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Concurrent Atomistic/Continuum Simulation of
Thermo-Mechanical Coupling Phenomena

Xianqiao Wang1 and James D. Lee1

Abstract: The concurrent methods for coupling molecular dynamics with con-
tinuum thermodynamics offer a myriad of challenging problems, mostly related
with energy transmission, wave reflection, and damage propagation at the inter-
faces between the continuum description and the discrete description. In this work,
by virtue of the atomistic field theory (AFT), we present an analysis to reconcile
the compatibility between atomic region and continuum region and to calculate the
matching temperature field of a heat conduction problem in a concurrent atom-
istic/continuum system. First, formulation of AFT with finite temperature and
its corresponding finite element implementation are briefly introduced. Then we
develop a new explicit algorithm with multiple-time-scale procedure to treat in-
terfaces between atomic and continuum regions. Finally, AFT with this special
algorithm is employed to investigate a thermal-mechanical coupling problem. This
work provides a more fundamental understanding of thermomechanical phenom-
ena at the interface between atomic and continuum regions.

Keywords: Molecular dynamics; Thermomechanical coupling; Multiscale mod-
eling; Heat conduction; Temperature; Atomistic field theory

1 Introduction

It is understood that continuum physics is invalid for material systems at nanoscale;
and, even with a state-of-the-art supercomputer, molecular dynamics (MD) simula-
tion is limited in the length/time scale that it can handle. Yet, ultimately we aim at
the design and manufacture of synthetic and hierarchical material systems or struc-
tures in which the organization is designed and controlled on length scales ranging
from nanoscopic to microscopic, even to macroscopic. Therefore multiscale mod-
eling, from atom to continuum, is inevitably needed.
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Recently, several multiscale techniques have been developed; we will briefly review
some of these works. To begin with, the coupling of length scale method (CLSM)
was a pioneering work developed by Abraham, Broughton, Broughton, Bernstein,
and Kaxiras (1998), and by Rudd and Broughton (2001), which incorporated the
coupling of a tight-binding quantum mechanics approximation, MD, and finite el-
ement (FE) continuum model. Belytschko and Xiao (2003), Xiao and Belytschko
(2004) developed the Bridging-domain method (BDM), in which the continuum
and molecular domains were overlapped in a bridging subdomain, and the Hamilto-
nian was taken to be linear combination of the continuum and molecular parts. The
compatibility in BDM was enforced by Lagrange multipliers or by the augmented
Lagrangian method. The groundwork of the bridging scale method (BSM) was
presented by Wagner and Liu (2003), in which the molecular displacements were
decomposed into fine and coarse scales throughout the domain. At the interface
between the two domains, they used a form of the Langevin equation to eliminate
spurious reflections. They reported excellent results for one-dimensional problems.
Also Kadowaki and Liu (2005) presented a multiscale approach for the micropolar
continuum model, in which averaging procedures are operated over a surrounding
sub-domain for each material point to bridge a discrete microstructure to a macro
continuum model. The atomistic-to-continuum (AtC) method, developed by Fish,
Nuggehally, Shephard, Picu, Badia, Parks and Gunzburger (2007), and by Parks,
Bochev and Lehoucq (2008), was a force-based method which achieved the cou-
pling between atomistic and continuum region by blending at the level of forces.
In these fashions, the computational power is harnessed, resulting in an optimum
compromise between numerical accuracy and computational overhead. The mul-
tiscale simulation technique based on the meshless local Petrov-Galerkin method
was developed by Shen and Atluri (2004 a, b, c), in which several alternate time-
dependent interfacial conditions, between the atomistic and continuum regions,
are systematically studied, for the seamless multiscale simulation, by decompos-
ing the displacement of atoms in the equivalent continuum region into long and
short wave-length components. Ma et al. (2006) also developed a multiscale sim-
ulation method using generalized interpolation material point method (GIMP) and
molecular dynamics. In their theory, a material point in the continuum is split into
smaller material points using multi-level refinement until it has nearly reached the
atom size to couple with atoms in the MD region. Consequently, coupling between
GIMP and MD is achieved by using compatible deformation, force, and energy
fields in the transition region between GIMP and MD. Raghavan and Ghosh (2004)
established an adaptive multiscale computational modeling of composite materials
that combines a conventional displacement based finite element model with a mi-
crostructural Voronoi cell finite element model for multi-scale analysis of compos-
ite structures with non-uniform microstructural heterogeneities as obtained from
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optical or scanning electron micrographs. Compared with direct atomistic simula-
tion, these techniques have the potential to produce significant time and length scale
gains by treating smoothly varying regions of the configurational space collectively.
Generally speaking, however, in all those above-mentioned coupled methods, the
idea is to use a fully atomistic description in one region of material and a continuum
description in other regions. The detailed treatment of the material in the ‘transi-
tion region’ or boundary between the atomistic and continuum regions is a critical
aspect of such an approach.

The Quasicontinuum (QC) method, developed by Tadmor, Ortiz and Phillips (1998)
and extended by Knap and Ortiz (2001), has been used to study a variety of fun-
damental aspects of deformation in crystalline solids at zero temperature based
on Cauchy-Born elasticity. In most works based on QC method, triangular finite
elements or tetrahedral finite elements for continuum region is adopted in 2D or
3D simulation, thereby leading to a locally-uniform deformation gradient in the
continuum region. Linear interpolation functions in triangular or tetrahedral finite
element require only one single Gauss-point for numerical quadrature. As a conse-
quence, the application of the Cauchy-Born rule (CBR) implies that in the energy
calculation the summation over the number of lattice sites boils down to the num-
ber of finite elements. Therefore, there will be a limitation for QC methods due to
the validity of the kinematic assumption of CBR, i.e., to determine the state when
a transition to non-affine deformations is possible due to instabilities or inhomo-
geneous of the underlying atomic system (Stienmann, Elizondo and Sunyk, 2006).
Later, several versions of finite-temperature extension of QC method are obtained:
(1) by presenting a derivation of an effective energy function to perform Monte
Carlo simulation in concurrent atomistic continuum setting (Shenoy, Shenoy and
Phillips, 1999); (2) by employing the temperature-related Cauchy-Born rule with
free energy instead of potential energy (Xiao and Yang, 2007); (3) by using dissi-
pative Langevin dynamics (Marian, Venturini, Hansen, Knap, Ortiz and Campbell,
2010). However, in these procedures the energy equation was based on the classi-
cal heat conduction assumption including Fourier’s law, which may be questionable
in micro/nano system. It is worthwhile to mention that in its original version the
QC method was formulated for simple crystals with one atom per unit cell (Simth,
Tadmor, Bernstein and Kaxiras, 2001). However, one has to mention that Tad-
mor, Smith, Bernstein, and Kaxiras (1999) extended the QC method to simulate
materials with multiple atoms in a unit cell. It should also be emphasized that the
Cauchy-Born rule certainly is not appropriate to materials with multiple atoms in a
unit cell.

To circumvent the difficulties mentioned above, an atomistic field theory has been
constructed by Chen and her co-workers (Chen and Lee, 2005; Chen, 2006 and



Concurrent Atomistic/Continuum Simulation 153

2009) for concurrent atomistic/continuum modeling of materials systems. In this
work, we develop an approach to reconcile the compatibility between atomic region
and continuum region and to calculate the temperature field of a thermo-mechanical
coupling problem. To enhance the computational efficiency, we introduce and uti-
lize a multiple-time-scale algorithm. The organization of the remainder of the paper
is as follows: In Section 2, we briefly present the atomistic field theory. By means
of virtual work, in Section 3 we provide the finite element formulation of AFT. Sec-
tion 4 contains the numerical procedure to deal with the interface between atomic
region and continuum region in AFT simulation. Finally we show the numerical
results of a sample problem and conclude this paper with a brief summary and
discussion in Section 5 and Section 6, respectively.

2 Atomistic Field Theory

To provide the background for subsequent developments, we briefly review the
atomistic field theory developed by Chen and her co-workers. AFT views a crys-
talline material as a continuous collection of lattice cells, while situated within each
lattice cell is a group of discrete atoms as shown in Fig. 1. From this viewpoint,
we recall a general link, rigorously developed by Chen (2009), between any phase
space function A(r,p) and its corresponding local density function a(x,yα , t) as
follows

a(x,yα , t) =
Nl

∑
k=1

Na

∑
ξ=1

A(r,p)δ [Rk(t)−x]δ̃ [∆rkξ (t)−yα ] (α = 1,2,3, · · · ,Na) (1)

 

 

Lattice 
Basis 

= +
Figure 1: Atomistic view of crystal structure

with

r≡ {Rkα = Rk +∆rkα |k = 1,2,3, ....,Nl , α = 1,2,3, ....,Na }
p≡ {mαVkα = mα(Vk +∆vkα) |k = 1,2,3, ....,Nl , α = 1,2,3, ....,Na }

(2)
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∫
V

δ (Rk−x)dx = 1

δ̃ (∆rkξ −yα) =
∫

V (yα )
δ (∆rkξ −y)dy =

{
1 if ξ = α and ∆rkα = yα

0 otherwise

(3)

Here the superscript kξ refers to the ξ th atom in the kth unit cell; Rk is the position
of the mass center of the kth unit cell; ∆rkξ is the atomic position of the ξ th atom
relative to the mass center of the kth unit cell; Nl is the total number of unit cells in
the system;Na is the number of atoms in a unit cell; V is the volume of the whole
system; V (yα) is the volume of αth atom in the unit cell. The first delta function
in eq. (1) is a localization function. It can be a Dirac δ -function, or a distribution
function as suggested by Hardy (1982). However, it should be noted that the field
descriptions of the conservation equations and the constitutive relations have been
proved to be independent of the choices of the localization function. The second
delta function in eq. (1) is the Kronecker delta, which identifies yα to ∆rkα .

The time evolution of any physical quantity in the atomistic field theory can be
expressed as:

∂a(x, yα , t)
∂ t

∣∣∣∣
x,yα

=
Nl

∑
k=1

Na

∑
ξ=1

Ȧ(r,p)δ (Rk−x)δ̃ (∆rkξ −yα)

−∇x ·
Nl

∑
k=1

Na

∑
ξ=1

Vk⊗A(r,p)δ (Rk−x)δ̃ (∆rkξ −yα)

−∇yα ·
Nl

∑
k=1

Na

∑
ξ=1

∆vkξ ⊗A(r,p)δ (Rk−x)δ̃ (∆rkξ −yα)

(4)

When a(x, yα , t) is the local density of a conserved quantity, eq. (4) represents the
corresponding balance law.

By virtue of eq. (1), the local density quantities, such as mass density ρα , lin-
ear momentum density ρα(v + ∆vα), interatomic force density fα , external force
density φ α , the homogeneous part tα and inhomogeneous part τα of stress tensor,
internal energy density ραeα , the homogeneous part qα and inhomogeneous part
jα of heat flux, heat source hα , and temperature T α , are defined as

ρ
α ≡

Nl

∑
k=1

Na

∑
ξ=1

mξ
δ (Rk−x)δ̃ (∆rkξ −yα) (5)

ρ
α(v+∆vα)≡

Nl

∑
k=1

Na

∑
ξ=1

mξ (Vk +∆vkξ )δ (Rk−x)δ̃ (∆rkξ −yα) (6)
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fα ≡
Nl

∑
k=1

Na

∑
ξ=1

(−∂U
/

∂Rkξ )δ (Rk−x)δ̃ (∆rkξ −yα)

=
Nl

∑
k=1

Na

∑
ξ=1

Fkξ
δ (Rk−x)δ̃ (∆rkξ −yα)

(7)

ϕ
α ≡

Nl

∑
k=1

Na

∑
ξ=1

Fkξ

extδ (Rk−x)δ̃ (∆rkξ −yα) (8)

tα =tα
kin + tα

pot

≡−
Nl

∑
k=1

Na

∑
ξ=1

mξ Ṽk⊗ Ṽkξ
δ (Rk−x)δ̃ (∆rkξ −yα)

− 1
2

Nl

∑
k,l=1

Na

∑
ξ ,η=1

(Rk−Rl)⊗Fkξ B(k,ξ , l,η ,x,yα)

(9)

τττ
α = τττ

α
kin +τττ

α
pot

≡−
Nl

∑
k=1

Na

∑
ξ=1

mξ
∆ṽkξ ⊗ Ṽkξ

δ (Rk−x)δ̃ (∆rkξ −yα)

− 1
2

Nl

∑
k,l=1

Na

∑
ξ ,η=1

(∆rkξ−∆rlη)⊗Fkξ B(k,ξ , l,η ,x,yα)

(10)

ρ
αeα ≡

Nl

∑
k=1

Na

∑
ξ=1

[1
2 mξ (Ṽkξ )2 +Ukξ ]δ (Rk−x)δ̃ (∆rkξ −yα) (11)

qα =qα
kin +qα

pot

≡−
Nl

∑
k=1

Na

∑
ξ=1

Ṽk
(

1
2 mξ (Ṽkξ )2 +Ukξ

)
δ (Rk−x)δ̃ (∆rkξ −yα)

− 1
2

Nl

∑
k,l=1

Na

∑
ξ ,η=1

(Rk−Rl)Ṽkξ ·Fkξ B(k,ξ , l,η ,x,yα)

(12)

jα =jα
kin + jα

pot

≡−
Nl

∑
k=1

Na

∑
ξ=1

∆ṽkξ

(
1
2 mξ (Ṽkξ )2 +Ukξ

)
δ (Rk−x)δ̃ (∆rkξ −yα)

− 1
2

Nl

∑
k,l=1

Na

∑
ξ ,η=1

(∆rkξ−∆rlη)Ṽkξ ·Fkξ B(k,ξ , l,η ,x,yα)

(13)
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hα ≡
Nl

∑
k=1

Na

∑
ξ=1

Ṽkξ · Fkξ

extδ (Rk−x)δ̃ (∆rkξ −yα) (14)

T α ≡ ∆V
3kB

Nl

∑
k=1

Na

∑
ξ=1

mξ (Ṽkξ )2
δ (Rk−x)δ̃ (∆rkξ −yα) (15)

where Ṽkξ ≡Vkξ−(v+∆vξ ) is the difference between phase space velocity and lo-
cal physical space velocity; Ukξ is the potential energy of kξ th atom; U = ∑

Nl
k=1 ∑

Na
ξ=1Ukξ

is the total potential energy; kB is the Boltzmann constant; ∆V is the volume of unit
cell, and B(k,ξ , l,η ,x,yα) is defined as

B(k,ξ , l,η ,x,yα)≡∫ 1

0
δ

(
Rk

λ +Rl(1−λ )−x
)

δ̃

(
∆rkξ

λ +∆rlη(1−λ )−yα

)
dλ (16)

Following eq. (4), as exact consequences of Newton’s second laws, we have the
time evolution of conserved quantities, namely, mass, linear and angular momenta,
and energy, as (Chen and Lee, 2005; Chen, 2006 and 2009):

dρα

dt
+ρ

α
∇x ·v+ρ

α
∇yα ·∆vα = 0 (17)

ρ
α d

dt
(v+∆vα) = ∇x · tα +∇yα ·τττα +ϕ

α (18)

tα +τττ
α = (tα +τττ

α)T (19)

ρ
α deα

dt
+∇x · (−qα)+∇yα · (−jα) = tα : ∇x(v+∆vα)+τττ

α : ∇yα (v+∆vα)+hα

(20)

It is worthwhile to note that, with the atomistic definitions of interatomic force and
the potential parts of the atomic stresses, one has (Chen and Lee, 2005)

∇x · tα
pot +∇yα ·τττα

pot = fα (21)

For a single-element atomic system, Cheung and Yip (1991) and Haile (2001) gave
the following definitions for kinetic stresses t̂i j and temperature T̂ :

t̂i j =−
N

∑
l=1

mṽl
i ṽ

l
j/V̂ , 3NkBT̂ =

N

∑
l=1

mṽl
i ṽ

l
i (22)
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where V̂ is the volume that the atoms occupy; ṽl
i is the difference velocity of the ith

component between instantaneous velocity and average velocity of the lth atom. In
consistent with Cheung and Yip (1991) and Haile (2001), for multi-element atomic
system, we have

tα
kin =−mα ṽ⊗ (ṽ+∆ṽα)/∆V

τττ
α
kin =−mα

∆ṽα ⊗ (ṽ+∆ṽα)/∆V

3kBT α = mα(ṽ+∆ṽα) · (ṽ+∆ṽα)
(23)

It is seen that tα
kin + τττα

kin = −mα(ṽ + ∆ṽα)⊗ (ṽ + ∆ṽα)/∆V is symmetric; but
neithertα

kin nor τα
kin is symmetric. At temperature higher than Debye temperature

and within harmonic approximation, all modes have the same energy (Dove, 1993).
This implies

(Na−1)mṽ · ṽ =
Na

∑
α=1

mα
∆ṽα ·∆ṽα (24)

where m = ∑
Na
α=1 mα is the total mass of a unit cell. Equation (23) implies

tα

i j(kin) =−
λ αkBT δi j

∆V
, τ

α

i j(kin) =−
(1−λ α)kBT δi j

∆V
(25)

where λ α = mα/m. Definition of temperature at nanoscale is still a debating issue.
Here, we follow the classical way to define temperature as a measure of thermal
energy over a finite duration and over a unit cell. Thus, we have T α = T (x, t) and
∇yα ·τττα

kin = 0. Now the governing equation, eq. (18), can be rewritten as

ρ
α üα(x, t) =−γαkB∇T (x, t)

∆V
+ fα(x, t)+ϕ

α(x, t) (26)

where u̇α(x, t) = v+∆vα , üα(x, t) = d(v+∆vα )
dt .

In lattice systems, the smallest allowable physical volume in AFT is the volume of
a unit cell. The mass density of the αth atom at x is thus ρα(x, t) = mα/∆V (x, t),
where mα is the mass of the αth atom. Consider the specimen as a material system
made of two regions: continuum region (Nl unit cells) and atomic region (N atoms),
as shown in Fig. 2 (here a 2D picture is shown for the purpose of illustration). Each
unit cell has Na atoms. Then the governing equation in these two regions can be
expressed as

Continuum region [α = 1,2,3, · · · ,Na]

mα üα(x, t) =−γ
αkB∇T (x, t)+Fα

C(x, t)+ΦΦΦ
α
C(x, t) (27)
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Figure 2: Schematic picture of AFT model with force distribution

where Fα
C(x, t) is the interatomic force; ΦΦΦα

C(x, t) is the force due to external fields.

Atomic region [β = 1,2,3, ...,N]

mβ üβ (t) = Fβ

A(t)+ΦΦΦ
β

A(t) (28)

where Fβ

A(t) and ΦΦΦ
β

A(t) are the interatomic force and external force acting on the
β th atom, respectively. It is seen that, in MD simulation, temperature is not an
independent variable; hence it doesn’t appear in the governing equations; instead it
is calculated as

3NkBT =
N

∑
i=1

mi(u̇i− ¯̇u) · (u̇i− ¯̇u) (29)

where ¯̇u is the mass-weighted velocities of a group of N atoms.

In this work, the temperature in continuum region is given as a function of space
and time T = g(x, t). Then the relevant governing equations in continuum region
are just the balance law for linear momentum, i.e.,

mα üα(x, t) = Fα
temp(x, t)+Fα

C(x, t)+ΦΦΦ
α
C(x, t) (30)

where Fα
temp(x, t) =−γαkB∇g(x, t) is the force due to temperature.
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3 Finite Element Implementation

Define Fξ η [uξ ,uη ] as the interatomic force acting on the ξ th atom due to the η th
atom

Fξ η [uξ ,uη ] =− 1
2
(
∂Uξ η

∂uξ
− ∂Uξ η

∂uη
)

=
1
2
(Fξ η −Fηξ )

(31)

where uξ η is the interatomic potential between the ξ th atom and η th atom.

The interatomic force Fα
C(x, t) in continuum region and Fβ

A(t) in atomic region can
be expressed respectively as (Lee, Wang and Chen, 2009a, b)

Fα
C(x, t) =∫

Ω(x′,t)

1
∆V (x′, t)

Na

∑
β=1

Fαβ [uα(x, t),uβ (x′, t)]dΩ(x′, t)+
N

∑
β=1

Fαβ [uα(x, t),uβ (t)]

(32)

Fβ

A(t) =
∫

Ω(x,t)

1
∆V (x, t)

Na

∑
α=1

Fβα [uβ (t),uα(x, t)]dΩ(x, t)+
N

∑
α=1

Fβα [uβ (t),uα(t)]

(33)

Now the weak form, based on eqs. (28) and (30), can be expressed as

∫
Ω

1
∆V (x)

Na

∑
α=1
{mα üα −Fα

C −ΦΦΦ
α
C −Fα

temp} ·δuαdΩ

+
N

∑
β=1
{mβ üβ −Fβ

A−ΦΦΦ
β

A} ·δuβ = 0 (34)

The displacements and the virtual displacements are expressed as

uα(x) = ΦI(x)Uα
I , δuα(x) = ΦI(x)δUα

I (35)

where ΦI(x) is the shape function, and Uα
I is the displacement of αth atom within

the Ith node of the element in which x resides. After lengthy but straightforward
derivations, finally we have



160 Copyright © 2010 Tech Science Press CMES, vol.62, no.2, pp.150-170, 2010

Continuum region

∫
Ω

1
∆V (x)

mα
ΦJΦIÜα

I dΩ

−
∫
Ω

1
∆V (x)

ΦJ

Na

∑
β=1

∫
Ω(x′)

1
∆V (x′)

Fαβ [ΦIUα
I ,ΦK(x′)Uβ

K ]dΩ(x′)dΩ

−
∫
Ω

1
∆V (x)

ΦJ

N

∑
β=1

Fαβ [ΦIUα
I ,uβ ]dΩ−

∫
Ω

1
∆V (x)

(Fα
temp +ΦΦΦ

α
C)ΦJdΩ = 0

(36)

Atomic region

mβ üβ −ΦΦΦ
β

A−
N

∑
α=1

Fβα [uβ ,uα ]−
∫
Ω

1
∆V

Na

∑
α=1

Fβα [uβ ,ΦIUα
I ]dΩ = 0 (37)

We further reduce it to a lumped-mass system. Then, for the sake of simplicity, eqs.
(36, 37) are written in the following symbolic expressions

Mα
J Üα

J = ΣΣΣ
α
J (Uβ

I ,uγ ,TI) (I ∈ P; β = 1,2, · · · ,Na; γ = 1,2, · · · ,N) (38)

mβ üβ = ΠΠΠ
β (Uα

I ,uγ) (I ∈ P; α = 1,2, · · · ,Na; γ = 1,2, · · · ,N) (39)

where Uα
J is the displacement of αth atom in the Jth node; ΣΣΣα

J is the total force
acting on the αth atom in the Jth node; ΠΠΠβ is the total force acting on β th atom in
the atomic region; P is the set of all nodes in the continuum region.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

∂T
∂t

= k∇2T B 

∂B 

B2 

B1 I=B1∩B2 

∂B 

Fig. 3 Schematic picture of heat conduction problem Figure 3: Schematic picture of heat conduction problem
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4 Numerical Procedures

4.1 Boundary Condition at Interface

In classical heat conduction problem (cf. Fig. 3a), by virtue of Fourier’s law, one
has the governing equation:

∂T
∂ t

= k∇
2T (40)

where k is the heat conductivity. To secure the classical heat conduction as a well-
posed problem, the following boundary conditions are imposed

T = T ∗(x, t) on ∂Bt (41)

q ·n = q∗(x, t) on ∂Bq (42)

When the heat conduction occurs in a system composed of two homogeneous solids
of different materials in perfect contact, the interface between these two homoge-
neous solids plays an important role in heat transfer. To ensure the compatibility
and smoothness of the temperature distribution through the interface, one should
have the following boundary conditions at the interface (cf. Fig. 3b)

T1 = T2

q1 ·n1 +q2 ·n2 = 0
(43)

which means at the interface the temperature is continuous and the net heat flux is
vanishing.

In this work, a more formidable interface between atomistic region and continuum
region exists although these two regions are made of the same material as shown
in Fig. 4. To pave the way for thermal conduction simulation in this concurrent
atomistic/continuum system, a similar procedure as in classical heat conduction is
adopted (cf. Fig.4)

T ∗A = T ∗e ≡ T ∗

NTA + ∑
e∈E

NeTe = NT ∗+ ∑
e∈E

NeT ∗ (44)

where TA is the temperature in the atomic region before matching; Te is the tem-
perature of the eth element in the continuum region neighboring the atomic region
(orange color); and E is the set of elements which are neighboring the atomic re-
gion; Ne is the total number of atoms in the eth element. From eq. (44), we have

T ∗ =
NTA + ∑

e∈E
NeTe

N + ∑
e∈E

Ne
(45)
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Figure 4: Schematic picture of concurrent atomistic/continuum heat conduction
simulation

This implies that the temperature in the atomic region and the surrounding con-
tinuum region is a calculated quantity, not a predetermined quantity, although we
consider that the temperature is given as a function of space and time in the continue
region.

4.2 Random velocity differences

Instantaneous values of velocity differences, ˜̇ui = u̇i− ¯̇u, in the atomic region are
generated by sampling from a normal distribution with

µ = ¯̇u =

N
∑

i=1
miu̇i

N
∑

i=1
mi

(46)

N

∑
i=1

mi(u̇i−µ) · (u̇i−µ) = 3NkBT ∗ (47)

4.3 Multiple time-scale algorithms

The computational model developed in the previous section involves a two-way
information exchange: the full-blown interatomic forces between two regions de-
pend on the displacements of both regions; the fine scale atomistic simulation con-
tributes to the temperature (cf. eq. (29)) of the atomic region; and then the coarse
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scale continuum simulation provides information needed to compute the matching
temperature. Different length scale corresponds to different time scale. If a single
time step is adopted in both continuum and atomic regions, the stable time step
depends on the Courant condition in the atomic region, i.e., ∆tcr ≤ ∆tA. Therefore,
computational effort will be wasted in the continuum region. If we adopt multiple
time steps: larger time step ∆tC for the continuum region and smaller time step ∆tA
for the atomic region, and ∆tC = M∆tA as shown in Fig. 5, the multiple time scale
algorithm will offer a major advantage to improve the computational efficiency.

To solve this concurrent atomistic/continuum system with thermo-mechanical cou-
pling, an explicit algorithm with multiple time steps, as an alternative to the tempo-
ral Green’s function concept proposed by Yang and Tewary (2006), was developed
based on the central difference method. Assume that accelerations, displacements
and velocities are known at the nth time step. For the purpose of explanation, we
denote Uα

I as the displacement of the αth atom of the Ith node in continuum region,
and dβ as the displacement of the β th atom in atomic region.

Continuum Region

U̇α

I(n+ 1
2)

= U̇α

I(n) +
1
2

Üα

I(n)∆tC (48)

Uα

I(n+1) = Uα

I(n) + U̇α

I(n+ 1
2)

∆tC (49)

TI(n+1) =

{
gI[(n+1)∆tC] I ∈ (P−P(E))
T ∗I(n+1) I ∈ P(E)

(50)

Üα

I(n+1) = (Mα
I )−1

ΣΣΣ
α
I (Uα

J(n+1),TJ(n+1),d
β

(n+1)) J ∈ P; β = 1,2, · · · ,N (51)

U̇α

I(n+1) = U̇α

I(n+ 1
2)

+
1
2

Üα

I(n+1)∆tC (52)

where P(E) is the set of all nodes associated with the elements neighboring the
atomic region.

Atomic region

T ∗(n) =
NTA(n) + ∑

e∈E
NeTe(n)

Na + ∑
e∈E

Ne
⇒ ḋβ

(n) (53)

ḋβ

[n+
i+1/2

M ]
= ḋβ

(n+ i
M )

+
1
2

d̈β

(n+ i
M )

∆tA (54)
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dβ

(n+ i+1
M )

= dβ

(n+ i
M )

+
1
2

ḋβ

[n+
i+1/2

M ]
∆tA (55)

d̈β

(n+ i+1
M )

=
1

mβ
ΠΠΠ

β (Uα

I(n),d
γ

(n+ i+1
M )

) I ∈ P; α = 1,2, · · · ,Na; γ = 1,2, · · · ,N

(56)

ḋβ

(n+ i+1
M )

= ḋβ

[n+
i+1/2

M ]
+

1
2

d̈β

(n+ i+1
M )

∆tA (57)

T ∗(n+1) =
NTA(n+1) + ∑

e∈E
NeTe(n+1)

N + ∑
e∈E

Ne
(58)

Notice that the temperature of the nodes P(E) associated with the elements neigh-
boring the atomic region E is equal to the matching temperatureT ∗.

The flow chart of the multiple time-step algorithms can be described as follows:

1. Initialize displacements, velocities, accelerations and temperatures;

2. Calculate the matching temperature T ∗ by eq.(53);

3. Randomly generate the velocity field in the atomic region ḋβ by eqs.(46,47);

4. Update the displacements of atoms,dβ (n∆tC + i∆tA), by eqs. (54-57) at fine
time step ∆tA until t = (n+1)∆tC;

5. Repeat Step.2;

6. Update the displacements of nodes Uα
I [(n + 1)∆tC]in continuum region by

eqs.(48-52) at coarse time step ∆tC;

7. Repeat Steps. 2-6 until the end of the simulation.

5 Numerical Examples

In this section, we construct a concurrent atomistic/continuum thermo-mechanical
model to study the compatibility of displacement and temperature field across the
interface between atomic and continuum regions and to demonstrate a new proce-
dure to make temperature continuous across the interface. Atomic unit are used
through out this paper:

Mass: me = 9.10938188×10−31kilogram,
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Cn tΔ Continuum  
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Atomic 
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CtΔ  ( 1) Cn t+ Δ
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Figure 5: Arrangement of time steps in multiple-time-scale algorithm
 

 

Figure 6: Computational model of thermo-mechanical coupling under tensile load-
ing
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Figure 7: Temperature distribution in the specimen
 

 

0t =
62 10 ot τ= ×

Figure 8: Displacement (uz) distribution in the specimen

Length: ao = 1Bohr = 0.529177249×10−10meter,

Electron charge: e = 1.602176462×10−19Coulomb,

Time: τo = 2.418884326×10−17second,

Energy: Eh = 1 Hartree = 4.3597482×10−18Joule.
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Here the thermo-mechanical model (16a× 4a× 30a, a = 7.9368 Bohr) made of
Magnesium Oxide (MgO) is schematically illustrated in Fig. 6. This model consists
of 2,600 atoms and 32 3-D 8-node finite elements. The boundary condition and the
temperature profile in the continuum region for this model are given respectively,
as follows

uα
z (x,y,−15a, t) =−32t

tT
Bohr t ≤ tT

uα
z (x,y,15a, t) =

32t
tT

Bohr t ≤ tT
(59)

T (x,y,z, t) = 100+
20× (z+15a)

30a
K (60)

where tT = 2×106τo is the total time of simulation. ∆tA = 5τo and ∆tC = 100τo are
used in the numerical procedures.

The Coulomb-Buckingham potentials between pairs of two atoms, Mg−Mg, O−
O, Mg−O, are employed as

Uξ η =
eξ eη

rξ η
+Aξ ηe−rξ η/Bξ η − Cξ η

(rξ η)6
(61)

where Aξ η , Bξ η , and Cξ η are material constants; rξ η ≡
∥∥∥rξ η

∥∥∥ ≡ ∥∥∥rξ − rη

∥∥∥. The
material constants used in this work for MgO are:

MMg = 4.57636×104me, MO = 3.01251×104me,

eMg = 2e, eO =−2e,

AMg−Mg = CMg−Mg = 0,

AMg−O = 47.2 Hartree, BMg−O = 0.56635 Bohr, CMg−O = 0,

AO−O = 350.88 Hartree, BO−O = 0.41415 Bohr,

CO−O = 53.554 Hartree Bohr6.

Figure 7 shows the temperature distribution of the entire specimen. It is noticed
that the temperature around the interface is smooth and continuous. As expected,
the temperature in the atomic region is the same as that of the neighboring elements
around the atomic region. Figure 8 shows the displacement distribution of uz in the
entire specimen.
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6 Summary

Atomistic field theory has been developed to circumvent the length scale problem
and has its theoretical elegance in thinning redundant degrees of freedom and its
computational generality in treating a wide range of grand challenging problems.
In this paper we have demonstrated an approach to reconcile the compatibility be-
tween atomic region and continuum region and to calculate the temperature field of
a thermo-mechanical coupling problem in a concurrent atomistic/continuum sys-
tem based on the atomistic field theory. To improve the computational efficiency,
we have also developed a new multiple-time-scale algorithm, which is demon-
strated to behave robustly for models consisting of regions with dramatically dif-
ferent length scales. In the thermo-mechanical sample problem, we have shown
how to calculate the matching temperature between atomic and continuum regions
and how to make temperature continuous across the interface. This work enhances
the understanding of some fundamental characteristics of the thermo-mechanical
coupling problem in the concurrent atomistic/continuum system.
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