdΩ+α

−1
0

∫
Ω

((
∂

∂ l

)∗
uN

)2

dΩ.

Since the left hand side of (20) equals 2(AuN ,uN)L2(Ω), from (12) for sufficiently
large α0 > 0, we get

(γ0−M)
∫

Ω

∣∣∇x,ϕuN
∣∣2 dΩ≤ α0

∫
Ω

G2
ϕdΩ+α

−1
0

∫
Ω

((
∂

∂ l

)∗
uN

)2

dΩ.

Hence, we obtain∫
Ω

∣∣∇x,ϕuk
∣∣2 dΩ≤C,

∫
Ω

u2
NdΩ≤C, (21)

where the constant C doesn’t depend on N. Thus, the set of functions {uN} is
bounded in H̊π

1 (Ω). Since H̊π
1 (Ω) is a Hilbert space, the set {uN} is weakly compact

in it. Therefore, there exists a subsequence (we again denote it by {uN}) such that
uN → u weakly in H̊π

1 (Ω) as N→ ∞, so it follows that

‖u‖H̊π
1 (Ω) ≤C

∥∥Gϕ

∥∥
L2(Ω) . (22)

Since u ∈ H̊π
1 (Ω), by the definition of H̊π

1 (Ω), we have u|Γ1 = 0. From inequality
(22), it can be easily proved that there exists a subsequence of {uN}, which is again
denoted by {uN}, such that uNx1 , uNx2 and uNϕ converge weakly in L2(Ω) to ux1 ,
ux2 and uϕ , respectively. Transferring the operator L̂ to e j in (17) and taking into
account the conditions uN ,e j ∈C3

π0 and G ∈ Hπ
2 (Ω), we have∫

Ω

(LuN−G)(L̂)∗e jdΩ = 0, N ≥ j.
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Since the linear span of {e j} is eveywhere dense in the space H̊π
1,c(Ω), passing to

the limit as N→ ∞ we get

∫
Ω

(Lu−G)(L̂)∗ζ dΩ = 0, (23)

for every ζ ∈ H̊π
1,c(Ω). If we set λ = Lu−G, from (23) we see that λ satis-

fies condition (7) for any ζ ∈C∞
0 (Ω) ⊂ H̊π

1,c(Ω), and also by using the inequality
‖u‖H̊π

1 (Ω) ≤C
∥∥Gϕ

∥∥
L2(Ω), we obtain (8). In the expressions above, C stands for dif-

ferent constants that depend only on the given functions and Lebesgue measure of
the domain D. Consequently, we have found a solution (u,λ ) to Problem 3, where
u ∈ H̊π

1 (Ω) and λ ∈ L2(Ω).
Now it will be proven that u ∈ Γ(A). Since u ∈ L2(Ω) and G ∈Hπ

2 (Ω), from (23) it
follows that F = Au ∈ L2(Ω) in the generalized sense.

Finally, let us prove (AuN ,uN)L2(Ω)→ (Au,u)L2(Ω) as N→∞. If we apply L̂ to both
sides of λ N = LuN−G and bearing (17) in mind, it follows that PNAuN = PNF .
Since PN is an orthogonal projector onto Mn, PNF converges strongly to F in
L2(Ω) as N→∞, i.e. PNAuN→F = Au strongly in L2(Ω) as N→∞. Also, since
{uN} weakly converges to u in L2(Ω) as N → ∞, we have (PNAuN ,uN)L2(Ω) →
(Au,u)L2(Ω) as N → ∞. Hence (AuN ,uN)L2(Ω) → (Au,u)L2(Ω) as N → ∞, which
completes the proof.

3 A Numerical Method: The Finite Difference Scheme

In this section, we develop a finite difference approximation for the following in-
verse problem: Determine a solution (u,λ ) in

Ω = {(x1,x2,ϕ)| (x1,x2) ∈ (a,b)× (c,d) , a,b,c,d ∈ R, ϕ ∈ (0,2π)}

from the relations

Lu = ux1 cosϕ +ux2 sinϕ +uϕ( f1 (x,ϕ)cosϕ + f2 (x,ϕ)sinϕ) = λ (x,ϕ) , (24)

u|
Γ1

= u0(x,ϕ), u(x,ϕ) = u(x,ϕ +2π), (25)

L̂λ = 0. (26)
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If the operator L̂ is applied to both sides of equation (24), then we obtain a Dirichlet
type problem for a third order partial differential equation:

Au ≡ ux1x2ϕ

(
sin2

ϕ− cos2
ϕ
)
−ux2x2ϕ sinϕ cosϕ +ux1x1ϕ cosϕ sinϕ−ux1x1 sin2

ϕ

−ux2x2 cos2
ϕ +2ux1x2 sinϕ cosϕ +ux1ϕϕ ( f1 sin2ϕ− f2 cos2ϕ)

−ux2ϕϕ ( f2 sin2ϕ + f1 cos2ϕ)+uϕϕϕ ( f1 cosϕ + f2 sinϕ)( f1 sinϕ− f2 cosϕ)
+ux1 [ f2 cos2ϕ− f1 sin2ϕ −

(
f1ϕ sinϕ− f2ϕ cosϕ

)
sinϕ

]
+ux2 [ f1 cos2ϕ + f2 sin2ϕ +

(
f1ϕ sinϕ− f2ϕ cosϕ

)
cosϕ

]
+uϕϕF1 (x,ϕ)+ux1ϕF2 (x,ϕ)+uϕF3 (x,ϕ) = 0, (27)

u|
Γ1

= u0(x,ϕ), u(x,ϕ) = u(x,ϕ +2π), (28)

where

F1 (x,ϕ) = ( f1x1 cosϕ + f2x1 sinϕ)sinϕ− ( f1x2 cosϕ + f2x2 sinϕ)cosϕ

+2
(

f1ϕ cosϕ + f2ϕ sinϕ
)
( f1 sinϕ− f2 cosϕ)−2( f1 sinϕ− f2 cosϕ)2

+( f1 cosϕ + f2 sinϕ)2 +
(

f1ϕ sinϕ− f2ϕ cosϕ
)
( f1 cosϕ + f2 sinϕ) ,

F2 (x,ϕ) = 3( f2 cosϕ− f1 sinϕ)sinϕ +( f2 sinϕ + f1 cosϕ)cosϕ

+ f1ϕ sin2ϕ − f2ϕ cos2ϕ
]
+ux2ϕ [2cosϕ ( f1 sinϕ− f2 cosϕ)

+ f1 sin2ϕ− f2 cos2ϕ− ( f1ϕ cos2ϕ + f2ϕ sin2ϕ),

F3 (x,ϕ) =
((

f1ϕx1 + f2x1

)
cosϕ +

(
f2ϕx1− f1x1

)
sinϕ

)
sinϕ

−(
(

f1ϕx2 + f2x2

)
cosϕ +

(
f2ϕx2− f1x2

)
sinϕ)cosϕ

+2( f1 cosϕ + f2 sinϕ)( f2 cosϕ− f1 sinϕ)
+3
(

f1ϕ sinϕ− f2ϕ cosϕ
)
( f2 cosϕ− f1 sinϕ)

+
(

f1ϕ sinϕ− f2ϕ cosϕ
)(

f1ϕ cosϕ + f2ϕ sinϕ
)

+
(

f1ϕ cosϕ + f2ϕ sinϕ
)
( f2 sinϕ + f1 cosϕ)

+
(

f1ϕϕ cosϕ + f2ϕϕ sinϕ
)
( f1 sinϕ− f2 cosϕ)

]
.

Using the central finite difference formulas in (27), we obtain the following system
of simultaneous algebraic nodal equations:
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−a(k)
1 ũk−1

i−1, j−1 +a(k)
6 ũk

i−1, j−1 +a(k)
1 ũk+1

i−1, j−1− (a(k)
3 +b(i, j,k)

1 −b(i, j,k)
5 )ũk−1

i−1, j

+(a(k)
4 +2b(i, j,k)

1 −b(i, j,k)
7 )ũk

i−1, j +(a(k)
3 −b(i, j,k)

1 −b(i, j,k)
5 )ũk+1

i−1, j +a(k)
1 ũk−1

i−1, j+1

−a(k)
6 ũk

i−1, j+1−a(k)
1 ũk+1

i−1, j+1− (a(k)
2 +b(i, j,k)

2 −b(i, j,k)
6 )ũk−1

i, j−1 +(a(k)
5 +2b(i, j,k)

2

−b(i, j,k)
8 )ũk

i, j−1 +(a(k)
2 −b(i, j,k)

2 −b(i, j,k)
6 )ũk+1

i, j−1−b(i, j,k)
3 ũk−2

i, j +(2(a(k)
2 +a(k)

3 +b(i, j,k)
3 )

+b(i, j,k)
4 −b(i, j,k)

9 )ũk−1
i, j −2(a(k)

4 +a(k)
5 +b(i, j,k)

4 )ũk
i, j− (2(a(k)

2 +a(k)
3 +b(i, j,k)

3 )−b(i, j,k)
4

−b(i, j,k)
9 )ũk+1

i, j +b(i, j,k)
3 ũk+2

i, j − (a(k)
2 −b(i, j,k)

2 +b(i, j,k)
6 )ũk−1

i, j+1 +(a(k)
5 −2b(i, j,k)

2

+b(i, j,k)
8 )ũk

i, j+1 +(a(k)
2 +b(i, j,k)

2 +b(i, j,k)
6 )ũk+1

i, j+1 +a(k)
1 ũk−1

i+1, j−1−a(k)
6 ũk

i+1, j−1

−a(k)
1 ũk+1

i+1, j−1− (a(k)
3 −b(i, j,k)

1 +b(i, j,k)
5 )ũk−1

i+1, j +(a(k)
4 −2b(i, j,k)

1 +b(i, j,k)
7 )ũk

i+1, j

+(a(k)
3 +b(i, j,k)

1 +b(i, j,k)
5 )ũk+1

i+1, j−a(k)
1 ũk−1

i+1, j+1 +a(k)
6 ũk

i+1, j+1 +a(k)
1 ũk+1

i+1, j+1

= 0, (i = 1,2, ..., I, j = 1,2, ...,J, k = 1,2, ...,K), (29)

where I, J, K are positive integers, ∆x1 = (b− a)/(I + 1), ∆x2 = (d− c)/(J + 1)
and ∆ϕ = 2π/K are step sizes in the directions x1, x2 and ϕ , respectively. ũi, j,k is
the finite difference approximation to the solution u(x1i,x2 j,ϕk) = u(a + i∆x1,c +
j∆x2,k∆ϕ), and the coefficients in system (29) are defined as follows:

a(k)
1 =

1
8∆x1∆x2∆ϕ

(sin2
ϕk− cos2

ϕk), a(k)
2 =− 1

2(∆x2)
2

∆ϕ
cosϕk sinϕk,

a(k)
3 =

1

2(∆x1)
2

∆ϕ
cosϕk sinϕk, a(k)

4 =− 1

(∆x1)
2 sin2

ϕk,

a(k)
5 =− 1

(∆x2)
2 cos2

ϕk, a(k)
6 =

1
2∆x1∆x2

cosϕk sinϕk,

b(i, j,k)
1 =

1

2∆x1 (∆ϕ)2

(
f i, j,k
1 sin2ϕk− f i, j,k

2 cos2ϕk

)
,

b(i, j,k)
2 =− 1

2∆x2 (∆ϕ)2

(
f i, j,k
2 sin2ϕk + f i, j,k

1 cos2ϕk

)
,

b(i, j,k)
3 =

1
2∆ϕ3

(
f i, j,k
1 cosϕk + f i, j,k

2 sinϕk

)(
f i, j,k
1 sinϕk− f i, j,k

2 cosϕk

)
,
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b(i, j,k)
4 =

1

(∆ϕ)2

[(
f i, j,k
1x1

cosϕk + f i, j,k
2x1

sinϕk

)
sinϕk

−
(

f i, j,k
1x2

cosϕk + f i, j,k
2x2

sinϕk

)
cosϕk

+2
(

f i, j,k
1ϕ

cosϕk + f i, j,k
2ϕ

sinϕk

)(
f i, j,k
1 sinϕk− f i, j,k

2 cosϕk

)
−2( f i, j,k

1 sinϕk− f i, j,k
2 cosϕk)

2 +( f i, j,k
1 cosϕk + f i, j,k

2 sinϕk)
2

+
(

f i, j,k
1 cosϕk + f i, j,k

2 sinϕk

)
( f i, j,k

1ϕ
sinϕk− f i, j,k

2ϕ
cosϕk)

]
,

b(i, j,k)
5 =

1
4∆x1∆ϕ

[
3
(

f i, j,k
2 cosϕk− f i, j,k

1 sinϕk

)
sinϕk

+
(

f i, j,k
1 cosϕk + f i, j,k

2 sinϕk

)
cosϕk + f i, j,k

1ϕ
sin2ϕk− f i, j,k

2ϕ
cos2ϕk

]
,

b(i, j,k)
6 =

1
4∆x2∆ϕ

[(
2cosϕk( f i, j,k

1 sinϕk− f i, j,k
2 cosϕk)

+
(

f i, j,k
1 sin2ϕk− f i, j,k

2 cos2ϕk

)
− ( f i, j,k

1ϕ
cos2ϕk + f i, j,k

2ϕ
sin2ϕk)

]
,

b(i, j,k)
7 =

1
2∆x1

[
f i, j,k
2 cos2ϕk− f i, j,k

1 sin2ϕk − ( f i, j,k
1ϕ

sinϕk− f i, j,k
2ϕ

cosϕk)sinϕk

]
,

b(i, j,k)
8 =

1
2∆x2

[
f i, j,k
1 cos(2ϕk)+ f i, j,k

2 sin(2ϕk) +( f i, j,k
1ϕ

sinϕk− f i, j,k
2ϕ

cosϕk)cosϕk

]
,

b(i, j,k)
9 =

1
2∆ϕ

[
1
2

((
f i, j,k
1ϕ

)2
−
(

f i, j,k
2ϕ

)2
)

sin2ϕk− f i, j,k
1ϕ

f i, j,k
2ϕ

cos2ϕk

−
((

f i, j,k
1ϕx2

+ f i, j,k
2x2

)
cosϕk +

(
f i, j,k
2ϕx2
− f i, j,k

1x2

)
sinϕk

)
cosϕk

+
((

f i, j,k
1ϕx1

+ f i, j,k
2x1

)
cosϕk +

(
f i, j,k
2ϕx1
− f i, j,k

1x1

)
sinϕk

)
sinϕk

+
((

f i, j,k
1ϕ

+2 f i, j,k
2

)
cosϕk +

(
f i, j,k
2ϕ
−2 f i, j,k

1

)
sinϕk

)
×
(

f i, j,k
1 cosϕk + f i, j,k

2 sinϕk

)
+
(

f i, j,k
2 cosϕk− f i, j,k

1 sinϕk

)
×
((

3 f i, j,k
1ϕ
− f i, j,k

2ϕϕ

)
sinϕk−

(
3 f i, j,k

2ϕ
+ f i, j,k

1ϕϕ

)
cosϕk

)]
.
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From the first condition in (28), we have the following discrete boundary condi-
tions:

ũk
0, j = u(a,x2 j,ϕk), ũk

I+1, j = u(b,x2 j,ϕk),

ũk
i,0 = u(x1i,c,ϕk), ũk

i,J+1 = u(x1i,d,ϕk),

(i = 0,1, ..., I +1, j = 0,1, ...,J +1, k = 1,2, ...,K)

and also from the periodicity condition, we have ũi, j,0 = ũi, j,K and ũi, j,K+1 = ũi, j,1.
The approximate values ũi, j,k are obtained at I×J×K mesh points of Ω by solving
system of linear algebraic equations (29).

To calculate λ numerically, the central-difference formulas are used in (24) and the
difference equations:

ũk
i+1, j− ũk

i−1, j

2∆x1
cosϕk +

ũk
i, j+1− ũk

i, j−1

2∆x2
sinϕk

+
(

f i, j,k
1 cosϕk + f i, j,k

2 sinϕk

) ũk+1
i, j − ũk−1

i, j

2∆ϕ
= λ̃

k
i, j, (30)

(i = 1,2, ..., I , j = 1,2, ...,J , k = 1,2, ...,K)

are solved. Here λ̃ i, j,k is the finite difference approximation to λ (x1i,x2 j,ϕk) =
λ (a+ i∆x1,c+ j∆x2,k∆ϕ).

3.1 Numerical Experiments

The proposed method has been tested on many inverse problems. The computations
are performed using MATLAB 7.0 program on a PC with Intel Core 2 T7200, 2
GHz. All the experiments have carried out using multiplicative random noise in
the boundary data uσ which is obtained by adding relative error to computed data
ucomp according to the following expression:

uσ (x1i,x2 j,ϕk) = ucomp (x1i,x2 j,ϕk)
[

1+
α (umax−umin)σ

100

]
.

Here, (x1i,x2 j,ϕk) is a mesh point at the boundary ∂Ω, α is a random number in
the interval [−1,1], umax and umin are maximal and minimal values of the computed
data ucomp, respectively, and σ is the noise level in percents.

Example 1 Let’s consider the problem of determining (u,λ ) in Ω =(1,2)×
(
0, 1

2

)
×

(0,2π) that satisfies the equation

ux1 cosϕ +ux2 sinϕ +
1√

1+(x2− x1)2
uϕ(cosϕ + sinϕ) = λ
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and the conditions

u(1,x2,ϕ) = e
arcsin( x2−1√

1+(x2−1)2
)
(cosϕ− sinϕ),

u(2,x2,ϕ) = e
arcsin( x2−2√

1+(x2−2)2
)
(cosϕ− sinϕ),

u(x1,0,ϕ) = e
arcsin( −x1√

1+x2
1

)
(cosϕ− sinϕ),

u(x1,1/2,ϕ) = e
arcsin( 1/2−x1√

1+(1/2−x1)
2
)
(cosϕ− sinϕ),

u(x,ϕ) = u(x,ϕ +2π), L̂λ = 0.

The exact solution of the problem is

u(x1,x2,ϕ) = e
arcsin( x2−x1√

1+(x2−x1)
2
)
(cosϕ− sinϕ),

λ (x1,x2,ϕ) = −2√
1+(x2−x1)2

e
arcsin( x2−x1√

1+(x2−x1)
2
)
.

Figure 1 presents a comparison between the exact solution and the computed nu-
merical solution of the problem for I = J = 22, K = 6: (a) approximate u, (b) exact
u. Approximate values of λ can be obtained using formula (30) according to the
approximate values of u.

1
1.5

2

0

0.5

−0.9

−0.8

−0.7

−0.6

−0.5

x2

(a)

x1
1

1.5
2

0

0.5

−0.9

−0.8

−0.7

−0.6

−0.5

x2
x1

(b)

Figure 1: Exact and numerical solution of the problem.

Figure 2 displays the one dimensional cross sections (x2 = 0.45) of computed ap-
proximate solutions with different noise levels superimposed with the exact solu-
tion (u(x1,x2,ϕ)) of the inverse problem.
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%10 Noise
%15 Noise

Figure 2: Approximate solutions for different noise levels at x2 = 0.45.

Example 2 Determine a pair of functions (u,λ ) defined in Ω =(0,1/2)×(1/2,1)×
(0,2π) that satisfies the equation

ux1 cosϕ +ux2 sinϕ +3(x2− x1)2uϕ(cosϕ + sinϕ) = λ

and the following conditions

u(0,x2,ϕ) = ex3
2(cosϕ− sinϕ), u(1/2,x2,ϕ) = e(x2−1/2)3

(cosϕ− sinϕ),

u(x1,1/2,ϕ) = e(1/2−x1)3
(cosϕ− sinϕ), u(x1,1,ϕ) = e(1−x1)3

(cosϕ− sinϕ),

u(x,ϕ) = u(x,ϕ +2π), L̂λ = 0.

Here the exact solution of the problem is

u(x1,x2,ϕ) = e(x2−x1)3
(cosϕ− sinϕ),

λ (x1,x2,ϕ) = −6(x2− x1)
2 e(x2−x1)

3
.

On Figure 3 below, numerical solution and exact solution (u(x1,x2,ϕ)) of the in-
verse problem are presented for I = J = 24,K = 6. On Figure 4, a comparison
between the exact solution and the approximate solution of the problem for differ-
ent noise levels is presented by one dimensional cross sections (x1 = 0.2).

Consequently, numerical experiments show that proposed method is feasible for
solving Problem 1. And it is robust to data noises. By using high performance
computers, we can obtain high quality results for the greater values of I, J and K.
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Figure 3: Exact and numerical solution of the problem.
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Figure 4: Approximate solutions for different noise levels at x1 = 0.2.
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