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Geometry-related Treatments for Three-dimensional
Meshless Method
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Abstract: The meshless method has a distinct advantage over other methods in
that it requires only nodes without an element mesh which usually induces time-
consuming work and inaccuracy when the elements are distorted during the anal-
ysis process. However, the element mesh can provide more geometry informa-
tion for numerical simulation, without the need to judge if the nodes or quadrature
points are inside the analysis domain which happens in the meshless method, since
the analysis domain is defined by the element’s edges or faces and the quadrature
points are all inside the elements. Because the analysis model with only nodes for
the meshless method lacks these types of geometry-related information, some diffi-
culties are usually encountered during the numerical simulation, especially, for the
cases with three-dimensional irregular-shaped analysis domains. Therefore, two
types of domain and boundary representations, say, constructive solid geometry
scheme and triangulated surface boundary scheme, are employed in this work. To
further deal with those geometry-related issues required for the meshless method,
several efficient check mechanisms are also devised. With those proposed geom-
etry schemes and check mechanisms, both three-dimensional irregular-shaped and
multi-material problems can be easily handled with the meshless method. Several
demonstrative cases prove the effectiveness of the proposed techniques.

Keywords: meshless, geometry treatment, triangulated surface, multi-material

1 Introduction

One of the main disadvantages of the finite element method is that it requires a
mesh, including elements and nodes, which is usually time-consuming for prepara-
tion and sometimes induces inaccuracy when the elements are distorted in dealing
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with engineering problems. On the contrary, the meshless method has an inherent
advantage that it does not require any mesh and uses only nodes. This method has
become one of the most promising numerical methods. Based on similar ideas,
there have been emerging various meshless methods, such as, the element-free
Galerkin method (EFGM)[Belytschko, Lu, and Gu (1994)], the reproducing kernel
particle method [Liu, Jun, and Zhang (1995)], the h− p clouds [Duarte and Oden
(1996)], the meshless local Petrov-Galerkin method [Atluri and Zhu (1998)], the
node-by-node meshless method [Nagashima (2000)], etc. Although there were pi-
oneering successes by those works, most of them were limited to two-dimensional
problems. Till recent years, three-dimensional problems, but only with simple ge-
ometry, have then been tackled [Chen and Guo (2001); Li, Shen, Han and Atluri
(2003); Han and Atluri (2004); Chen and Chen (2005); Chen, Chi, and Lee (2009)].
Part of the reason is due to the difficulty to deal with irregular domains in three-
dimensional realistic engineering problems.

Although the meshless method does not need an element mesh and can avoid the
disadvantages of the mesh, however, the element mesh provides some useful ge-
ometry information required for numerical simulation, for example, the boundaries
of the analysis domain are represented by the element’s edges or faces and the in-
tegration points of elements are all located inside the analysis domain. Because the
meshless analysis model lacks these types of geometry-related information, some
extra treatments should be performed during numerical simulation. In the practical
implements of meshless method, for examples, the element free Galerkin method,
an efficient procedure can be stated as follows:

(1) Generate node data:

a. Distribute the nodes regularly in the space, which should be big enough to
cover the entire analysis domain.

b. Exclude those nodes outside the boundaries of the analysis domain.

(2) Generate the regular background cells to cover the entire analysis domain and
its boundaries for numerical integration.

(3) Form the stiffness matrix:

a. Take integration over cells by quadrature.

b. Check if any quadrature point in cell outside the analysis domain. If yes,
ignore that quadrature point.

c. Choose appropriate surrounding nodes to define the sub-domain for the
quadrature point which is inside the analysis domain.
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d. Determine if any surrounding nodes blocked by the boundary segment. If
yes, exclude that node from the sub-domain.

e. Calculate the shape functions for the quadrature point by the moving least
squares method.

f. Evaluate the stiffness matrix assembled from all the quadrature points.

(4) Apply the loadings and boundary conditions.

(5) Solve the final simultaneous equations.

As stated above, one needs to determine if any nodes or the quadrature points out-
side the boundaries of the analysis domain as mentioned in steps (1)-b. and (3)-b.
Besides, one also needs to determine if any surrounding nodes of the quadrature
point blocked by any boundary segment as indicated in step (3)-d. To solve these,
accurate geometry representations for the analysis domains and their boundaries
and efficient check mechanisms are imperative. In the cases of three-dimensional
problems with irregular-shaped analysis domains, unfortunately, such treatments
cannot be done by the analysis model with only node data.

To overcome the difficulties, two geometry schemes which have been widely used
in CAD/CAM tools [Zeid (1991)] are employed in this work. For regular analysis
domains, the constructive solid geometry scheme that forms geometric shapes us-
ing a number of basic primitives and appropriate set operations is adopted due to
the advantage of simplicity and easy manipulation. But, it has its limitation to deal
with irregular-shaped analysis domains. Therefore, for three-dimensional irregular-
shaped analysis domains, the triangulated surface boundary scheme [Atluri, Han
and Rajendran (2004)] is chosen here. By this scheme, the surfaces of the three-
dimensional analysis domain are formed with triangular facets and can be easily
built by auto-mesh generators whenever the geometry data is available. In addition
to the geometry schemes, several check mechanisms are also required and proposed
in this work. By those proposed geometry schemes and check mechanisms, the dif-
ficult geometry-related treatments can be handled even for the three-dimensional
irregular-shaped analysis domains with complicated concave boundaries or inter-
nal holes.

Similarly, in cases comprising multiple materials in three-dimensional analysis
models, the irregular-shaped interfaces between different materials can cause the
same problems as encountered with general surface boundaries. The proposed ge-
ometry schemes and check mechanisms can be further applied to solve such prob-
lems. With the techniques developed in this study, the interfaces between different
materials in these cases can also be treated as the boundaries and defined by the
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triangulated surface boundary scheme. The necessary checks as mentioned above
are then performed accordingly.

Three simulation examples have been solved to validate the proposed schemes and
check mechanisms. The first one is a comb-drive with regular analysis domain and
solved with the constructive solid geometry scheme. Another one is a silicon micro-
phone with complicated analysis domain and solved with the triangulated surface
boundary scheme. The last one is the middle ear ossicles of guinea pigs, containing
irregular shape and multiple materials, and also solved with the triangulated surface
boundary scheme.

2 Define analysis domain and its boundaries

In the finite element method, the elements themselves provide enough geometry in-
formation of analysis domain and its boundaries, no matter for two-dimensional or
three-dimensional cases. But, it is not the case in the meshless method. Therefore,
it is imperative to find some way to adequately and efficiently define the analy-
sis domain and its boundaries. In two-dimensional analysis domain, the bound-
aries are easy to define just by connecting the boundary nodes with straight lines.
Nevertheless, in three-dimensional problems, the geometry becomes more compli-
cated, especially for those with irregular sculptural faces. Here, the constructive
solid geometry scheme and the triangulated surface boundary scheme are adopted
for three-dimensional problems. The constructive solid geometry scheme is for
regular-shaped analysis domains, and the triangulated surface boundary scheme is
for irregular-shaped analysis domains.

2.1 Constructive solid geometry schemes

The constructive solid geometry scheme is a popular schemes used to define and
create geometry models in CAD. In this scheme, the geometry model is constructed
by combining various types of primitives, say, block, sphere and cylinder, etc., with
some set operations, such as union, intersection and subtraction. This scheme is
simple and easy to employ in defining the analysis domain for the meshless method.
Although it has limitation, such as difficulty in creating irregular geometry which
cannot be modeled with those basic primitives by using set operations, it still can
be used efficiently for many cases due to its simplicity, which can save a substantial
amount of computing time.

Typical primitives used in this scheme are blocks, spheres and cylinders, as shown
in Fig. 1(a). There is no problem determining the territory of those primitives. They
can be represented by a set of coordinate ranges or mathematical expressions. For
example [Zeid (1991)],
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Block (L×W ×H) {(x,y,z) : 0≤ x≤ L, 0≤ y≤W, and 0≤ z≤ H} (2.1)

Cylinder (r×H) {(x,y,z) : x2 + y2 ≤ r2, and 0≤ z≤ H} (2.2)

Sphere (r) {(x,y,z) : x2 + y2 + z2 ≤ r2} (2.3)

These basic shapes can be combined to represent some more complicated analysis
domains by using set operations. As shown in Fig 1, after set operations, the anal-
ysis domain is combined with two different blocks, a cylinder and a sphere. Unify
the two blocks first, and subtract the cylinder and sphere from it. These opera-
tions can easily be programmed into the meshless codes without consuming much
computing time.

This scheme provides an easy and efficient way to handle the definition of regular-
shaped analysis domains for the meshless method. For example, judging if a point
falls within the analysis domain can simply be done by checking whether that point
is within the set of the model.

2.2 Triangulated surface boundary scheme

For three-dimensional problems, the triangulated surface boundary scheme is pro-
posed to represent the surfaces of the three-dimensional analysis domain with tri-
angular facets [Atluri, Han and Rajendran (2004)] which can be generated by most
CAD tools or pre-processors. This type of geometry format, also known as stereo
lithography (STL) format, has been widely used in the applications for rapid proto-
typing, computer-aided manufacturing, and computer graphics. It becomes a basic
way to represent three-dimensional irregular geometry.

Triangular facets are not triangular elements, such as those used in the finite ele-
ment method. They are utilized only for geometry treatment purposes. As shown
in Fig. 2, the complicated and irregular geometry of the ossicles of the middle ear
of a guinea pig is represented by the triangulated surface boundary scheme. There
also are 11,132 nodes automatically paved to cover the ossicles by the program, as
mentioned in step (1)-a in section 1, for later use.

3 Check mechanisms

In addition to the information of analysis domain and boundaries, there are various
types of geometry–related treatments needed for the meshless method. For exam-
ples, one needs to determine if certain points are located inside the analysis domain,
or to determine if the node is inside the sub-domain for forming the moving least-
squares interpolant. Several efficient check mechanisms are proposed herein.
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Figure 1: The analysis domain represented by constructive solid geometry scheme
with set operations
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Figure 2: Guinea pig’s ossicles represented by triangulated surface boundary
scheme
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3.1 Determine inside or outside the analysis domain

In the meshless method, as stated in steps (1)-b and (3)-b in section 1, there are
several occasions in which it is necessary to determine if any nodes or quadra-
ture points are inside or outside the analysis domain. It is worthwhile to mention
that when a background grid scheme [Chen, Chi, and Lee (2009)] is used to solve
extremely large deformation problems, program also needs to determine whether
the nodes of the background grid fall inside or outside the continually deformed
analysis domains.

When the constructive solid geometry scheme is employed to define a regular-
shaped analysis domain, judging whether a node or a quadrature point is inside the
analysis domain can be done simply by checking if the node or quadrature point is
in the set of the model as described in section 2.1.

As the boundaries of the analysis domain are represented by the triangulated sur-
face boundary scheme, a different check mechanism is required to handle those
geometry-related operations. For the sake of clarity, a two-dimensional description
is drawn as shown in Fig. 3. First, a reference point is selected inside the analy-
sis domain. The internal reference point must be assured to lie within the domain.
This needs to be done automatically in the meshless program. After the internal
reference point has been created properly, when one wants to check if a discussed
point lies within the analysis domain, just connect the discussed point to the in-
ternal reference point with a connecting line. Next, check whether the connecting
line crosses any boundaries of the analysis domain. Even when a connecting line
has crossed the boundaries, the discussed point might still be in the analysis do-
main. When the connecting line crosses the boundaries an odd number of times, it
is concluded that the discussed point lies outside the analysis domain; otherwise,
the discussed point is inside the analysis domain. By this mechanism, one can
effectively determine if the discussed node or quadrature point is inside the anal-
ysis domain, even if there are internal holes or complicated concave boundaries
contained within the three-dimensional irregular-shaped analysis domain.

Alternatively, one can create a reference point located outside the analysis domain.
Identifying a point to be outside the analysis domain is easier than for those inside.
First, as shown in Fig. 4, one defines a bounding box big enough to cover the entire
analysis domain by selecting the minimum and maximum coordinates of all the
boundary nodes in the analysis model. Next, create an external reference point
outside the bounding box and connect it to the discussed point with a connecting
line. By following a procedure similar to the one mentioned earlier with the internal
reference point, one can check if the connecting line crosses any boundary facets,
as shown in Fig. 5. In this case, the criterion is opposite to that with the internal
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Figure 3: Determine inside or outside the analysis domain with an internal refer-
ence point

reference point. In other words, if the connecting line crosses the boundaries an odd
number of times, the discussed point lies within the analysis domain; otherwise, the
point is outside the analysis domain.

It is obvious that the external reference point is easier to choose. But for the internal
reference point case, one can compute its shortest distance to the boundaries in the
beginning of the analysis process. As the length of the connecting line is shorter
than that distance, one can directly pass those discussed points without having to
check further. This can save computing time.

If a connecting line crosses the surface boundaries of a three-dimensional analysis
domain, certain triangular facet will be intersected by that connecting line. It means
that, when one wants to know how many times a connecting line crosses the surface
boundaries, this can be determined by checking how many triangular facets have
been pierced by that connecting line. As shown in Fig. 6., for three-dimensional
representation, a connecting line intersects the plane on which the triangular facet
in question lies at point x. If the line intersects the triangular facet, point x should
falls within the facet; otherwise, the line does not intersect the facet. To determine
this, first, compute the normal distance from point P to point R on the plane and the
component of

−→
PQon the normal

−→
PR, i.e.

−→
PS. ξ is the length ratio of

−→
PR to

−→
PS. One

can then determine the coordinates of the intersection point x, u(x), with those of
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Figure 4: The check mechanism with an external reference point
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Figure 5: Determine inside or outside the analysis domain with an external refer-
ence point

point P and Q, u(P) and u(Q), by linear interpolation:

u(x) = (1−ξ )u(P)+ξ u(Q). (3.1)
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Figure 6: Check if the connecting line intersects the discussed triangular facet

As illustrated in Fig. 6, there are three outward normal vectors to the three edges of
that facet, namely n1, n2 and n3. To determine if point x is inside an edge, connect
a vertex of the discussed edge and point x to form a vector, e.g.

−→
lx and take a scalar

product between vector
−→
lx and the normal vector to that edge, e.g. n1. If the result

is negative, point x is inside that edge. If point x is inside all three edges, it means
that the point x is inside that facet and the connecting line has intersected that facet.

3.2 Determine sub-domain

Another common need for the meshless method is to form the sub-domain for cal-
culating the moving least-squares interpolant. As one encircles all the nodes located
inside the influence radius of a quadrature point, it is necessary to determine if any
of those nodes are blocked by a boundary segment in-between; if so, that node
should be excluded from the sub-domain, as mentioned in the meshless simulation
procedure step (3)-d. To do this, a similar check mechanism is shown in Fig. 7.

As the quadrature point and the discussed node are connected with a connecting
line, if the connecting line crosses any boundary, the two points are blocked by
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Figure 7: Determine sub-domain

that boundary. One can infer that the two points are invisible to each other and the
discussed node should be excluded from the sub-domain.

For the constructive solid geometry scheme, there is a variety types of surfaces to
be handled. For blocks, the boundary surfaces are rectangular. For cylinders, the
surfaces are circular and cylindrical. For spheres, their surfaces are spherical. For
each type of surfaces, similar check mechanism is utilized. The operations to check
whether the connecting line crosses the surfaces are as follows:

The rectangular surfaces of blocks are similar to triangular facets except that they
include an additional edge. Therefore, the operation to check them is similar to that
with the triangular facet, as seen in Fig. 6, except checking one additional edge.

For spherical surfaces, one needs to determine the point on the connecting line with
the shortest distance to the sphere’s center and compare the distance to the sphere’s
radius r as shown in Fig. 8 to see if the connecting line crosses the sphere’s face.

First, connect one end of the connecting line
−→
PQ and the sphere’s center to form

a vector
−→
PO. Next, take the scalar product of the vector

−→
PO and the unit vector

along
−→
PQ. The component of the vector

−→
PO on the vector

−→
PQ can determine the

point x which is the closest point to the sphere’s center. The distance r1 can then
be calculated. If r1is longer than the radius of sphere r, the connecting line does
not cross the spherical face. If r1 is shorter than the radius of sphere r, one needs
to check if the points P and Q are inside the sphere. If both are inside, there is no
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Figure 8: Check if the connecting line crosses spherical primitive’s face

intersection. If one is inside and the other is outside, the connecting line does cross
the sphere’s face and the discussed node should be excludes. If both are outside,
one needs to check if the points P and Q are located on different side of the sphere
by doing scalar products of the vector

−→
OP or

−→
OQ with the vector

−→
PQ. If the signs

of the products are different, it means that the connecting line indeed crosses the
sphere’s face.

For the surfaces of cylinders, one needs to determine the shortest distance between
the connecting line

−→
PQ and the axis line of the cylinder, i.e.

−−−→
O1O2 as shown in

Fig. 9, and compare the distance r1 to the cylinder’s radius r to know if the con-
necting line crosses the cylinder’s face. The way to determine the shortest distance
between the two lines is: [Johnson, Kiokemeister, and Wolk (1978)]

−→w =
−→
PQ ×−−−→O1O2 (3.2)

r1 = |−→PO1−−→w |/|−→w | (3.3)

If r1 > r, as shown in Fig. 9 (a), the connecting line does not cross cylinder’s faces.
If r1 < r, further checking is needed. First, determine both the closest points, P’ and
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Q’, on axis line
−−−→
O1O2 to the vertex point P and Q. If P’ and Q’ are both inside the

cylinder , the connecting line has crossed the cylinder’s face as shown in Fig. 9 (b),
except the case that both point P and Q are inside the cylinder, i.e. the distances of
vector

−→
PP’ and

−−→
QQ’ are shorter than the radius of the cylinder r. If more than one of

P’ or Q’ is outside the cylinder, one needs to determine the intersection point on the
cylinder’s end face and check the distance between the intersection point and the
center of the end face, i.e. r2, as shown in Fig. 9 (c). If r2 < r, the connecting line
does cross cylinder’s faces. Otherwise, there is no intersection. When intersection
happens, the discussed node should be excluded.

When employing the triangulated surface boundary scheme for three-dimensional
irregular-shaped problems, one uses a similar way to determine the sub-domain as
shown in Fig. 6 and Fig. 7. If the connecting line between the quadrature point
and the discussed node crosses any triangular facet, there is definitely a boundary
segment in-between the points, and the discussed node should be excluded from
the sub-domain.

4 Treatments of multi-materials

In the case where the analysis domain includes more than one material, since the
material properties in different portions of the analysis domain are not the same,
the weak form integrals of the equilibrium equations of different materials need to
be obtained separately. In general, the sub-domain of the quadrature point for the
moving least squares interpolant can not cross the material interface due to the dis-
continuity of the material properties. In this situation, the interfaces between two
adjacent materials can be considered another type of boundary. Similarly, three-
dimensional irregular-shaped interfaces between different materials will cause the
same difficulties for the meshless method as those that occurred with general sur-
face boundaries during the analysis steps, such as checking if the quadrature point
or node lies within a particular material or checking if any nodes of the sub-domain
should be excluded when they are blocked by certain interface segment. Therefore,
to deal with these, effective geometry representations for the interfaces and efficient
check mechanisms are again required. Hence, the proposed geometry schemes and
check mechanisms for the general boundaries of the analysis domain as mentioned
above can also be employed here. Especially, when dealing with irregular-shaped
interfaces, the triangulated surface boundary scheme can again be used to define
the interfaces. In practical implements, different materials will have their own
boundary surfaces, but, they share the same interface surfaces between two ad-
jacent materials which will be triangulated as done to general boundaries. Besides,
those nodes of two different materials located on the interfaces between two mate-
rials need to be the same ones or connected by multiple point constraints (MPC).
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Figure 9: Check if the connecting line crosses cylindrical primitive’s faces
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One can just create one triangulated surface for one material and shares it with the
adjacent material.

When calculating the weak form integrals of the equilibrium equations during the
normal procedure of the meshless method, the numerical integration is carried out
separately for each material. When performing the inside/outside checks, the check
mechanism is the same as described above, just as each material has its own bound-
aries including the interfaces. In addition, the sub-domain for each quadrature point
in a particular material must also not cross the interfaces which can be achieved by
the proposed check mechanism. Because they have shared the same nodes on the
interfaces among adjacent materials, the numerical integrals of the weak form of
the equilibrium equations for the whole structure, such as stiffness matrix, will be
assembled and formed automatically.

5 Results and discussion

In this study, three numerical examples were carried out to validate and demon-
strate the effectiveness of the proposed geometry schemes and check mechanisms.
Without loss of generality, the meshless method employed here was based on the
element-free Galerkin method. For comparison purposes, the finite element solu-
tions calculated by ANSYS program for the same problems were also presented.

The first example was a pair of electrostatic-driven comb-drive fingers as shown
in Fig. 10(a). An electrostatic analysis was conducted. A charge of zero voltage
was applied to the left electrode and a charge of 100 volts was applied to the right
electrode. A moderate size of free space was adopted for electrostatic field anal-
ysis. The length, width, and thickness of the fingers are 20µm, 3µm, and 2 µm,
respectively. The gap between fingers is 3µm. The overlap between fingers is
12µm. The shape of the analysis domain is a regular three-dimensional geometry.
To solve this example, the constructive solid geometry scheme was employed. The
results of electric potential distribution are shown in Fig. 10(b). A convergence
study was conducted using 10-node quadratic elements by ANSYS program. As
listed in Table 1, the computed electric potentials at point x, as seen in Fig. 10(b),
converged to 60.0 Volts as compared with 58.8 Volts by the element-free Galerkin
method with 2% difference. Excellent agreement of the computed electrical poten-
tial distributions between the element-free Galerkin method and ANSYS program
is drawn.

The second example is the analysis of a silicon microphone. In a silicon micro-
phone, a diaphragm and a perforated backplate form a pair of capacitor, which
performs as a transducer to convert sound wave into electrical signals. The sound
pressure will induce the deflection of the diaphragm and change the gap between
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the diaphragm and the backplate. The capacitance of the capacitor, which is a ma-
nipulable electrical signal, is then changed accordingly. To evaluate the acoustic
characteristics of the silicon microphone, as shown in Fig. 11(a), an electrostatic
analysis has been conducted. The radius of the backplate and diaphragm is 180
µm.

 

Figure 10: Electrostatic analysis of a comb drive

The thicknesses of the backplate and diaphragm are 2 µm and 0.4 µm, respectively.
The radius of the ventilation holes on the backplate is 5 µm. The gap between
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Table 1: Comparison of the computed electric potentials at point x

Method No. of elements No. of nodes Electric potential (Volt)

ANSYS

5,005 2,947 58.1
5,706 3,394 59.8
7,555 4,578 59.9

12,651 7,994 60.0
EFGM 4,868 58.8

the diaphragm and backplate is 2 µm. The voltage difference between them is 2
volts. Because the geometry is quite complicated, the triangulated surface boundary
scheme was employed. Due to cyclic symmetry, it is sufficient to adopt one twelfth
of the analysis domain for analysis as shown in Fig. 11(b). For the electrostatic
field analysis, a moderate size of free space is included.

The ANSYS program is also employed to solve the same problem. The electric
potential distribution is shown in Fig.11(c). With ANSYS, a convergence study
was also conducted that the computed electric potentials at point y have converged
to 0.621 Volts as shown in Table 2. The value obtained from the EFGM is 0.638
Volts within 3% difference. This example shows that even a very complicated
analysis domain can be handled with the proposed scheme.

The third example is the analysis of the guinea pig’s ossicles, i.e. the tiny bones of
middle ear as shown in Fig. 2. They play the role of passing outside sound pres-
sure to inner hearing nerves. Normally, the raw geometry data are obtained by CT
(Computed tomography) scan from which a triangulated surface model is gener-
ated. Since the geometry is extremely irregular, the triangulated surface boundary
scheme was used to calculate the stiffness of the ossicles, including the malleus,
incus, and stapes. One end of the stapes is fixed and the other end of the malleus
is loaded with 18x10−4 N force. The Young’s modulus of bones is 14.1 Gpa, and
Poisson’s ratio is 0.3.

Table 2: Comparison of the computed electric potentials at point y

Method No. of elements No. of nodes Electric potential (Volt)

ANSYS

3,795 3,901 0.601
5,743 7,910 0.618

16,235 35,602 0.622
100,074 65,307 0.621

EFGM 19,618 0.638
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Figure 11: Electrostatic analysis of a silicon microphone
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Moreover, when certain part of ossicles is damaged or degraded due to some causes,
e.g. ear infections, ossicular replacement prostheses may be employed to restore
hearing function. The most popular material used is titanium, of which Young’s
modulus is 116 Gpa and Poisson’s ratio is 0.32. When one or two of the ossi-
cles are replaced with titanium material, this becomes a multi-material problem. In
such situations, the present schemes and mechanisms established are still applica-
ble. Each part, say, the malleus, incus and stapes, can be represented by a complete
triangulated surface boundary domain and shares the adjacent triangulated inter-
faces with other parts as shown in Fig. 12.

 

Figure 12: Multi-material model for guinea pig’s ossicles

A comparison of the maximum displacement results of various cases is shown in
Fig. 13. In case 1, all parts contained only the original bone material. In case 2, the
stapes was replaced with titanium material. In case 3, the incus was replaced with
titanium material. In case 4, the malleus was replaced with titanium material.

As would be expected, the finite element solutions with 25,414 4-node linear tetra-
hedral elements and 5,828 nodes were too stiff as compared to those with 25,414
10-node quadratic tetrahedral elements and 39,887 nodes. The results of the element-
free Galerkin method with 2,889 nodes are quite consistent with the ANSYS’s re-
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Figure 13: Comparison of max. displacement results

sults of the 10-node quadratic tetrahedral element model.

6 Conclusions

In this work, two types of geometry schemes, the constructive solid geometry
scheme and the triangulated surface boundary scheme, have been proposed to de-
fine the three-dimensional analysis domain and its boundaries for the meshless
method. The constructive solid geometry scheme is good for regular-shaped anal-
ysis domain which can be defined with basic primitives and appropriate set oper-
ations. Nevertheless, the triangulated surface boundary scheme is able to handle
any kind of irregular geometry. Especially, following the displacements of the ver-
tex nodes, the triangular facets can deform and move accordingly. This feature
is needed for the continuously deformed nonlinear problems. In addition to the
geometry representations, several efficient check mechanisms are also devised to
solve some location issues needed for the meshless method. Using the same ge-
ometry schemes and check mechanisms, the multi-material problems, which are
usually difficult to deal with by the meshless method, can also be effectively tack-
led. Several demonstrative cases prove the efficiency and advantages of the pro-
posed schemes and mechanisms. In addition to the element free Galerkin method
as adopted in this work, the proposed geometry schemes and check mechanisms
are also applicable to other kinds of meshless methods, such as the meshless local
Petrov-Galerkin method [Atluri and Zhu (1998)].
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