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Development of Large Strain Shell Elements for Woven
Fabrics with Application to Clothing Pressure Distribution

Problem
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Abstract: This paper describes the development of a proper constitutive model
of woven fabrics and its implementation in nonlinear finite shell elements in order
to simulate the large deformation behavior of cloth. This work currently focuses
on a macroscopic continuum constitutive model that is capable of capturing the re-
alistic mechanical behavior of cloth that is characterized by two families of yarns,
i.e., warp and weft. In this study, two strategies are considered. One is a rebar layer
model and the other is a polyconvex anisotropic hyperelastic material model. The
latter avoids non-physical behavior and can consider the effect of the interaction
between the warp and the weft, whereas the former cannot do so. These material
models are implemented in a four-node shell element in Abaqus/Standard (S4R
type) via the UMAT user-subroutine. These models can be used to predict the out-
come of uniaxial tensile tests and compute the contact pressure exerted by clothing
on the human body. The resultant pressure distribution can then be used to design
a form of cloth that provides more comfortable fitting.

Keywords: structures; finite element method; shells; constitutive equations;
anisotropy; clothing pressure

1 Introduction

It is crucial for most companies/firms producing/designing fabrics, fibers, and gar-
ment to incorporate some type of integrated Computer Aided Engineering (CAE)
systems into their production procedures. An integrated CAE system will enable
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the entire design process of products to be simulated on computers and should
provide all the data required to manufacture products. Such a simulation should
simplify the entire product design process, potentially reducing its time and cost
by as much as 80 to 90%. Therefore, it is important to adopt a realistic simulation
to efficiently design garments. However, currently available CAE systems do not
possess such simulation capabilities due to some technical difficulties, despite the
urgent requirement for the same. One of the main difficulties involved in construct-
ing a desired system for designing comfortable clothing is to quantify "comfort."
Clothing pressure, i.e., the contact pressure between a garment and human skin,
could be one indicator that can be specifically applied to evaluate the comfort of
clothing, along with other variables such as thermal characteristics, tactile sensa-
tion, and moisture transfer of fibers and textiles. In fields such as healthcare and
sports, it is necessary to provide some simplified and accurate means for under-
standing the clothing pressure and its distribution during body movements in order
to design comfortable clothing and clothing materials.

Considering the abovementioned motivations, we developed a new technique to
predict the distribution of contact pressure. This paper presents material models of
woven fabric derived from this work. These fabrics have fibers that are oriented in
two directions, i.e., warp and weft. When the fabric is stretched in either of these
directions, it exhibits different characteristics. Kwon and Roach [Kwon and Roach
(2004)] developed a micromechanical unit-cell model to compute effective stiffness
and strength of woven fabric composites, that could be implemented into a multi-
level, multi-scale analysis technique. However, this model could describe relatively
small strain deformation behavior. This study concerns with the material model of
woven fabrics using the finite deformation theory of continuum mechanics, since
large strains of woven fabrics happens during the clothing procedure. Therefore,
two strategies to model the large strain deformation behavior of woven fabrics are
developed herein. One is a rebar layer model [Ishimaru, Isogai, Matsui, Negishi,
Nonomura, and Yokoyama (2009); Mesehke and Helnwein (1994)] that functions
to reinforce the material in a uniaxial direction in the same manner as metal rebars
are used to reinforce concrete. In this model, an isotropic neo-Hookean hyperelas-
tic shell is used as the matrix of the material to which rebars or reinforcement are
added. However, although such a model is quite easy to assemble and useful, it is
not suitable for the accurate fabric modeling of the interaction between warp and
weft. To overcome this issue, another material model is proposed. This model uti-
lizes anisotropic hyperelastic shells with a polyconvex strain energy function that
can capture the effect of the interaction between warp and weft, thus providing
more accurate and robust fabric modeling. Hyperelasticity allows the formulation
of a large deformation including the anisotropic effect by using a structural ten-
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sor that consists of fiber-directional unit vectors [Holzapfel (2000); Reese, Raible,
and Wriggers (2001); Lu and Zhang (2005); Markert, Ehlers, and Karajan (2005);
Nedjar (2007); ten Thije, Akkerman, and Huétink (2007); Harrysson, Harrysson,
and Ristinmaa (2007); Himpel, Menzel, Kuhl, and Steinmann (2007); Lu, Zhou,
and Raghavan (2007); Bonet and Burton (1998)]. In order to avoid non-physical
behavior, the associated strain-energy function must be polyconvex. A number of
literatures on polyconvexity can be found [Schröder and Neff (2003b); Schröder,
Neff, and Balzani (2005); Itskov and Aksel (2004); Markert, Ehlers, and Karajan
(2005)], and these show that the polyconvexity of a strain-energy function ensures
the existence of global minimizers for the total elastic energy. Indeed, some nonlin-
ear isotropic materials such as neo-Hookean, Mooney-Rivlin, and Ogden models
can be shown to satisfy this polyconvex condition; however, anisotropic materials
appear to be more difficult to construct with such conditions. Therefore, a poly-
convex orthotropic strain energy function using a generalized structural tensor, de-
veloped by Itskov et al. [Itskov and Aksel (2004)], is utilized for the accurate and
robust modeling of clothing behavior. The material model is implemented in a four-
node shell element in Abaqus/Standard (S4R type) via the UMAT user-subroutine.
Both models are used to predict the outcome of uniaxial tensile tests and compute
the contact pressure of clothing over the human body so that appropriate designs
of forms of clothing with better degree of fitting to the body can be obtained. The
advantages and usefulness of these models are discussed in this paper.

The remainder of this paper is organized as follows. Section 2 describes the for-
mulation of the rebar layer model. Section 3 presents an overview of anisotropic
hyperelastic modeling using the polyconvex strain energy function. Accordingly,
the macroscopic continuum constitutive model that can suitably capture the me-
chanical behavior of cloth is presented. The material law is implemented into a
shell element in the FEM code, Abaqus/Standard, via the UMAT user-subroutine.
Section 4 describes the validation and comparison of the experimental data with
data obtained by a numerical simulation of the contact pressure of clothing against
human skin. Section 5 summarizes the conclusions of our study.

2 Formulation of rebar layer model

This section briefly describes the formulation of the rebar layer model used to rep-
resent the characteristics of woven fabrics. This material model is decomposed into
two parts: isotropic matrix part and reinforced rebar part. The isotropic matrix part
uses the neo-Hookean hyperelastic material model. The potential energy of the
neo-Hookean hyperelastic model Wneo is expressed as

Wneo = C10(λ 2
1 +λ

2
1 +λ

2
1 −3). (1)
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where C10 is a material parameter and λi (i = 1,2,3) are principal stretch ratios.
λ 2

1 + λ 2
1 + λ 2

1 is equivalent to the first strain invariant I1 that is explained in next
section. Element-based rebars are used to define the uniaxial reinforcement along
the warp and weft directions, as shown in Fig.1. The material properties of the
rebars can be given by the hypoelastic model with Young’s moduli Ewarp and
Eweft in the warp and weft directions, respectively. The stress-strain relationship
of this rebar layer model is defined as

σ
∇ = D(ε) : ε

∇, (2a)

or in indice notation as

σ
∇
i j = Di jklε

∇

kl , (2b)

where σ , σi j is the true or the Cauchy stress tensor, ε , εkl is the true or the log-
arithmic strain tensor, D, Di jkl is the 4th-order elasticity tensor and is a function
of ε , εkl; the symbol ∇ implies the objective rate; and the double dot product “:"
represents multiplication and summation across two indices k, l of Di jkl and εkl .
The elasticity tensor D is obtained by the superposition of the isotropic matrix and
rebars, as given by:

Di jkl =
∂ 2Wneo
∂εi j∂εkl

+Ewarpδ1iδ1 jδ1kδ1l +Eweftδ2iδ2 jδ2kδ2l,

{i, j,k, l}= {1,2,3} (3)

where directions 1 and 2 denote the warp and weft directions, respectively, direc-
tion 3 is perpendicular to both the warp and the weft directions, and δi j represents
Kronecker’s delta. Ewarp and Eweft can take the form of a series in terms of ε11
and ε22, respectively.

Ewarp =
N

∑
i=0

ciε
i
11 (4)

Eweft =
N

∑
i=0

diε
i
22 (5)

The material parameters C10, ci, N, and di (i = 1, · · · ,6) are determined through uni-
axial tensile tests in 3 directions: warp, weft, and bias. In this model, the interaction
between the warp and the weft rebar is not considered directly, and the isotropic
matrix determines the deformation in the directions perpendicular to the stretch by
the Poisson effect. This rebar layer model is implemented via Abaqus/Standard,
in which the isotropic matrix part is represented by the shell element S4R, and its
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reinforcement is modeled with the corresponding rebar elements in the warp and
weft directions.

Isotropic matrix 

Rebar of warp

Rebar of weft

Figure 1: Schematic diagram of shell with rebar.

3 Formulation of anisotropic hyperelastic material model using polyconvex
strain energy function

Although the abovedefined rebar layer model is quite easy to assemble and use-
ful, it is not suitable for accurate fabric modeling of the interaction between warp
and weft. To overcome this issue, another material model is proposed in this sec-
tion. First, the polyconvexity condition of the strain energy function is outlined
based on Schröder and Itskov’s works [Schröder and Neff (2003b,a); Schröder,
Neff, and Balzani (2005); Balzani, Neff, Schröder, and Holzapfel (2006); Balzani,
Gruttmann, and Schröder (2008); Itskov and Aksel (2004); Itskov, Ehret, and Mavri-
las (2006); Ehret and Itskov (2007)]. Next, the formulation of the anisotropic hy-
perelastic model is derived using the polyconvex strain energy function, and then,
this formulation is used for modeling cloth. Finally, the implementation of the
proposed models into the UMAT user-subroutine of Abaqus/Standard is discussed.
Fundamentals of continuum mechanics, such as tensor calculations, finite rotations,
finite deformations and objectivity, are basically referred to Atluri et al. [Rubinstein
and Atluri (1983); Atluri (1984a,b)].



270 Copyright © 2010 Tech Science Press CMES, vol.62, no.3, pp.265-290, 2010

3.1 Polyconvexity of strain energy function

For a boundary value problem, the strain energy functions W are required to satisfy
the four conditions listed below so that robust and reasonable analysis can be per-
formed and a physically meaningful solution can be obtained. [Ball (1977); Hart-
mann and Neff (2003); Schröder and Neff (2003b); Schröder, Neff, and Balzani
(2005); Itskov and Aksel (2004); Itskov, Ehret, and Mavrilas (2006)].

1. Continuity condition

2. Energy- and stress-free natural state condition

3. Polyconvexity condition

4. Growth condition

Condition 1 indicates that at least the C2-continuity of the strain energy function
should hold in order to compute the stress and tangent stiffness. Condition 2 refers
to the necessity of an energy- and stress-free state in the reference configuration
for a finite elasticity boundary value problem. Condition 3 is so defined that iff
there exists a convex function W with respect to the deformation gradient tensor F,
cofactor of F (denoted as cofF), and Jacobian J = detF, the strain energy function
can be regarded as being polyconvex. Condition 4 refers to the coercivity. Accord-
ing to Ball [Ball (1977); Ball and Murat (1984)], the polyconvexity together with
its continuity and coercivity is sufficient to ensure the existence of the global mini-
mizer of the total elastic energy [Acerbi and Fusco (1984); Ball and Murat (1984);
Müller, QI, and Yan (1994); Steigmann (2003); Itskov and Aksel (2004)]. Morrey
[Morrey (1952)] proved that the polyconvex strain energy functions satisfies the
following ellipticity condition.

W = W (C,Mi), (6)

H :
∂ 2W

∂F∂F
: H≥ 0, (7)

H :
∂ 2W

∂ cofF∂ cofF
: H≥ 0, (8)

∂ 2W
∂J∂J

≥ 0 (9)

where H is an arbitrary second-order tensor. Considering the abovementioned con-
ditions, the strain energy function W of the anisotropic hyperelastic models can be
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given in terms of the right Cauchy-Green deformation tensor C = FT F and a new
tensor Mi with the form:

W = W (C,Mi), (10)

Mi are so-called structural tensors [Holzapfel (2000); Menzel and Steinmann (2001)]
and they are denoted as

Mi = ni⊗ni, (11)

ni is the unit base vector in the principal material directions, as indicated by the
simple 2D example shown in Fig.2, and ⊗ represents the tensor product. Now, i
represents the index of the fiber or the principal material direction, and the summa-
tion convention is not employed in this equation.

Figure 2: Structural tensor.

For orthotropic materials, ni ·ni = δi j can be given, and Mi has the following prop-
erties:

3

∑
i=1

Mi = I, (12){
MiM j = 0, i 6= j
MiM j = Mi, i = j

(13)

trMi = 1, (14)

where I represents the second-order identity tensor. According to the material ob-
jectivity condition, W has to satisfy

W (C,Mi) = W (QCQT ,QMiQT ), (15)
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where Q is the orthogonal tensor that represents rigid rotation. According to the
classical invariant theory, W in Eqn.(15) can be written based on (14) as

W = W (I1, I2, I3,Ji,Ki), (16)

where I1, I2 and I3 represent the principal invariants of C and they are given by

I1 ≡ trC (17)

I2 ≡ tr(cofC) (18)

I3 ≡ detC (19)

cof(C) is the cofactor of C; in the case of incompressible materials (I3 = 1), cof(C)=
C−1 is satisfied. Ji and Ki, constructed using C and Mi represent the pseudo invari-
ants of anisotropic materials. Schröder et al. advocated the use of the following
definition of pseudo invariants because they can be convex with respect to F and
cofF.

Ji ≡ tr(CMi) = C : Mi. (20)

Ki ≡ tr(cof(C)Mi) = cof(C) : Mi. (21)

Using these pseudo invariants, the polyconvex strain energy function can be con-
struted easily. In the next section, the results presented above are used to construct a
polyconvex strain energy function that is applicable to clothing, subject to the four
prerequisite conditions mentioned previously. In the implementation of a nonlin-
ear FEM, the second Piola-Kirchhoff stress tensor S and the fourth-order elasticity
tensor C should be calculated from the deformation state based on the strain energy
function [Lu (2004)] W as

S = 2
∂W
∂C

, (22)

C = 4
∂ 2W

∂C∂C
. (23)

To compute Eqn.(22) and (23), the following tensor calculations are required:

∂ I1

∂C
= I,

∂ I2

∂C
= I1I−C,

∂ I3

∂C
= I3C−1,

∂Ji

∂C
= Mi,

∂Ki

∂C
=−I3C−1MiC−1 +KiC−1. (24)

Note that the strain energy function has to satisfy the conditions of the energy- and
stress-free natural state as follows:

S|C=I = 0. (25)
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3.2 Formulation of anisotropic hyperelastic model using polyconvex strain en-
ergy function for application to cloth

In this study, the following polyconvex strain energy function W for orthotropic in-
compressible hyperelastic materials, developed by Itskov [Itskov and Aksel (2004)],
is utilized for modeling of cloth behavior.

W =
1
4

N

∑
r

µr

[
1
αr

(J̃αr
r −1)+

1
βr

(K̃βr
r −1)

]
. (26)

where N(positive integer), µr > 0, αr ≥ 1, and βr ≥ 1 are material constants, and
J̃r and K̃r are generalized pseudo invariants defined as follows:

J̃r ≡ tr
(
CM̃r

)
, K̃r ≡ tr

(
cof(C)M̃r

)
, (27)

where M̃r is the generalized structural tensor given by

M̃r ≡ w(r)
1 M1 +w(r)

2 M2 +w(r)
3 M3. (28)

w(r)
i represent the weight factors of the principal material directions and w(r)

i de-
termine the effect of the interaction between fibers. The weight factors w(r)

i take
values between 0 and 1, as given in Eqn.(29), and the higher the value of w(r)

i , the
stronger is the effect of the fiber of direction i on others. This feature enables to
obtain the expression of directional anisotropy. Note that when all w(r)

i take values
equal to 1/3, the material behaves as an isotropic one.

0≤ w(r)
i ≤ 1. (29)

The strain energy function satisfies the four prerequisite conditions mentioned in
the previous section in such a manner that no additional restrictions should be im-
posed on the associated material coefficients. These coefficients can be further
evaluated on the basis of experimental data.

3.3 Implementation in Abaqus/Standard UMAT

This section shows how the material model of Eqn.(26) is implemented in Abaqus/
Standard by using the UMAT user-defined material subroutine. The present hy-
perelastic models need not have internal variables that are essential to history-
dependent materials. Then, only components of the Cauchy stress and the tangent
stiffness matrix, called as“material Jacobian" in Abaqus/Standard, are required to
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return to the calling program. This is a convenient way to formulate the present
material models with the total Lagrangian description associated with the second
Piola-Kirchhoff stress given in Eqn.(22). On the other hand, Abaqus/Standard uses
the updated Lagrangian description. Although the total and updated Lagrangian
formulations are superficially different from each other, the underlying mechanics
of the two are identical. Therefore, appropriate push-forward operations from the
referred configurations to the current ones should be accounted for [Pinsky, Ortiz,
and karl S. Pister (1983); Meyers, Xiao, and Bruhns (2006); Zhang (2009)]. The
second Piola-Kirchhoff stress S can be transformed to the Cauchy stress σ by the
push-forward operation

σ =
1
J

FSFT . (30)

To specify the material Jacobian correctly, the component values have to be chosen
and computed depending on the type of finite element and objective stress rate be-
ing used. Abaqus/Standard uses the Green-Naghdi rate of Kirchhoff stress τ∇G and
rate-of-deformation tensor D for structural elements such as shells, membranes,
beams, and trusses [Prot, Skallerud, and Holzapfel (2007)Abaqus (2008)]. There-
fore, the tangent modulus C∇G related to the Green-Naghdi rate of the Kirchhoff
stress tensor and rate-of-deformation tensor have to be given by the following ex-
pression:

τ
∇G = C∇G : D. (31)

Now, we derive C∇G from the elasticity tensor C given in Eqn.(23). The Green-
Naghdi rate of the Krichhoff stress tensor τ∇G is defined as

τ
∇G = τ̇−Ωτ + τΩ, (32)

where Ω = ṘRT is the rigid spin tensor with R denoting the rotation tensor. The
tangent modulus C∇J between the Jaumann rate of the Kirchhoff stress tensor τ∇J

and D is introduced as

τ
∇J = τ̇−Wτ + τW = C∇J : D, (33)

where the superposed dot denotes the material time derivative and W is the contin-
uum spin tensor. Now, the material time derivative is employed in the Krichhoff
stress tensor τ = Jσ = FSFT as

d
dt

τ = ḞSFT +FṠFT +FSḞT

= (D+W)τ +FṠFT + τ(D−W). (34)
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The Jaumann stress rate is derived by moving the terms of W to the LHS in
Eqn.(34) as

τ̇−Wτ + τW = F(C : Ė)FT +Dτ + τD,

τ
5J = F

(
C : (FT DF)

)
FT +Dτ + τD, (35)

where E is the Green-Lagrange strain tensor. Eqn.(35) is recast as the following
expression using C∇J and Č:

C∇J : D = Č : D+Dτ + τD. (36)

The above representation is rewritten in the form given below in terms of every
component:

(C∇J)i jkl = (Č)i jkl + τikδ jl +δikτ jl, (37)

where Č is the spatial elasticity tensor defined as

(Č)i jkl = FiIFjJFkKFlL(C)IJKL. (38)

For the repeated indices I,J,K, and L, the summation convention is employed. The
Jaumann stress rate and Green-Naghdi rate have the following relationship:

τ
∇G = τ

∇J +(W−Ω)τ− τ(W−Ω). (39)

Mehrabadi and Nemat-Nasser [Mehrabadi and Nemat-Nasser (1987)Simo and Hughes
(1998)] derived the followingship relation between W and Ω:

W−Ω = Λ : D, (40)

where Λ is a fourth-order tensor represented as given below in the component-based
form:

Λi jkl =
1

IV IIV − IIIV

{
I2
V (Vikδ jl−δikVjl)− IV (Bikδ jl−δikB jl)+BikVjl−VikB jl

}
,

(41)

where Bi j is the left Cauchy-Green deformation tensor; Vi j is the left stretch tensor;
and IV , IIV , and IIIV are the principal invariants of Vi j. Consequently, the tangent
modulus C∇G becomes

(C∇G)i jkl = (C∇J)i jkl +Λiaklτa j− τiaΛa jkl. (42)
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Note that Λi jkl has the following properties:

Λi jkl 6= Λ jikl, (43)

Λi jkl 6= Λi jlk, (44)

Λi jkl =−Λ jilk, (45)

Λi jkl = Λkli j. (46)

By utilizing the above properties, the symmetric matrix for the material Jacobian
C∇MG that is required in Abaqus/Standard can be given as

(C∇MG)abcd =
1
J
[(C∇J)abcd +

1
2
(Λaecd +Λaedc)τeb− τae

1
2
(Λebcd +Λebdc)]. (47)

To implement the derived material model in the shell elements, the additional
plane stress condition and appropriate thickness update should be accounted for
[Başar and Ding (1996, 1997); Başar and Itskov (1998); Başar, Itskov, and Eckstein
(2000); Itskov (2001)]. In this study, an incompressible deformation is assumed for
the current model to simplify the calculation of the thickness change. The initial
thickness is 1 mm. The component of the deformation tensor in the thickness di-
rection F33 is replaced with in-plane variables in the following manner:

F33 =
1

F11F22−F12F21
. (48)

For incompressible materials, indeterminant hydrostatic pressure p occurs in the
stress response as

S = 2
∂W
∂C

+ pC−1. (49)

Note that p can be eliminated at the element level via the plane stress condition
S33 = 0 to yield

p =−2
∂W
∂C33

. (50)

After substituting Eqn.(50) in Eqn.(49), we can obtain the stress tensor by consider-
ing the plane stress condition. The elasticity tensor related to this stress tensor can
be derived by computing Eqn.(23). In this study, w(r)

3 = 0 is employed by taking
a zero fiber in the thickness direction. The transverse shear stiffness of the section
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of a shear flexible shell element (such as S4R) in Abaqus/Standard is defined as
follows [Abaqus (2008); Ma, Lu, Harbaugh, and Raghavan (2007)].

Kts
11 =

5
6

G13t, Kts
22 =

5
6

G23t, Kts
12 = 0, (51)

where Kts
11, Kts

22, and Kts
12 are the transverse shear stiffnesses; G13 and G23 are the

material’s shear moduli in the out-of-plane direction; and t is the thickness. The
transverse shear stiffness should be specified as the initial, linear elastic stiffness
of the shell in response to pure transverse shear strains. For the current model, the
material’s shear moduli are derived as

G13 =
1
2

N

∑
i

µiw
(i)
1 , G23 =

1
2

N

∑
i

µiw
(i)
2 . (52)

4 Conditional provision and performing simulation to measure contact pres-
sure of clothing

4.1 Parameter identification of strain energy function

In this section, the material parameters to be assigned to the strain energy func-
tion given by Eqn.(26) are numerically identified so that the mechanical behavior
of cloth can be predicted. The cloths considered in this study are made of knit-
ted fabrics. Assuming that knitted fabrics behave like an orthotropic material in a
macroscopic view, the anisotropy of the material is characterized by two families
of yarns, i.e., warp and weft, as shown in Fig.3.

Weft direction

Knitted fabric

Warp direction

Figure 3: Schematic model of knitted fabric.
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25 mm

warp
weft

50 mm

(a) Warp direction (b) Weft direction (c) Bias direction
Figure 4: Analysis model for simple tension of knitted strips of cloth.

To identify the material parameters in Eqn.(26), three uniaxial loadings in three
directions: warp, weft, and bias at an angle of 45◦ are considered, as shown in Fig.4.
To fit the load-displacement relationships with the experimental data in all three
directions, the following objective function S in Eqn.(54) is minimized with respect
to the material constants µr, αr, βr, w(r)

1 and w(r)
2 subject to satisfying Eqn.(53)

using Real-Coded GA [Sakuma and Kobayashi (2004)].

minS

s.t. µr ≥ 0, αr ≥ 1, βr ≥ 1,

0≤ w(r)
1 ,w(r)

2 ≤ 1, w(r)
1 +w(r)

2 = 1, (53)

S =
l

∑
i=1

[t̄i− t(λ̄i)]2 +
m

∑
i=1

[t̄i− t(λ̄i)]2 +
n

∑
i=1

[t̄i− t(λ̄i)]2,

(54)

where t is the nominal stress; λ is the stretch; and l, m, and n are the number of
experimental data points in the warp, weft, and bias directions, respectively. i in-
dicates the sampling number and the overbar represents experimental values. t(λ̄i)
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denotes the i-th nominal stress calculated by the FEM. N in Eqn.(26) is set to 3 in
this study. Now, the numerical identification of spats can be processed. Using the
abovementioned method, the material parameters can be determined as shown in
Table 1 for the rebar layer model and Table 2 for an anisotropic hyperelastic mate-
rial. Fig.5 shows the load-displacement curve and deformation configurations in

Table 1: Material parameters of spats for rebar layer model.
C10

8.4667×10−3 MPa
c0 c1 c2 c3 c4 c5

0.0001 MPa 0.1672 MPa −2.225 MPa 21.199 MPa −62.05 MPa 61.746 MPa
d0 d1 d2 d3 d4 d5

0.0032 MPa −0.075 MPa 0.4653 MPa −1.340 MPa 1.9400 MPa −0.986 MPa

Table 2: Material parameters of spats for anisotropic hyperelastic model.
µ1 µ2 µ3

1.2755×10−2 MPa 2.0569×10−3 MPa 4.5867×10−2 MPa
α1 α2 α3 β1 β2 β3

4.727 1.475 1.736 1.003 16.16 1.063

w(1)
1 w(1)

2 w(2)
1 w(2)

2 w(3)
1 w(3)

2
0.771 0.229 0.585 0.415 0.652 0.348

the warp, weft, and bias directions for the material parameters listed in Table 1 and
Table 2. As shown in Fig.5, the resultant progress of deformation in the anisotropic
hyperelastic model accurately matches the experimentally observed deformations
and load-displacement responses in all cases with the optimized material parame-
ters, whereas the rebar layer model exhibits the opposite deformation modes in the
warp and weft directions, and a much lower load-displacement curve in the bias
direction.

4.2 Simulation that measures contact pressure of clothing

With this material model, a three-dimensional finite element analysis is carried out
using Abaqus/Standard to obtain the distribution of clothing pressure acting on
human skin. The material model is implemented via the UMAT user-subroutine
for a user-defined material. This simulation aims to investigate the design of cloth
that fits the human body. Cloth is meshed with four-noded shell elements (S4R in
Abaqus/Standard) and the T-shirt fabrics are used in this simulation. The material
parameters of the T-shirts are determined by the numerical identification mentioned
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in the previous section as listed in Table 3 for the rebar layer model and Table 4 for
the anisotropic hyperelastic model.

Table 3: Material parameters of T-shirts for rebar layer model.
C10 c0 c1 c2 c3

3.82×10−2MPa 0.0064 MPa 0.0786 MPa −0.287 MPa 0.2156 MPa
d0 d1 d2 d3

−0.010 MPa 0.0206 MPa 0.0291 MPa −0.013 MPa

Table 4: Material parameters of T-shirts for anisotropic hyperelastic model.
µ1 µ2 µ3

6.8837×10−3 MPa 8.6240×10−2 MPa 1.2354×10−1 MPa
α2 α3 α3 β1 β2 β3

3.52 1.28 1.00 1.004 13.49 1.002

w(1)
1 w(1)

2 w(2)
1 w(2)

2 w(3)
1 w(3)

2
0.321 0.565 0.585 0.435 0.781 0.219

Fig.6 shows the load-displacement curves derived from the analysis using the ma-
terial parameters listed in Table 3 and Table 4.

The results obtained from the abovementioned experimental method and the so-
lutions derived from the FEM analysis are summarized here. The virtual human
body model used in this simulation corresponds to an average body of a 20-year-
old Japanese woman, as shown in Fig.7. An air-pressure measurement device is
used to extract experimental data of the pressure. This system measures the cloth-
ing pressure by calculating the difference between the atmospheric pressure and the
pressure pneumatically transmitted from the air packs attached to various positions
on the body where the clothing contacts the skin. Therefore, this experimental sys-
tem merely serves to obtain point-to-point measurement data through observation,
and consequently, such an observation can hardly predict the overall distribution
of contact pressure on the human skin. To overcome this difficulty, a numerical
simulation using a nonlinear FEM is conducted to simulate the distribution of the
contact pressure on the human body in the standing posture; this eliminates the
need to design actual clothes. In this study, the human body is modeled by rigid
elements. Because the surface of the dummy is sufficiently smooth to avoid the
occurrence of any excessive tensions or wrinkles on the clothing during the exper-
iment, the friction between the garment and the human body is not considered in
the simulation. Fig.8 shows the process of the simulation that measures the contact
pressure of clothing. As shown in Fig.8, the original shapes of the sewing patterns
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(a) Anisotropic Hyperelastic
(b) Rebar layer
(c) Experimental data
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Figure 5: Load-displacement curves of spats in the warp, weft, and bias directions
including deformation configurations.
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Figure 6: Load-displacement curves of T-shirts in the warp, weft, and bias direc-
tions.

of clothes are first placed against the front and back of the body model, and then,
these patterns are deformed so as to match the surface curves of the body to the
greatest extent possible for the simulation to proceed. Fig.9 shows the contour of
the contact pressure distributed over the human body surface. To validate the simu-
lation results, a comparison is made with the experimental data extracted from the
system shown in Fig.7 according to the sequence of points in the path, as shown
in Fig.10. Fig.11 shows a comparison of the numerical data with the experimen-
tal ones. À, Á, · · · in Fig.11 denote the observation points shown in Fig.10. As
noted in Fig.11, the numerical simulation with the anisotropic hyperelastic model
is found to quantitatively be in good agreement with the experimental results. As
compared to the results obtained with the rebar layer model, those obtained with
the anisotropic hyperelastic model appear to better fit the measurement, especially
under the armpit (at observation points Ã and Ä). The validation and numerical
efficiency of the anisotropic hyperelastic model are well demonstrated through this
practical simulation.

5 Conclusion

This study presents the implementation of two material models to predict the me-
chanical behavior of cloth. One is the rebar layer model that consists of the isotropic
hypereastic matrix part and the reinforced rebar part. The other is the polyconvex
anisotropic hyperelastic model; this model requires four conditions to be satisfied to
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Air-bag pressure sensor

TubeCloth

Human body

Air-bag sensor

Pressure measurement device

Figure 7: Experiment system for contact pressure analysis.
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Figure 8: Procedure for simulation of contact pressure.

Contact pressure [kPa]
2.259
2.070
1.882
1.694
1.506
1.318
1.129
0.941
0.753
0.565
0.376
0.188
0.000

Figure 9: Contact pressure contour.
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Figure 10: Measurement position of contact pressure.
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ensure the existence of the global minimizer of the total elastic energy of the body
in boundary value problems, and the effect of the interaction between each fiber is
considered for applying weight factors. The material parameters are numerically
identified to fit the results to the experimental data of knitted strips stretched in the
warp, weft, and bias directions. Using this material model, the simulation could
successfully compute the pressure exerted by clothing on the human body model,
and good agreement with the experimental data was realized. Through these re-
searches, the following results are derived.

• The simulation of uniaxial tension tests for spats demonstrates the remark-
able influence of anisotropy, and the polyxconvex anisotropic hyperelastic
model gives the load-displacement curves and deformation modes in better
agreement with the experimental data in the warp, weft, and bias directions
than the rebar layer model does.

• In the simulation of the clothing pressure distribution using T-shirts, the poly-
convex anisotropic hyperelastic model gives more accurate results than the
rebar layer model, especially for the armpits. Although the material of T-
shirts demonstrates less influence of anisotropy than spats in tension tests, the
biaxiality of the deformation gradient is more likely to appear in the armpits,
and the polyconvex anisotropic hyperelastic model that considers the effect
of interaction between the warp and the weft works better than the rebar layer
model does in this part.

The validation and numerical efficiency of the models developed through this study
are discussed in detail through the abovementioned simulation that measures the
contact pressure of clothing. In the future, we intend to incorporate the biaxial
tension test for woven fabric and the material model in our study.
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