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Modeling and Simulation of Fiber Reinforced Polymer
Mold Filling Process by Level Set Method

Binxin Yang1, Jie Ouyang1, Tao Jiang1 and Chuntai Liu2

Abstract: A gas-solid-liquid three-phase model is proposed for fiber reinforced
composites mold filling process. The fluid flow is described in Eulerian coordinate
while the dynamics of fibers is described in Langrangian coordinate. The interac-
tion of fluid flow and fibers are enclosed in the model. The influence of fluid flow
on fibers is described by the resultant forces imposed on fibers and the influence
of fibers on fluid flow is described by the momentum exchange source term in the
model. A finite volume method coupled with a level set method for viscoelastic-
Newtonian fluid flow is used to solve the model. The direct dynamic numerical
simulation for reinforced composites mold filling process is realized. The infor-
mation about fiber transformation and orientation and interface evolution are ob-
tained dynamically as well as the information about pressure and velocity etc. The
skin-core-skin structure of fibers under different slenderness ratios during the mold
filling process is captured which is in accordance with experimental results.

Keywords: fiber reinforced composites, mold filling, finite volume method, vis-
coelastic, fiber orientation

1 Introduction

The plastic mold filling process produces large numbers of parts of high quality.
Plastic material in the form of granules is melted until soft enough to be injected
under pressure to fill a mold. Early simulations of mold filling process mostly
used the Hele-Shaw model coupled with the finite element method, which is based
on the creeping flow lubrication model [Wang, Hieber and Wang (1986); Chiang
Hieber and Wang (1991); Kabanemi et al. (1998); Smith, Tortorelli and Tucker
(1998)]. With the development of computer hardware, 3-dimensional simulations
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of mold filling process have been realized by using Navier-Stokes equations and
different numerical methods [Hetu et al. (1998); Pichelin and Coupez (1998); Kim
and Turng (2006); Zhou, Geng and Li (2005); Chang and Yang (2001); Zhou and
Turng (2007)]. The papers mentioned above studied the mold filling process with-
out the consideration of the interface motion. The development of the interface
capturing or tracking techniques, such as volume of fluid method (VOF) and the
level set method and so on, has propelled greatly the development of mold filling
simulation techniques. Many papers studying mold filling process coupled with in-
terface tracking techniques can be found [Khayat, Elsin and Kim (2000); Holm and
Langtangen (1999); Luoma and Voller (2000); Soukane and Trochu (2006); Ayad
and Rigolot (2002); Geng, Li and Zhou (2006); Kim, Park and Lee (2003); Zhou,
Yan and Zhang (2008); Au (2005); Khor et al. (2010)]. In these papers, the vis-
coelastic properties of materials were ignored. However, the melt for mold filling
process is often viscoelastic materials. Some papers made a study on mold filling
problems with viscoelastic free surfaces [Bonito, Picasso and Laso (2006); Tomé et
al. (2000)]. However, these papers studied the problem with only viscoelastic fluid
phase considered and the gas phase in the cavity ignored, in which case complex
boundary conditions must be properly dealt with. Yang et al. (2010) proposed a
model for mold filling process in which the governing equations for the viscoelastic
fluid (melt phase) and the Newtonian fluid (gas phase) are successfully united into
a system of generalized Navier-Stokes equations, avoiding dealing with complex
boundary conditions.

On the other hand, for fiber reinforced composites mold filling process, fibers mo-
tion and orientation must be considered as well as free interface evolution. How-
ever, many papers focused more on the mechanical properties of solid fiber rein-
forced composites than considering the forming process of fiber reinforced com-
posites [ Yerramalli and Waas (2004); Verbis, Tsinopoulos and Polyzos (2002);
Pyo and Lee (2009); Bohm, Han and Eckschlager (2004)]. Ngo and Tamma (2004)
described an in-depth study of the mathematical and computational developments
towards the formulation of a fully integrated and comprehensive approach to the
modeling of composite manufactured net-shaped parts. Tang and Advani (2005)
proposed an optimization method to simulate the motion of long flexible fibers in
shear flow. Some papers simulated the fiber orientation in mold filling process
[Henry De Frahan et al. (1992); McGrath and Wille (1995); Kim, Park and Jo
(2001); Chung and Kwon (2002)].

However, to our knowledge, a dynamic simulation for fiber reinforced composites
for mold filling process can not be found. The difficulty lies in that both fibers
transformation and orientation and interface evolution must be considered simulta-
neously. In our previous work [Yang et al. (2010)] that proposed the viscoelastic-
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Newtonian model for mold filling process, the interface formed by the viscoelastic
melt and the gas in the mold can be captured at each time step. In this paper, a gas-
solid-liquid three-phase model, including the information of fluid flow, interface
evolution and dynamics of fibers, is proposed based on our viscoelastic-Newtonian
model [Yang et al. (2010)]. The description for dynamics of fibers in a Langrangian
coordinate are coupled successfully with both the level set method for interface
evolution and fluid flow description in Eulerian coordinates. Classical numerical
methods, such as finite volume method, can be easily used to solve the model for
the direct dynamic numerical simulation of fiber reinforced composites mold filling
process. The information about fiber transformation and orientation and interface
evolution can be obtained at each time step. The changes of pressure and velocity
etc. versus time can also be captured.

2 Viscoelastic-Newtonian model for mold filling process [Yang et al. (2010)]

2.1 Level set equation for interface evolution

We use the level set method to describe the interface Γ between the two sub-
domains. The level set function ϕ usually takes the form of a signed distance to
the interface, whereby the zero level set ϕ = 0 represents the points x(x = (x,y))
on the actual interface Γ. The interface is evolved by the velocity (u,v). It can be
described by the advection equation in the Eulerian coordinate [Osher and Fedkiw
(2001)] .

∂ϕ

∂ t
+u ·∇ϕ = 0 (1)

A reinitialization algorithm must be applied to keep ϕ as the algebraic distance to
the interface. We use the corrected algorithm presented by Sussman et al. (1998)
to improve the accuracy of solving the reinitialization equation. A local correction
item, ωδε (ϕ) |∇ϕ|, is added to the reinitialization equation. The revised reinitial-
ization equation can be described as{

∂ϕ

∂ tr
+ sign(ϕ0)(|∇ϕ|−1) = ωδε (ϕ) |∇ϕ|

ϕ(x,y,0) = ϕ0(x,y)
(2)

whereω is the weight coefficient, tr is a pseudo time, sign(ϕ0) is the sign function
of ϕ which is defined as

sign(ϕ0) =
ϕ0√

ϕ2
0 +[min(∆x,∆y)]2

(3)
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Here,∆x and ∆y are the grid widths along x and y direction respectively, and [min(∆x,∆y)]2

is used to avoid denominator’s dividing by zero. δε (ϕ) is the Dirac function defined
as

δε (ϕ) =

{
1

2ε
(1+ cos(πϕ/ε)) |ϕ|< ε

0 otherwise
(4)

Here, ε is a small positive number about a grid width. See Sussman et al. (1998)
for more details.

2.2 Governing equations for Viscoelastic-Newtonian flow

In mold filling process, since the gas-phase and the liquid-phase are immiscible and
the Mach number of the gas is very small, both the gas-phase and the liquid-phase
can be regarded as incompressible flows.

Since the melt for mold filling is viscoelastic, a proper constitutive equation de-
scribing the rheology of polymer melts must be chosen. The extended pom-pom
(XPP) constitutive equation is based on molecular theory of rheology and can pro-
vide a good fitting to the rheology of polymer melts and concentrated solutions
[Verbeeten, Peters and Baaijens (2001); Verbeeten, Peters and Baaijens (2002)].
The stresses τxx, τxy and τyy satisfy the following XPP constitutive relation which
is described as a tensor form

f (λ ,τ)τ +λ0b
∇

τ +G0 ( f (λ ,τ)−1)I+
α

G0
τ · τ = 2λ0bG0d (5)

where f (λ ,τ) = 2 λ0b
λ0s

eν(λ−1)
(
1− 1

λ

)
+ 1

λ 2

[
1− αIτ·τ

3G2
0

]
, λ =

√
1+ |Iτ |

3G0
, ν = 2

q . Here
λ is the backbone stretch used to represent the stretched degree of the polymer
molecule, α is a material parameter defining the amount of anisotropy, λ0b and λ0s

denote the orientation and backbone stretch relaxation time-scales of the polymer
chains respectively, G0 is the linear relaxation modulus, I is the identity tensor, q
is the number of arms of polymer chains and d is the strain tensor. The superscript
symbol ∇ over τ represents the upper-convected derivative. The parameter ν was
incorporated into the model by Blackwell, Mcleish and Harlen (2000) to remove
the discontinuity in the derivative of the extensional viscosity, and presented in the
differential approximation of the original pom-pom model.

In Yang et al. (2010), the governing equations for the viscoelastic fluid with an
XPP constitutive equation and the Newtonian fluid are successfully united into a
system of generalized Navier-Stokes equations by defining the Heaviside function
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which is described in dimensionless form as follows.

Hε (ϕ) =


0, ϕ <−ε

1
2

[
1+ ϕ

ε
+ sin(πϕ/ε)/π

]
, |ϕ| ≤ ε

1, ϕ > ε

(6)

Then the governing equations for viscoelastic-Newtonian flow can be expressed as
follows.

continuity

∂ρ

∂ t
+

∂u
∂x

+
∂v
∂y

= 0 (7)

u-momentum

∂ (ρu)
∂ t

+
∂ (ρuu)

∂x
+

∂ (ρvu)
∂y

− 1
Re

(
∂ 2 (µu)

∂x2 +
∂ 2 (µu)

∂y2

)
=−∂ p

∂x
Hε (ϕ)

+
(β −1)

Re

(
∂ 2 (µu)

∂x2 +
∂ 2 (µu)

∂y2

)
Hε (ϕ)+

1
Re

∂τxx

∂x
Hε (ϕ)+

1
Re

∂τxy

∂y
Hε (ϕ) (8)

v-momentum

∂ (ρv)
∂ t

+
∂ (ρuv)

∂x
+

∂ (ρvv)
∂y

− 1
Re

(
∂ 2 (µv)

∂x2 +
∂ 2 (µv)

∂y2

)
=−∂ p

∂y
Hε (ϕ)

+
(β −1)

Re

(
∂ 2 (µv)

∂x2 +
∂ 2 (µv)

∂y2

)
Hε (ϕ)+

1
Re

∂τyx

∂x
Hε (ϕ)+

1
Re

∂τyy

∂y
Hε (ϕ) (9)

where the Reynolds number Re = ρlLU/µl ,ρ (ϕ) = ξ + (1−ξ )Hε (ϕ), µ (ϕ) =
η +(1−η)Hε (ϕ), ξ = ρg/ρl , η = µg/µl , β is the ratio of the Newtonian viscosity
and the total viscosity, the subscript l and g denote the liquid phase and the gas
phase respectively, L and U are parameters for non-dimensionalization.

constitutive

ϖ
∂ψ

∂ t
+∇ · (ϖuψ)−∇ · (Λ∇ψ) = Sψ (10)

The constants and functions in Eq. (10) are defined in Table 1 [Aboubacar et al.
(2005)], where the Weissenberg number is defined as We = λ0bU/L.
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Table
1:D

efinition
ofthe

constants
and

functions
in

the
constitutive

equation

E
quation

ϖ
ψ

Λ
S

ψ

τ
xx

norm
alstress

W
e

τ
xx

0
2
(1−

β
)

∂
u∂
x +

2W
e
τ

xx
∂

u∂
x +

2W
e
τ

xy
∂

u∂
y −

f(
λ

,
τ)

τ
xx

−
[f(

λ
,
τ)−

1] 1−
β

W
e
−

α
W

e
1−

β (
τ

2xx +
τ

2xy )

τ
xy

shearstress
W

e
τ

xy
0

(1−
β

)(
∂

v
∂

x +
∂

u∂
y )+

W
e
τ

xx
∂

v
∂

x +
W

e
τ

yy
∂

u∂
y

−
f(

λ
,
τ)

τ
xy −

α
W

e
1−

β
τ

xy (
τ

xx +
τ

yy )

τ
yy

norm
alstress

W
e

τ
yy

0
2
(1−

β
)

∂
v

∂
y +

2W
e
τ

yy
∂

v
∂

y +
2W

e
τ

xy
∂

v
∂

x −
f(

λ
,
τ)

τ
yy

−
[f(

λ
,
τ)−

1] 1−
β

W
e
−

α
W

e
1−

β (
τ

2yy +
τ

2xy )

τ
zz stress

W
e

τ
zz

0
−

f(
λ

,
τ)

τ
zz −

[f(
λ

,
τ)−

1] 1−
β

W
e
−

α
W

e
1−

β
τ

2zz
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3 Modeling for fiber reinforced polymer mold filling process

The idea of particle orbit model [Tsuji, Tanaka and Ishida (1992)] is introduced to
our model for fiber reinforced polymer mold filling process, in which the fluid flows
are solved in Eulerian coordinate, while the dynamics of fibers are considered in

Langrangian coordinate. An additional source term Sp =
(
(Sp)x ,(Sp)y

)T
is added

to the momentum equations (8) and (9) in order to reflect the effects of fibers on
polymer melt. On the other hand, the effects of melt on fibers are described by the
resultant force F imposed on fibers. The two aspects will be discussed below in
detail.

3.1 Dynamics of fibers

Dynamics of fibers include translation and orientation processes caused by the re-
sultant force F imposed on fibers by fluid.

3.1.1 Translation

The translation of fiber i is described by Newton’s law of motion, which is ex-
pressed as follows.

Fi = miai (11a)

or

Fi = mi
dui

dt
(11b)

where, Fi =
(
(Fx)i ,(Fy)i

)
is the resultant force imposed on fiber i, mi is the mass

of fiber i, ai =
(
(ax)i ,(ay)i

)
is the acceleration of fiber i, and ui = (ui,vi) is the

velocity of fiber i. The velocity ui at time n+1 can be got if Fi is known according
to the following finite difference approximation.

un+1
i = un

i +
Fi∆t
mi

(12)

where un
i is the velocity of fiber i at time n, ∆t is the time step.

Several different forces may be imposed on each fiber. In this paper, we consider
two major forces imposed on fibers, that is, the drag force and pressure gradient
force.

The drag force can be expressed as Tran-Cong, Gay and Efstathios (2004).

(Fd)i = (Cd)i (Ap)i ρl |ul−ui|(ul−ui)/2 (13)
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where (Cd)i is the coefficient of the drag force for fiber i, (Ap)i is the projected
surface area of the fiber normal to the direction of its motion, ul is the polymer
melt velocity. The choice of Cd is very important for the computation of drag force.
The formula presented by Tran-Cong, Gay and Efstathios (2004) is adopted in this
paper, that is

Cd =
24

Re f

dA

dn

(
1+

0.15√
c

(
dA

dn
Re f

)0.687
)

+
0.42

(
dA
dn

)2

√
c
(

1+4.25×104
(

dA
dn

Re f

)−1.16
)
(14)

where Re f is the Reynolds number of fiber, dA =
√

4Ap/π is the surface equivalent
sphere diameter, dn = 3

√
6Vf /π is the volume equivalent sphere diameter or nomi-

nal diameter, Vf is the fiber volume, and c is the fiber circularity. The relationship
between fiber circularity c and fiber aspect ratio rc is c = 2.62r2/3

c /(1+2rc). The
Reynolds number of fiber i (Re f )i can be computed as follows.

(Re f )i =
ρl |uvir−ui|(dn)i

µl
(15)

Here, uvir is the virtual velocity at the centroid of fiber i. uvir can be computed
by bilinear interpolation with the schematic diagram shown in Fig. 1 [Ouyang and
Li (1999)]. (xi,y j), (xi+1,y j), (xi,y j+1) and (xi+1,y j+1) are four corner points of
a control volume, the melt velocities on which are ui, j, ui+1, j, ui, j+1 and ui+1, j+1,
respectively. Suppose the center of mass of fiber i locates at (xi +δx,y j +δy).
Then the virtual velocity at the centroid of fiber i can be computed as follows.

uvir =
bi, jui, j +bi+1, jui+1, j +bi, j+1ui, j+1 +bi+1, j+1ui+1, j+1

dxdy
(16)

where

bi, j = (dx−δx)(dy−δy) (17)

bi+1, j = δx(dy−δy) (18)

bi, j+1 = (dx−δx)δy (19)

bi+1, j+1 = δxδy (20)
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( )yyxx ji δδ ++ ,

Figure 1: Schematic diagram of bilinear interpolation

The pressure gradient force can be expressed as (Vf )i∇pi. Enclosing the drag force
and the pressure gradient force, the resultant force Fi imposed on fiber i can be
expressed as

Fi = (Fd)i +(Vf )i∇pi (21)

Thus, the velocity un+1
i can be computed according to Eq. (12).

The new position of fiber i at time n+1 can be expressed as follows.

Wn+1
i = Wn

i +un+1
i ∆t (22)

where Wi = (Wx,Wy) is the position vector of fiber i.

3.1.2 Orientation

The orientation of a fiber can be expressed in three dimensional space coordinates
as shown in Fig. 2. Since the fiber has a circular cross-section and does not bend,
the orientation is determined by φ and θ . φ is the angle between x-axis and the
projection of the fiber on xy-plane. θ is the angle between the fiber vector and
z-axis.
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R

x

y

z

φ

θ

Figure 2: A fiber orientation vector in Cartesian coordinates.

Jeffery’s equation [Jeffery (1922)] describes the orientation of a fiber as

Ṙ = ωωω ·R+λ f (εεε ·R−εεε : RRR) (23)

where, R is the unit vector aligned with the fiber axis, ωωω =
(
∇uT −∇u

)
/2, εεε =(

∇uT +∇u
)
/2 is the deformation rate tensor, λ f =

(
r2

c −1
)
/
(
r2

c +1
)
. A dot over a

variable denotes the time derivative throughout the paper. Zhou and Lin (2008) de-
rive the fiber orientation distribution from the classic mechanics and kinetic theory.
They depict fiber orientation for a planar flow field aligned with the x− y plane.
For convenience, denote ∂u/∂y = γ̇ , ∂v/∂x = kγ̇ , ∂u/∂x = jγ̇ and ∂v/∂y =− jγ̇ .
Then the variance ratio of φ and θ can be expressed as follows according to Jef-
fery’s equation [Zhou and Lin (2008)].

φ̇ =
1
2

[λ f (k +1)cos(2φ)+ k−1−2λ sin(2φ)] γ̇ (24)

θ̇ =
1
4

λ f sin(2θ) [2 j cos(2φ)+(k +1)sin(2φ)] γ̇ (25)

3.2 Effect of fibers on polymer flow

An additional source term Sp =
(
(Sp)x ,(Sp)y

)T
is added to the momentum equa-

tions (8) and (9) in order to reflect the effects of fibers on fluid.
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u-momentum

∂ (ρu)
∂ t

+
∂ (ρuu)

∂x
+

∂ (ρvu)
∂y

− 1
Re

(
∂ 2 (µu)

∂x2 +
∂ 2 (µu)

∂y2

)
=

− ∂ p
∂x

Hε (ϕ)+
(β −1)

Re

(
∂ 2 (µu)

∂x2 +
∂ 2 (µu)

∂y2

)
Hε (ϕ)+

1
Re

∂τxx

∂x
Hε (ϕ)

+
1

Re
∂τxy

∂y
Hε (ϕ)− (Sp)x Hε (ϕ) (26)

v-momentum

∂ (ρv)
∂ t

+
∂ (ρuv)

∂x
+

∂ (ρvv)
∂y

− 1
Re

(
∂ 2 (µv)

∂x2 +
∂ 2 (µv)

∂y2

)
=

− ∂ p
∂y

Hε (ϕ)+
(β −1)

Re

(
∂ 2 (µv)

∂x2 +
∂ 2 (µv)

∂y2

)
Hε (ϕ)+

1
Re

∂τyx

∂x
Hε (ϕ)

+
1

Re
∂τyy

∂y
Hε (ϕ)− (Sp)y Hε (ϕ) (27)

The computation of Sp will be discussed in Section 6.1.

4 Numerical methods

4.1 Numerical methods for level set and the reinitialization equation

Level set evolution equation (1) and the reinitialization equation (2) are solved by
the finite difference method on a rectangular grid. The spatial derivatives are dis-
cretized by the 5th-order Weighted Essentially Non-Oscillatory (WENO) scheme
[Jiang and Peng (2000); Osher and Shu (1991)] and the temporal derivatives are
discretized by the 3rd-order Total Variation Diminishing Runge-Kutta (TVD-R-K)
scheme [Shu and Osher (1989)].

4.2 Numerical methods for governing equations of the viscoelastic-Newtonian
flow

The finite volume SIMPLE methods on a non-staggered grid are used to solve the
governing equations (7), (26), (27) and (10). A non-staggered grid arrangement,
which stores all the variables at the same physical location and employs only one
set of control volumes, is shown in Fig. 3, where the dashed lines are the faces of
control volumes or cells and the intersection points of the solid lines are the nodes
on which all the physical quantities are located [Tao (2001)].
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Figure 3: Sketch map of the non-staggered meshes

4.2.1 Continuity equation

The continuity equation (7) can be discretized to be the following form by integrat-
ing in the control volume

((ρu)e− (ρu)w)∆y+((ρv)n− (ρv)s)∆x = 0 (28)

4.2.2 Momentum equations

The discretization of the momentum equations (26) and (27) can be written as the
following form by a generalized quantity ψ , that is,

aPψP = aEψE +aW ψW +aNψN +aSψS +Sψ (29)

where Sψ is the source term in the momentum equation. The coefficients aE , aW ,
aN , aS, aP can be expressed as the combination of the convection term and the
diffusion term, i.e.,

aE = DeA(|Pe|)+max(−Fe,0) aW = DwA(|Pw|)+max(Fw,0)

aN = DnA(|Pn|)+max(−Fn,0) aS = DsA(|Ps|)+max(Fs,0) (30)

aP = aE +aW +aN +aS +∆x∆yρ/∆t
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where Pe, Ps, Pw, Pn are the Peclet numbers on the cell faces, Fe, Fs, Fw, Fn are the
cell faces flux, and De, Ds, Dw, Dn denote diffuse derivatives on cell faces. The form
of A(|P∆|) can be different under different discretization schemes for the convection
term. For example, A(|P∆|) equals to 1 for the upwind scheme while 1− 0.5 |P∆|
for a central scheme. We take A(|P∆|) = 1 in this paper. All the coefficients are
formulated as follows.

Fe = (ρu)e ∆y De =
µe∆y

(xE − xP)Re
Pe =

Fe

De

Fw = (ρu)w ∆y Dw =
µw∆y

(xP− xW )Re
Pw =

Fw

Dw
(31)

Fn = (ρv)n ∆x Dn =
µn∆x

(yN− yP)Re
Pn =

Fn

Dn

Fs = (ρv)s ∆x Ds =
µs∆x

(yP− yS)Re
Ps =

Fs

Ds

4.2.3 Constitutive equations

The discretization of the constitutive equation (10) can also be written as the fol-
lowing form by a generalized quantity ψ , that is,

aτ
PψP = aτ

EψE +aτ
W ψW +aτ

NψN +aτ
SψS +Sτ

ψ (32)

where Sτ
ψ is the source term in the constitutive equation and the coefficients aτ

E , aτ
W ,

aτ
N , aτ

S, aτ
p can be expressed as

aτ
E = Wemax(−Fe,0) aτ

W = Wemax(Fw,0)

aτ
N = Wemax(−Fn,0) aτ

S = Wemax(Fs,0) (33)

aτ
P = aτ

E +aτ
W +aτ

N +aτ
S +We∆x∆y/∆t

Here the expressions of Fe, Fs, Fw, Fn are identical to (31).

The discrete constitutive equation (32) can be solved only in the liquid part. How-
ever, the free surface stress conditions have to be dealt with as has been done in
Tomé et al. (2008) and Tomé et al. (2002). In our previous work, we have tried to
avoid doing this by defining another Weissenberg number We′ = We×Hε (ϕ) and
let S′ψ = Sτ

ψ ×Hε (ϕ). Eqs. (32) and (33) then change into

aτ
PψP = aτ

EψE +aτ
W ψW +aτ

NψN +aτ
SψS +S′ψ (34)

aτ
E = We′max(−Fe,0) aτ

W = We′max(Fw,0)
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aτ
N = We′max(−Fn,0) aτ

S = We′max(Fs,0) (35)

aτ
P = aτ

E +aτ
W +aτ

N +aτ
S +We′∆x∆y/∆t + ε1

where ε1 is a small positive number for avoiding dividing by zero. Thus the con-
stitutive equation can be regarded to be hold in the whole computational domain.
In particular, as for the gas phase in the cavity, Eq. (34) will be ε1ψP = 0, which
implies ψP = 0. By doing this, we see that the stresses τxx, τxy and τyy will appear
only in the melt phase, although the constitutive equations are solved in the whole
computational domain.

4.2.4 Formulation of the cell-face stresses

Since non-staggered grid approach is adopted, a special velocity interpolation scheme,
originally designed by Rhie and Chow (1983), is required. According to Rhie and
Chow’s special interpolation method, the cell face velocity u f is calculated by linear
interpolation of the momentum equations, with exception of the pressure gradient
which is evaluated as in the staggered approach [Darwish, Whiteman and Bevis
(1992)].

In the momentum equation, it is necessary to compute the stresses at cell faces
from stress values at cell centers and there is a stress-velocity coupling problem,
akin to the pressure-velocity coupling, that needs to be properly solved [Oliveira,
Pinho and Pinto (1998)]. If a linear interpolation of cell centered values of stress is
used to compute face values, a possible lack of connectivity between the stress and
velocity fields may result [Oliveira, Pinho and Pinto (1998)]. Oliveira, Pinho and
Pinto (1998) developed a new interpolation technique for UCM constitutive equa-
tion inspired on that of Rhie and Chow (1983). Here, the interpolation technique in
Oliveira, Pinho and Pinto (1998) is extended to XPP constitutive equation.

When a stress component τxy is required at a cell face e, in the momentum equation,
it is obtained by arithmetic averaging the stress equations written for cell P and for
its neighbor E across face e, with the exception that velocity differences straddling
the face are to be evaluated directly [Oliveira, Pinho and Pinto (1998)]. Thus, the
spirit of Rhie and Chow (1983) interpolation for the face velocity is followed, guar-
antying a good connection between a face stress and the velocity values at either
side of the face [Oliveira, Pinho and Pinto (1998)]. This procedure is equivalent to
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defining the cell-face stress as follows [Yang et al. (2010)].

(τxy)e =(τxy)P +(τxy)E

+
(

∆

a′τP

)
e

[
Weτ

0
xy

(
uE −uP

xE − xP

)0

+
(
(1−β )+Weτ

0
xx
)(vE − vP

xE − xP

)0
]

e[
∆

a′τP
Weτ0

xy

(
∂u
∂x

)0
]

P

+

[
∆

a′τP
Weτ0

xy

(
∂u
∂x

)0
]

E

−

[
∆

a′τP
((1−β )+Weτ0

xx)
(

∂v
∂x

)0
]

P

+

[
∆

a′τP
((1−β )+Weτ0

xx)
(

∂v
∂x

)0
]

E
(36)

where τ
0
xy =

(
τ0

xy
)

P +
(
τ0

xy
)

E , τ
0
xx = (τ0

xx)P +(τ0
xx)E . The sup script 0 in S′τxy

denotes
the values at previous time step and ∆ = ∆x∆y is the area of the control volume.
Define a′τP = aτ

P/ατ , where ατ is the relaxation factor. The long bar denotes the
linear interpolation formula, that is, QP +QE =

(
1− f x

p
)

QP + f x
pQE , where f x

p is
the interpolation factor expressed as

f x
p =

xe− xP

xE − xP
(37)

Analogously to Eq. (36), we have

(τxx)e = (τxx)P +(τxx)E +
(

∆

a′τP

)
e

(
2(1−β )+2Weτ

0
xx
)(uE −uP

xE − xP

)0

−

[
∆

a′τP
(2(1−β )+2Weτ0

xx)
(

∂u
∂x

)0
]

P

+

[
∆

a′τP
(2(1−β )+2Weτ0

xx)
(

∂u
∂x

)0
]

E
(38)

where τ
0
xx = (τ0

xx)P +(τ0
xx)E

(τxy)n =(τxy)P +(τxy)N

+
(

∆

a′τP

)
n

[
Weτ

0
xy

(
vN−uP

yN− yP

)0

+
(
(1−β )+Weτ

0
yy
) (uN−uP

yN− yP

)0
]

−

[
∆

a′τP
Weτ0

xy

(
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)0
]

P

+

[
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Weτ0

xy

(
∂v
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]

N

−

[
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a′τP

(
(1−β )+Weτ0

yy
)(∂u
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)0
]

P

+

[
∆

a′τP

(
(1−β )+Weτ0

yy
)(∂u

∂y

)0
]

N
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(39)

where τ
0
xy = (τ0

xy)P +(τ0
xy)N , τ

0
yy = (τ0

yy)P +(τ0
yy)N .

(τyy)n = (τyy)P +(τyy)N +
(

∆

a′τP

)
n

(
2(1−β )+2Weτ

0
yy
)(vN− vP

yN− yP

)0

−

[
∆

a′τP

(
2(1−β )+2λτ0

yy
)(∂v

∂y

)0
]

P

+

[
∆

a′τP

(
2(1−β )+2λτ0

yy
)(∂v

∂y

)0
]

N
(40)

where τ
0
yy = (τ0

yy)P +(τ0
yy)N .

5 Numerical test for a broken dam problem

We take the broken dam problem shown in Fig. 4 [Yue, Lin and Patel (2003)]
to test the validity of the methodology. The computational domain is 5a×1.25a,
where a is the width of the water body. s and hdenote the surge front position and
the remaining height of the water column respectively and are used to measure the
spreading velocity and the falling rate of the water column. See Yue, Lin and Patel
(2003) for more details about the parameters setting. A uniform grid of 200×50
is used. Fig. 5(a) shows changes of the surge fronts along x-direction versus time
together with those in Yue, Lin and Patel (2003). Fig. 5(b) shows the changes of
the remaining water column height versus time together with those in Yue, Lin and
Patel (2003). Fig. 6 gives the positions of the interface at some select times. All the
results are in accordance with those in [Yue, Lin and Patel (2003)], which shows
the validity of our methodology.

 

Figure 4: Schematic for two-dimensional broken dam
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(a) Surge front position s along x-direction versus time.  (b) Remaining water column height h versus time. 

 
Figure 5: Two-dimensional broken dam

  0=t  

  66.1=t  

  41.2=t  

  25.3=t   

 Figure 6: Free surface position at selected times the shadow areas represent the
water
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6 Results for mold filling and analysis

6.1 Computational domain and parameters setting

Sketch map and the computational area of the injection mold are shown in Fig.
7(a), in which the shaded area, i.e. the vertical middle plane of the mold, is the
computational domain (Fig. 7(b)). The initial interface is set to be a semicircle
with a radius 0.5 which is shown in Fig. 7(b) with shaded area.

 
(a) Sketch map and the computational area (dark area) of the mold  

 
(b) Computational domain and initial interface 

 Figure 7: Mold and computational domain

All the parameters appeared in this section are in dimensionless forms. Suppose
the length and width of the computational area are 10.0 and 1.0 respectively. We
use a 200×20 grid for computation.

Short glass fibers are used for the simulation. The density of the fibers is 2.49×
103kg/m−3. The initial fibers, including the positions, angles φ and θ , are gener-
ated randomly. Every fiber is regarded as a short rigid rod with a slenderness ratio
40. 200 fibers are distributed randomly in the initial melt (within the semicircular
interface) which is shown in Fig. 8 with a partial enlargement of the image within
the square box being illustrated on the right column. In the mold filling process,
new fibers will enter the cavity at each time step, so new fibers must be generated
randomly near the inlet at every time step. A total number of 6000 fibers are gen-
erated during the mold filling process and the volume fraction of the fibers will be
37.5%. For the flow field computation, we set Re = 0.01 and We = 0.01. The inlet
velocity is set to be u = 20.0× (y−0.5)2 +5.0,y ∈ [0,1].
The momentum exchange source Sp in a control volume (width ∆x and height ∆y)
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yΔ

xΔ

Figure 8: Initial interface and initial generated fibers

is calculated as

Sp =
1

Vcell

N∗

∑
i=1

Fi

Here, N∗ is the number of fibers in this control volume, Fi is the resultant force
imposed on fiber i in this control volume and Vcell = ∆x∆y is the area of the control
volume.

6.2 Interface evolution

Fig. 9 shows the interface evolution versus time in the molding process. Just as
pointed by Han (2007), the melt spreads in an approximately radial manner at first
and then fills the corners, followed by forward movement to fill the rest of the
empty mold cavity. In doing so, the melt front changes from a circular shape to an
almost flat profile. At t = 6.4, the mold is completely filled with melt without any
voids.

 
Figure 9: Interface evolution at time t=0, 0.8, 1.6, 2.4, 3.2, 4.0, 4.8, 5.6
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6.3 Fountain flow

Fig. 10 shows the velocity distributions at three different positions x = 2.5, x = 5.0
and x = 7.5. The velocity profiles are parabolic with almost the same values at
different positions.

Fig. 11 gives the velocity vectors in the melt phase at dimensionless time t = 3.2.
The fountain flow is obviously observed, that is, polymer material has approached
the flow front from the center and has been diverted towards the wall.

 

Figure 10: Velocity distributions at x = 2.5, x = 5.0 and x = 7.5

6.4 Pressure distribution

The pressure contours at different time are presented in Fig. 12, from which we see
that the pressure values are degressive from the inlet to the end of the cavity and the
inlet always keeps the maximum pressure value. The pressure in the mold keeps
increasing until the mold is filled with melt.

6.5 Dynamics of fibers

A dynamics of fibers at different time during mold filling process is shown in Fig.
13. The skin-core-skin structure of fibers can be seen in Fig. 13. In the skin region,
the fibers have higher tendency to align along the melt flow direction, while in
the core region, the fibers are randomly oriented. The reason is that strong shearing
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Figure 11: Velocity vectors in the melt phase at dimensionless time t = 3.2

 

(a) 2.3=t  

 

(b) 4.6=t  

 Figure 12: Pressure distribution at different time

takes place near the upper and lower side walls of the mold while the shear rate near
the horizontal mid-line of the mold is low. Fig. 14 shows the comparison between
our numerical result in an local enlarged image (left) with that of the experiment
(right) made by Fung and Li (2006), from which we see the accordance of our
numerical result with that of the experiment. Moreover, from Fig. 14 we can see
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the fibers concentration in skin layers is greater than that in core layer.

When we change the slenderness ratio of fibers to 10, the skin-core-skin can still
be seen as shown in Figs. 15-16.

In order to see the trajectory of fiber motion more clearly, five fibers with ini-
tial positions (0.317, 0.534 ), (0.326, 0.414), (0.271, 0.606), (0.326, 0.827) and
(0.271, 0.301) are tracked. The trajectories of the centroids of three fibers are
shown in Fig. 17. Fibers that lie near y = 0.5 move almost straight forward, be-
cause the v-velocity is almost zero. Fibers that lie on the upper and lower sides of
y = 0.5 move gradually toward the upper and lower sides of the mold, the reason is
obviously that the existence of the fountain flow in the mold filling process.

6.6 Perturbation effect of fibers on fluid flows

Fig. 18 shows the comparison of the maximum values of u-velocity between the
numerical results without fibers in the melt and those with fibers in the melt. It
can be seen that the velocity curve versus time with fibers is oscillatory while that
without fibers is smooth. The reason clearly lies in the perturbation effect of fibers
on fluid flows.

6.7 Convergence

Two meshes are used for computations, which are shown in Table 2. The time step
∆t is determined by restrictions due to CFL condition and viscosity [Sussman et al.
(1998)].

∆tc = min
Ω

(
∆x
|u|

)

∆tµ = min
Ω

(
3

14
ρRe∆x2

µ

)
The eventual restriction on the time step is then

∆tn+1 =
1
2

min
(
∆tc,∆tµ

)
The u velocities under different meshes are shown in Fig. 19, which show the
convergence of the meshes.

7 Conclusion

In this paper, a gas-solid-liquid three-phase model is proposed and a direct dynamic
numerical simulation for fiber reinforced composites mold filling process is made.
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 0=t  

 8.0=t  

 6.1=t  

 4.2=t  

 2.3=t  

 0.4=t  

 8.4=t  

 6.5=t  

 4.6=t  

Figure 13: Translation and orientation of fibers versus time during mold filling
process with a slenderness ratio of 40
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skin

core

skin

Figure 14: Comparison of skin-core-skin structure of fibers between the results of
numerical methods and that of experiment at t=6.4

Table 2: Definition of the constants and functions in the constitutive equation

Meshes Volumes Degrees of freedom u,P,τ,ϕ) ∆x(∆y)
Coarse 200×20 52000 0.05
Fine 400×40 208000 0.025

The particle orbit model for dynamics of fibers in a Langrangian coordinate are
coupled successfully with both the level set method for interface evolution and
fluid flow description in Eulerian coordinates. The positions of the interface and
the transformation and orientation of fibers at each time step are captured. The
melt front changes from a circular shape to an almost flat profile during the mold
filling process. The skin-core-skin structure of fibers during the mold filling process
is found which is in accordance with experimental results. The slenderness ratio of
fibers does not change the skin-core-skin structure of fibers. The velocity profiles
are parabolic with almost the same values at different positions and a fountain flow
is found in the simulation. The pressure in the mold keeps increasing until the
mold is filled with melt and the maximum value of pressure is always achieved at
the inlet. A perturbation effect of fibers on fluid flow can be found in the simulation.
The model is easy to be solved by classical numerical methods and convenient to
apply on other fields of chemical engineering.

Acknowledgement: All the authors would like to acknowledge the National Nat-
ural Science Foundation of China (10871159), National Basic Research Program
of China (2005CB321704).
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 0=t  

 8.0=t  

 6.1=t  

 4.2=t  

 2.3=t  

 0.4=t  

 8.4=t  

 6.5=t  

 4.6=t  
 Figure 15: Translation and orientation of fibers versus time during mold filling

process with a slenderness ratio of 10
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Figure 16: Skin-core-skin structure of fibers at slenderness ratio 10 at t=6.4

 
Figure 17: The trajectories of the centroids of five fibers (Initial position: fiber
1(0.317, 0.534 ), fiber 2(0.326, 0.414), fiber 3(0.271, 0.606), fiber 4(0.326, 0.827)
and fiber 5(0.271, 0.301))
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Figure 18: Comparison of the maximum values of u-velocity with fibers and those
without fibers versus time

 

Figure 19: Mold filling: u velocity at x = 2.5 under different meshes
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