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Micromechanics-Based Fiber-Bridging Analysis of
Strain-Hardening Cementitious Composite Accounting for

Fiber Distribution

B.Y. Lee1, Y. Lee2, J.K. Kim3 and Y.Y. Kim4

Abstract: In the present work, a micromechanics-based fiber-bridging consti-
tutive model that quantitatively takes into consideration the distribution of fiber
orientation and the number of fibers, is derived and a fiber-bridging analysis pro-
gram is developed. An image processing technique is applied to evaluate the fiber
distribution characteristics of four different types of strain-hardening cementitious
composites. Then, the fiber-bridging curves obtained from image analysis are com-
pared with those obtained from the assumption of two- and three-dimensional fiber
distributions. The calculated ultimate tensile strains are also compared with exper-
imental results. Test results showed that the tensile behavior of strain-hardening
cementitious composites can be more accurately predicted and analyzed using the
fiber-bridging curve obtained from image analysis.

Keywords: Fiber-bridging Constitutive Model, Strain-Hardening Cementitious
Composite, Image Analysis, Fiber Distribution.

1 Introduction

Engineered Cementitious Composite (ECC) is a strain-hardening cementitious com-
posite (SHCC) that incorporates synthetic fibers and exhibits extremely ductile be-
havior in uniaxial tension, when compared to normal cement-based composites.
This behavior is mainly attributed to bridging of micro-cracks by the reinforcing
fibers and the resultant multiple cracking. To achieve pseudo strain-hardening be-
havior based on multiple cracking, two criteria should be satisfied [Leung (1996);
Li and Leung (1992)]. The first is the strength condition; specifically, the peak

1 University of Michigan, Ann Arbor, U.S.A.
2 Daejeon University, Daejeon, 300-716, Republic of Korea
3 Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Republic of Korea
4 Corresponding Author: Chungnam National University, Daejeon, 305-764, Republic of Korea,

Phone: +82-42-821-7004, Fax: +82-42-825-0318, E-mail: yunkim@cnu.ac.kr



112 Copyright © 2010 Tech Science Press CMES, vol.61, no.2, pp.111-132, 2010

bridging stress should be larger than the cracking strength. If this condition is sat-
isfied, an immediate stress drop after initial cracking with bridging fibers being
pulled out or ruptured is prevented. Otherwise, multiple cracking will not occur.
The second is the energy condition. This criterion is for steady state cracking [Mar-
shall and Cox (1988)]. For multiple cracking behavior, a crack should propagate
under constant stress and with constant crack opening in order to achieve a uniform
stress distribution of fibers. This condition can be defined by the energy balance
between the external work, which is the energy necessary to propagate the ma-
trix crack, and the energy dissipated by the bridging fibers. That is, the external
work should be equal to the sum of the matrix fracture energy Jtip and the energy
dissipated by the bridging fibers. The upper limit for the matrix toughness is the
complement energy J′b in the bridging curve. Therefore, J′b should be larger than Jtip

(Figure 1). Based on these two criteria, physical phenomenon of multiple cracking
can be explained. If the fibers bridging the crack cannot sustain the load, multiple
cracking behavior will not appear due to local failure. On the other hand, if the
fibers bridging the crack can sustain the load, the fibers will transfer the load to
the matrix through their interface, leading to the formation of another crack. This
process repeats until local failure in any given crack occurs due to softening in the
fiber-bridging behavior.

The fiber-bridging behavior governs the composite tensile behavior. Therefore,
control and accurate prediction of the former is very important to successfully
design ECC material properties and tensile properties. Micromechanical param-
eters that affect the fiber-bridging curve include component properties such as fiber
length, diameter, elastic modulus, strength, volume fraction, matrix strength, and
elastic modulus as well as interfacial properties such as frictional bond strength,
chemical bond strength, and slip hardening effect. In addition to micromechanical
parameters, fiber orientations affect the fiber-bridging curve.

For a cementitious composite reinforced with three-dimensionally distributed fibers
in a random pattern, the peak bridging stress could be 15 to 20% of the peak value of
the cementitous composite reinforced with one-dimensionally aligned fibers [Cox
(1952)]. The assumption regarding distribution of fiber orientation is thus of pri-
mary importance due to its effect on the number of fibers passing the crack plane,
the snubbing effect, and strength reduction. The distribution of fiber orientation
is affected by the geometry of the specimen and the rheological properties of the
composite. However, most researchers analyzed and predicted the mechanical be-
havior of composites under the assumption of randomly positioned and oriented
fibers in fiber reinforced composites [Böhm, Han, and Eckschlager (2004); Yang,
Wang, Yang, and Li (2008); Pahr and Böhm (2008); Pyo and Lee (2009)].

In the present work, the authors describe a micromechanical analysis of strain-
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Figure 1: Strength and energy condition for pseudo strain hardening behavior

hardening cementitious composites that accounts for the fiber orientation distribu-
tion and the number of fibers. First, the fiber-bridging constitutive law, which quan-
titatively considers the distribution of fiber orientation and the number of fibers, is
derived. In order to evaluate the fiber distribution characteristics, an image pro-
cessing technique [Lee, Kim, Kim and Kim (2009)] is subsequently applied. The
fiber-bridging curves, obtained from an image analysis, are compared with those
obtained under the assumption of two-dimensional and three dimensional distribu-
tions of the fiber orientation.

2 Fiber-bridging constitutive law

2.1 Modeling of single fiber behavior

Lin et al. [1999] derived a theoretical single fiber debonding and pullout model
based on a simple stress analysis and energy balance principle under the following
assumptions.

1. The end effect on the total debonding load is negligible. This assumption is
generally satisfied for most available fibers (high aspect ratio (>100)).

2. The slip-dependent effect is negligible during the debonding stage since rel-
ative slippage between the fiber and the matrix in the debonded portion is
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small. From this assumption, the frictional stress within the debonded zone
remains at a constant τ0.

3. Poisson’s effect is negligible. For flexible fiber/cement systems, Poisson’s
effect is usually diminished due to inevitable slight misalignment and surface
roughness of the fiber.

4. Elastic stretching of the fiber after complete debonding is negligible.

Figure 2 shows the single fiber model. For a given δ , a fiber is debonded or pulled
out. In Figure 2, Le is the embedded length and L is the length of the debonded
zone. Lin et al. [1999] derived the relation between P and δ (Eq. (1)) using a
force equilibrium condition (Eqs. (2) and (3)) between the fiber and matrix, the
compatibility condition, that is, the relation between δ and L (Eq. (4)), and energy
conservation for the debonded zone (Eqs. (5) and (6)).

P(δ ) =

√
π2E f d3

f τ0 (1+η)

2
δ +

π2E f d3
f GD (1+η)

2
(1)

where E f is the elastic modulus of the fibers, d f is the diameter of the fibers, τ0 is
the frictional stress, and GD is the chemical bond strength.

 
Figure 2: Single fiber model

σ f (z) = σ f 0 +
(

z
σ −σ f 0

L

)
(2)
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σm(z) = σm0

(
1− z

L

)
(3)

where σ f 0 is the normal stress in the fiber, which is obtained by the force equilib-
rium (πd f τ0L = (σ −σ f 0)πd2

f /4) and σm0 is the normal stress in the matrix, which
is obtained by the force equilibrium (Vf σ = Vf σ f 0 +Vmσm).

δ =
σL
E f
− 2τ0L2(1+η)

E f d f
(4)

where η = Vf E f
VmEm

. Eq. (4) is derived from the relative displacement between the
fiber and the matrix in the debonded region; that is, ∆(z) = u f (z)− um(z). This
equation can be rewritten as d∆z

dz = du f (z)
dz −

dum(z)
dz = σ f (z)

E f
− σm(z)

Em
, whose boundary

condition is ∆(z = 0) = 0.

For crack growth dA along the friction surface, energy balance is expressed by the
following Eq. (5) [Gao, Mai and Cotterell (1988)].

Pdu f = dU +dW f +GDdA (5)

where u f is the displacement, P is the applied load, dU is the change of strain
energy, dW f is the dissipated energy by friction, GDdA is the fracture energy for
chemical bonding.

dU = 0.5(Pdu f −dW f ) (6)

This equation gives the energy conservation for the debonded zone, which is as-
sumed to be an elastic system. Based on Eq. (5) and (6), Eq. (7) and (8) can be
obtained as follows.

σ (L) =
4τ0L1+η)

d f
+

√
8GDE f (1+η)

d f
(7)

P(L) = πd f τ0 (1+η)L+

√
π2E f d3

f GD (1+η)

2
(8)

Eq. (4) can be rewritten as Eq. (9) using Eq. (7).

δ =
2τ0L2(1+η)

E f d f
+

√
8GDL2 (1+η)

E f d f
(9)

If L = Le, the fiber pullout distance (δ0) for full debonding can be obtained using
Eq. (9). After fiber full debonding, the relation between P and δ is given by Eq.
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(10), since only frictional bonding stress remains, without chemical bonding stress
(Figure 3).

P(δ ) = πd f τ0

[
1+

δ −δ0

d f
β

]
[Le− (δ −δ0)] (10)

where β is the slip-hardening coefficient.

In the above formulation, the crack opening δ is equal to 2u during debonding,
since debonding occurs on both segments of the crack plane; during frictional pull-
out it is equal to u during frictional pull-out, since pull-out occurs on one side
segment of the crack plane. Therefore, Eq. (1) and Eq. (9) should be modified as
Eq. (11) and Eq. (12), respectively.

P(δ ) =

√
π2E f d3

f τ0 (1+η)

4
δ +

π2E f d3
f GD (1+η)

2
(11)

δ0 =
4τ0L2

e(1+η)
E f d f

+4

√
2GDL2

e (1+η)
E f d f

(12)

The effect of the fiber orientation, known as the “snubbing effect”, in the relation
between P and δ is expressed as Eq. (13) [Morton and Groves (1976); Li (1992)].

P(θ) = P(0)e f θ (13)

The effect of fiber orientation in the relation between fiber strength σ f u and δ is
expressed as Eq. (14) [Lin, Kanda and Li (1999)].

σ f u(θ) = σ f u (0)e− f ′θ (14)

where f and f ′ are the snubbing effect coefficient and fiber strength reduction coef-
ficient and are determined by curve-fitting experimental data. Wu [2001] measured
f using Polyvinyl Alcohol (PVA) fiber having 0.5% oiling coating and found that
f ranged from 0.2 to 0.8. Kanda et al. [Kanda and Li (1998)] found that f ′ was
approximately 0.3 for the fiber/matrix system they investigated.

2.2 Modeling of multiple fibers behavior accounting for fiber distribution

For one dimension, the fiber number in a unit area is expressed by Eq. (15)

N1D =
Vf

A f
(15)
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Figure 3: Single fiber model after full debonding

where Vf and A f are the volume and the area of fiber, respectively. Figure 4 shows
the embedded length with the inclination angle. In Figure 5, z is the centroidal
distance. If p(θ) and p(z) are probability density functions for θ and z, the number
of fibers in a unit area is expressed as Eq. (16).

NB = N1D

∫
θ2

θ1

∫ z2

z1

p(z)dzp(θ)dθ (16)

For three dimensions, p(z) is 2/L f and p(θ) is sin(θ). If θ1 is 0 and θ2 is π/2, z1
should be 0 and z2 (L f /2)cosθ , since Le (Eq. (17)) should not be less than 0.

Le =
L f

2
− z

cosθ
(17)

By changing the variable z to Le, Eq. (16) can be rewritten as Eq. (18).

NB = N1D

∫
π/2

0

∫ 1

0
p(Le) p(θ)cos(θ)dLedθ (18)

If the resistance force of a single fiber at the crack plane is P(θ ,Le,δ ), the com-
posite bridging property can be expressed as Eq. (19).

σB(δ ) =
4Vf

πd2
f

∫
π/2

0

∫ L f /2

0
P(θ ,Le,δ )p(θ)cos(θ) dLedθ (19)

If Nm is the number of fibers measured using the image processing technique and
Am is the measured area, Eq. (19) should be changed to the following equation.

σB(δ ) = αn f
4Vf

πd2
f

∫
π/2

0

∫ L f /2

0
P(θ ,Le,δ )p(θ)cos(θ) dLedθ (20)



118 Copyright © 2010 Tech Science Press CMES, vol.61, no.2, pp.111-132, 2010

where αn f is the fiber number coefficient, which means the ratio of measured fiber
numbers and assumed fiber numbers and can be expressed by Eq. (21).

αn f =
πd2

f Nm

4Vf Am
∫ π/2

0
∫ L f /2

0 p(θ)cos(θ) dLedθ

(21)

where Nm is the number of fiber measured using image processing technique and Am

is the measured area. Eq. (21) is derived by αn f
4Vf

πd2
f

∫ π/2
0

∫ L f /2
0 p(θ)cos(θ) dLedθ =

Nm
Am

.

On the basis of Eqs. (10) – (14), (20), and (21), the composite bridging property
can be expressed as Eq. (22).

σB(δ ) = αn f
4Vf

πd2
f∫

θ2

θ1

∫ Le2

Le1

√
π2E f d3

f τ0 (1+η)

4
δ +

π2E f d3
f GD (1+η)

2
e f θ p(θ)cos(θ)dθdLe

+αn f
4Vf

πd2
f∫

θ4

θ3

∫ Le4

Le3

πd f τ0

[
1+

(δ −δ0)
d f

β

]
[Le− (δ −δ0)]δe f θ p(θ)cos(θ) dθdLe (22)

where Le1,Le2,Le3,Le4,θ1,θ2,θ3,and θ4 are determined according to δ .

Eq. (22) can be rewritten using the normalized length divided by L f /2, as expressed
in Eq. (23).

σB

(
δ

)
= αn f

4Vf

πd2
f∫

θ2

θ1

∫ Le2

Le1

√
π2E f d3

f τ0 (1+η)

4
δ

L f

2
+

π2E f d3
f GD(1+η)

2
e f θ p(θ)cos(θ) dθdLe

+αn f
4Vf

πd2
f∫

θ4

θ3

∫ Le4

Le3

πd f τ0

[
1+

δ −δ 0

d f

L f

2
β

][
Le− (δ −δ 0)

]L f

2
e f θ p(θ)cos(θ) dθdLe

(23)
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Figure 4: Embedded length with inclination angle

2.3 Effect of matrix spalling

Matrix spalling is observed in a brittle and low strength matrix. Typical results
in the embedded strength tests show that the fibers rupture for different inclining
angles θ and they tend to rupture at lower stress as θ increases. This load drop is
attributed to matrix spalling, as evidenced by microscopy observations [Kanda and
Li (1998)].

An inclined fiber exerts additional force and stress concentration on the matrix, i.e.,
the reaction force of the pulley at the supporting point. If the stress induced on
matrix at the supporting point is greater than the strength of matrix, the matrix will
be spalled. The size of the spalled matrix section is governed by the external load
on the fiber, the matrix strength, the matrix stiffness, and the fiber orientation. A
semi-empirical equation for estimating the spalling size s is proposed (Eq. (24)) as
follows [Yang, Wang, Yang and Li (2008)].

s =
Psin

(
θ

2

)
kd f σmucos2

(
θ

2

) (24)

where P is the external force acting on the fiber, θ is the orientation of the fiber,
σmu is the matrix tensile strength, and k is the spalling coefficient. k is constant in
relation to the fiber geometry and matrix stiffness.

Figure 5 schematically illustrates inclined bridging with matrix spalling. Matrix
spalling changes the fiber orientation θ to a smaller θ ′ and decreases the embedded
length (Le) by 2s. This may cause a load drop as well as delay the fiber rupture
under displacement control. δ ′ and θ ′ can be expressed as Eq. (25) and Eq. (26),
respectively.

δ
′ =
√

4s2 +4sδcosθ +δ 2 (25)

θ
′ = sin−1

(
δ sinθ

δ ′

)
(26)
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To depict the load drop according to the change of embedment length and orien-
tation caused by matrix spalling, Eq. (8) is changed to Eq. (27) in the case of
debonding fibers.

P(L) = πd f τ0 (1+η)(L− s)+

√
π2E f d3

f GD (1+η)

2
(27)

where L can be obtained from Eq. (28), which is derived from Eq. (12).

L =

√
E f d f

2τ0 (1+η)

[√
2(1+η)(GD + τ0

δ

2
)−
√

2(1+η)GD

]
(28)

For pulling out fibers, Eq. (10) is changed to Eq. (29)

P(δ ) = πd f τ0

[
1+

δ −δ0

d f
β

]
[Le− s− (δ −δ0)] (29)

Therefore, this load leads to the stress on the fiber, which is expressed as Eq. (30)
considering the snubbing effect.

σ f =
4P
πd2

f
e f θ ′ (30)

A fiber will be ruptured when the following equation is satisfied.

σ f ≥ σ f u (0)e− f ′θ ′ (31)

Eq. (23) can be rewritten as Eq. (32) using Eqs. (27) – (29).

σB

(
δ

)
= αn f

4Vf

πd2
f∫

θ2

θ1

∫ Le2

Le1

πd f τ0 (1+η)(L− s)
L f

2

√
π2E f d3

f GD(1+η)

2
e f θ ′ p(θ)cos(θ) dθdLe

+αn f
4Vf

πd2
f∫

θ4

θ3

∫ Le4

Le3

πd f τ0

[
1+

δ −δ 0

d f

L f

2
β

][
Le− s− (δ −δ 0)

]L f

2
e f θ ′ p(θ)cos(θ) dθdLe

(32)
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Figure 5: Schematic diagram of inclined bridging with matrix spalling [Yang,
Wang, Yang and Li (2008)]

If the distribution of the fiber orientation is measured from an image analysis, p(θ)
is replaced by the following function proposed by Xia et al. [1995].

g(θ) =
(sinθ)2p−1(cosθ)2q−1∫

θmax
θmin

(sinθ)2p−1(cosθ)2q−1dθ
(33)

where p and q are the shape parameters, which can be used to determine the shape
of the probability density function. The parameters p and q should be more than
1/2. θ falls in a range from 0 to π /2.

Figure 6 shows the numerical procedure for calculation of the bridging curve. For
given micromechanical parameters and assumed crack opening, the stress of each
fiber according to Le and θ is calculated. If the stress of the fiber is greater than
the fiber strength considering the fiber strength reduction caused by fiber inclina-
tion, the stress of the fiber will be zero due to rupture. The bridging stress is then
calculated by numerical integration. This process is repeated with increased crack
opening until the assumed crack opening is larger than the final crack opening, that
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is, L f /2.

 

Figure 6: Numerical procedure for calculation of fiber bridging curve

3 Fiber distribution evaluation

Lee et al. [2009] proposed an enhanced evaluation technique of PVA fiber disper-
sion in cementitious composites. The proposed evaluation technique is composed
of stepwise tasks. First, the fiber images detected by a prototype thresholding algo-
rithm are classified into five types by a watershed segmentation algorithm [Vincent
and Soille (1991)] and an artificial neural network. Next, aggregate fiber images,
that is, misdetected fiber images, are detected correctly by means of the watershed
segmentation algorithm and morphological reconstruction [Vincent (1993)]. Figure
7 shows a flow chart of the enhanced detection algorithm. The orientation of the
fiber at the cutting plane can be quantitatively calculated by measuring the major
axis and minor axis lengths of an ellipse, as expressed by Eq. (34).

θ = cos−1
(

ls
ll

)
(34)
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where ls is the minor axis length and is equal to the diameter of the fiber and ll is
the major axis length of the fiber (Figure 8). Table 1 shows artificial fiber images
and test results to evaluate the calculation of fiber orientation. The test results
demonstrate the accuracy of the calculations, showing relative error within 1%,
except for the fiber images with 0◦ orientation. Relative errors are increased with a
decrease of the orientation angle. This is mainly due to the increase of sensitivity
with a decrease of the orientation angle in the transformation of the ls/ll value into
the orientation angle.

 

Figure 7: Flow chart of enhanced detection algorithm [Lee et al. (2009)]
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Figure 8: Schematic diagram of an inclined fiber

Table 1: Artificial fiber images and test results to evaluate fiber orientation

Artificial fiber images Orientation 
(º) 

Calculated 
orientation (º) Error (%) 

 0 3.62 3.62a 

 
30 29.8 0.719b 

 
45 44.8 0.355b 

 
75 74.9 0.178b 

 
85 84.9 0.0589b 

a Absolute error 
b Relative error (%) 
 

4 Experimental verification

4.1 Mix proportions and micromechanics parameters

To evaluate the validity of the proposed fiber-bridging constitutive law for strain-
hardening cementitious composites, four different types of PVA-ECC were used.
The mix proportions and micromechanics parameters of PVA-ECCs are given in
Table 2 and Table 3 [Kim et al. (2007)]. A PVA fiber (Kuraray Co. Ltd., REC
15, Japan) was used as the reinforcing fiber with 2% volume fraction. Most mi-
cromechanics parameters regarding the matrix were obtained from various tests.
The interfacial properties (τ0, GD, β ) are also obtained from single fiber pullout
tests. k, f , and f ′ are assumed from values reported in the literature (Table 3).
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Table 2: Mix proportions

Test variables Cement Water Sand Slag HRWa HPMCb Vf (%)
wc60wos 1.0 0.60 0.8 0 0 0.001 2
wc60ws 1.0 0.60 0.8 0.25 0 0.001
wc48wos 1.0 0.48 0.8 0 0.02 0
wc48ws 1.0 0.48 0.8 0.25 0.02 0

a High-range water-reducing admixture
b Hydroxypropylmethyl-cellulose

All numbers are mass ratios of cement weight except fiber content (volume
fraction)

Table 3: Micromechanics parameters
Micromechanics parameters wc60wos wc60ws wc48wos wc48ws

Fiber Fiber length L f (mm) 12
Fiber diameter d f (mm) 0.040

Fiber elastic modulus E f (GPa) 40
Nominal fiber strength σn

f u (MPa) 1600
Apparent fiber strength σ f u (MPa) 1092

Fiber volume fraction Vf (%) 2
Elongation (%) 6.0

Oiling Agent Content (%) 0.8
Matrix Elastic modulus Em (GPa) 17.2 18.4 21.6 26.2

Splitting tensile strength σsp (MPa) 3.07 3.54 4.24 4.70
Spalling coefficient k 500a

Interface Frictional bond strength τ0 (MPa) 1.62 1.65 1.82 1.85
Chemical bond strength GD (J/m2) 1.82 1.88 1.85 1.83

Slip-hardening coefficient β 0.0582 0.104 -0.054 0.129
Snubbing coefficient f 0.30b

Fiber strength reduction factor f ′ 0.3c

a Assumed on the basis of the referenced paper [Yang et al. (2008)]
b Assumed on the basis of the referenced paper [Wu (2001)]
c Assumed on the basis of the referenced paper [Kand and Li (1998)]

4.2 Analysis of fiber distribution

Table 4 presents the fiber distribution characteristics and parameters for the distri-
bution function of the fiber orientation. Although the fiber dispersion coefficients
show little variation among specimens, ECC specimens with slag have higher val-
ues. This means that ECC with slag has more homogeneously distributed fibers
in the composites. When the fibers are more homogeneously distributed, the fiber-
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bridging capacity may be larger, finally leading to a larger tensile strain capacity.
On the other hand, there is no correlation between Fn values and the existence of
slag particles. Fn measured by an image analysis may show a smaller value than
that calculated by Eq. (18). In this study, there is also no correlation between αn f

values and the existence of slag particles. Figure 9 shows the probability density
function for the fiber orientation according to the specimens. As can be seen in
the figure, the probability density functions measured by the an image analysis are
considerably different from those obtained by assuming two- or three-dimensional
random distributions for the fiber orientation. That is, the percentage of fibers with
smaller angle, which increase the load bearing capacity, between the fiber direction
and section direction is larger in the specimens used in this study.

 

        
(a) wc60wos     (b) wc60ws 

        
(c) wc48wos     (d) wc48ws 

 

Figure 9: Probability density functions according to mix proportions
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4.3 Fiber-bridging curve according to the distribution of fiber orientation and
number of fibers

Fiber-bridging curves according to specimens with different mix proportions con-
sidering the distribution of fiber orientation and number of fibers are shown in Fig-
ure 10. Fiber-bridging curves predicted on the basis of probability density functions
measured using an image analysis are similar with those predicted on the basis of
probability density functions assuming a two-dimensional random distribution of
fiber orientation. Crack openings corresponding to the peak bridging stress of the
bridging curves predicted using an image analysis are larger than those predicted
on the basis of the probability density functions assuming a two-dimensional ran-
dom distribution of the fiber orientation. These differences in crack openings at
the peak bridging stress will cause variation in the prediction of the UTS (Ulti-
mate Tensile Strain) capacity of the tensile behavior. Kanda and Li [Kanda and
Li (2006)] proposed the stress performance indexes and investigated the effect of
those on the UTS. Their results show that the UTS increases with the increase
of stress performance index. Table 5 presents the performance indexes according
to the fiber distribution and the UTS calculated by using the relation between the
stress performance index and the UTS [Kand and Li (2006)]. Figure 11 shows
the experimental results of uniaxial tension test performed by Kim et al. [Kim et
al. (2007)]. Comparing the UTS calculated on the basis of an image analysis, the
relative error between the measured UTS and the calculated UTS is about 15% ex-
cept the wc48ws specimen. On the other hand, the minimum error between the
measured UTS and the UTS calculated on the basis of fiber-bridging curves ob-
tained by assuming two- or three-dimensional random distributions for the fiber
orientation exhibit more than 50%. The tensile stress-strain relation of random
short-fiber-reinforced cement composites showing pseudo-strain-hardening can be
predicted using the first cracking strength, peak bridging stress, and peak crack
openings at the peak bridging stress of fiber-bridging curves [Kanda, Lin and Li
(2000)]. Therefore, fiber-bridging curves that take into consideration the distribu-
tion of fiber orientation and number of fibers as determined via an image analysis
are expected to be useful in predicting precisely the tensile stress-strain relation of
fiber-reinforced cement composites showing pseudo-strain hardening.

5 Conclusions

A modified fiber-bridging constitutive law that quantitatively considers the distri-
bution of fiber orientation and the number of fibers was derived, and a fiber dis-
tribution analysis was conducted on the PVA-ECC specimens with different mix
proportions. An image analysis was then performed to obtain fiber-bridging curves
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(a) wc60wos     (b) wc60ws

   
(c) wc48wos     (d) wc48ws 

 

Figure 10: Bridging curve according to the distribution of fiber orientation and
number of fibers

from the fiber distribution. These curves were compared with those obtained un-
der the assumption of two-dimensional and three-dimensional distributions of the
fiber orientation. Through derivation and verification of the derived fiber-bridging
constitutive law, the following conclusions can be drawn from the current results:
(1) Probability density functions measured by an image analysis and number of
fibers are considerably different from those obtained by assuming two- or three-
dimensional random distributions of the fiber orientation. This means that the dis-
tribution of fibers is dependent on the flow direction, owing to the casting sequence
or shape of the structure. Therefore, it is necessary to evaluate the fiber distribution
characteristics; (2) Fiber-bridging curves predicted on the basis of probability den-
sity functions measured using an image analysis are similar with those predicted on
the basis of probability density functions assuming two-dimensional random dis-
tributions of the fiber orientation. However, crack openings at the peak bridging
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Table 5: Stress performance index and ultimate tensile strain according to the dis-
tribution of fiber orientation

PDF wc60wos wc60ws wc48wos wc48ws
Stress performance index Measured 1.39 1.43 1.25 1.08

2D 1.53 1.35 1.14 1.04
3D 1.17 1.02 0.861 0.777

Ultimate tensile strain (%) Measured 2.77 4.24 0.657 < 0.2
2D > 5.0 1.85 0.254 < 0.2
3D 0.282 < 0.2 < 0.2 < 0.2

Relative error (%)a Measured 10.8 11.6 17.9 >77.8
2D >100 51.3 68.3 >77.8
3D 88.7 >94.7 >75.0 >77.8

a The relative error is calculated as
∣∣UTScalc−UTSexp

∣∣/UTSexp×100

 

Figure 11: Experimental results of uniaxial tension test [Kim et al. (2007)]

stress of the bridging curves predicted using the an image analysis are larger than
those predicted on the basis of the probability density functions assuming a two-
dimensional random distribution of the fiber orientation; (3) Comparison results
between the calculated UTS and the measured UTS exhibited about 15% error. On
the other hand, the minimum error with the UTS calculated from fiber-bridging
curves obtained by assuming two- or three-dimensional random distributions for
the fiber orientation exhibit more than 50%. Therefore, the tensile behavior of ECC
can be precisely predicted and analyzed using the fiber-bridging curve obtained on
the basis of the fiber distribution measured using an image analysis.
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