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A Thermal Lattice Boltzmann Model for Flows with
Viscous Heat Dissipation
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Abstract: A thermal BGK lattice Boltzmann model for flows with viscous heat
dissipation is proposed. In this model, the temperature is solved by a separate
thermal distribution function, where the equilibrium distribution function is sim-
ilar to its hydrodynamic counterpart, except that the leading quantity is tempera-
ture. The viscous dissipation rate is obtained by computing the second-order mo-
ments of non-equilibrium distribution function, which avoids the discretization of
the complex gradient term, and can be easily implemented. The proposed ther-
mal lattice Boltzmann model is scrutinized by computing two-dimensional thermal
Poiseuille flow, thermal Couette flow, natural convection in a square cavity, and
three-dimensional thermal Poiseuille flow in a square duct. Numerical simulations
indicate that the second order accurate LBM scheme is not degraded by the present
thermal BGK lattice Boltzmann model.

Keywords: Thermal lattice Boltzmann model, viscous heat dissipation, BGK
model, natural convection, second order accuracy.

1 Introduction

Explicit, easy to implement, and natural to parallelize are the major advantages of
Lattice Boltzmann method (LBM), which has been successfully applied to vari-
ous isothermal hydrodynamic and engineering problems [Yu, Mei, Luo, and Shyy
(2003); Chen, Chang, and Sun (2007); Han, Feng, and Owen (2007); Mishra, Paik,
and Atluri (2009)]. However, its direct extension to the thermal flows is not straight-
forward, because of the numerical instability for thermal models [McNamara, Gar-
cia, and Alder (1995)]. In general, the thermal lattice Boltzmann model (TLBM)
can be categorized into two types [He, Chen, and Doolen (1998)]. The first one is
the multi-speed approach and the second one is the passive scalar model. The multi-
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speed approach is a straightforward extension of the lattice Boltzmann isothermal
models in which only the density distribution function is used. On the other hand,
the passive scalar approach utilizes the fact that the macroscopic temperature satis-
fies the same evolution equation as a passive scalar, which is advected by the flow
velocity but does not affect the flow fields. The major advantage of the passive
scalar model over the multi-speed approach is the enhancement of the numerical
stability and is thus commonly adopted.

In the passive scalar thermal lattice Boltzmann models, a separate distribution func-
tion is used to solve for the temperature distribution and the distribution function
may be similar to its hydrodynamic counterpart[Shi, Zhao, and Guo (2004); Li, He,
Wang, and Tang (2008)] or different [He, Chen, and Doolen (1998); Peng, Shu,
and Chew (2003); Tang, Tao, and He (2005)]. For example, a double-distribution-
function model was proposed by He, Chen, and Doolen (1998). This model has
a better numerical stability than the multispeed approach, and the viscous heat
dissipation and compression work done by the pressure can be solved implicitly.
However, the major drawback of this thermal model is the complex discretization
to obtain the viscous dissipation rate, which includes a complicated gradient term
involving temporal and spatial derivatives of the macroscopic flow variables. An-
other thermal model with viscous dissipation rate was proposed by Shi, Zhao, and
Guo (2004), however complex discretization of the velocity gradient is still needed.

To model the incompressible thermal flows without viscous heat dissipation, Peng,
Shu, and Chew (2003) proposed a simplified thermal lattice Boltzmann model,
where the complicated gradient term in this model is neglected. However, Li, He,
Wang, and Tang (2008) indicated that this direct neglecting of the gradient term
may affect the original conduction equation. To overcome this, Li, He, Wang,
and Tang (2008) proposed an improved thermal lattice Boltzmann model for flows
without viscous heat dissipation and compression work. Based on the work of He,
Chen, and Doolen (1998), Tian, Zuo, Liu, Liu, Guo, and Zheng (2006) proposed a
simpler implementation of the viscous dissipation term. However, the second order
accuracy of the LBM model is not satisfied.

In this paper, a thermal lattice Boltzmann model with viscous heat dissipation in the
incompressible limit is presented, where a separate distribution function is adopted
to solve for the temperature field. The thermal lattice Boltzmann equation is mod-
eled through the convection-diffusion equation with a source term. Here, the ther-
mal equilibrium distribution function is similar to its hydrodynamic BGK LBM
counterpart, except that the leading quantity is temperature. Also, to avoid dis-
cretizing the gradient term of the strain rate tensor, the viscous dissipation rate
can be obtained by computing the second-order moments of non-equilibrium dis-
tribution function. This greatly simplifies the evaluation of the viscous dissipation
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term. Novel hydrodynamic and thermal boundary conditions are adopted in the
present study. The validity and accuracy of this new thermal lattice Boltzmann
model is scrutinized by computing two-dimensional thermal Poiseuille flow, ther-
mal Couette flow, and natural convection in a square cavity. Moreover, to validate
its consistent formulation to three-dimensional problems, a 3-D thermal Poiseuille
flow in a square duct is also simulated. The results show that the proposed thermal
lattice Boltzmann model can be implemented easily, and the second order accuracy
is also satisfied.

2 Thermal lattice Boltzmann models

As indicated earlier, a separate distribution function is adopted to solve for the tem-
perature field, where the thermal lattice Boltzmann equation is modeled through the
convection-diffusion equation with a source term [Deng, Shi, and Wang (2005)].
Here, the temperature is regarded as a scalar quantity, and the viscous dissipation
term is treated as source term.

The governing equations for the thermal energy distribution model could be ex-
pressed as,

fi(~x+~ei4t, t +4t) = fi(~x, t)−
1
τ f

[ fi(~x, t)− f eq
i (~x, t)] (1)

gi(~x+~ei4t, t +4t) = gi(~x, t)−
1
τg

[gi(~x, t)−geq
i (~x, t)]+4tFi +

1
2
(4t)2 ∂Fi

∂ t
(2)

where fi and gi are the particle density and temperature energy distribution func-
tions along the particle velocity direction ~ei, respectively. Cs is the sound speed
which depends on the lattice model used. τ f and τg are the dimensionless relax-
ation times that control the rates approaching equilibrium. The time derivative of
the force is discretized using the simple forward difference scheme as,

∂Fi(~x, t)
∂ t

= [Fi(~x, t)−Fi(~x, t−4t)]/4t (3)

The term Fi represents the effect of viscous heating and Fi can be determined by
[Deng, Shi, and Wang (2005)],

Fi = ωi
Φ

cv
[1+

~ei ·~u
C2

s

τg−1/2
τg

] (4)

cv is the specific heat at constant volume. The viscous heating term Φ can be
expressed as follows:

Φ = 2µSαβ Sαβ −
2µ

3
(5·~u)2 (5)
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where the strain rate tensor Sαβ can be defined as:

Sαβ =
1
2
(
∂uα

∂xβ

+
∂uβ

∂xα

)

Sαβ can be expressed by the momentum fluxes Qαβ , which can be obtained by
computing the second-order moments of non-euilibrium distribution function [Hou,
Sterling, Chen, and Doolen (1996)].

Sαβ =
−1

2ρC2
s τ

Qαβ ,Qαβ = ∑
i

eiαeiβ ( fi− f eq
i ) (6)

The macroscopic variables can be evaluated as the moment of the distribution func-
tion:

∑
i

fi
eq = ρ (7)

∑
i
~eiα f eq

i = ρ~u (8)

∑
i

gi
eq = ρT (9)

∑
i

eiαgi
eq = ρuαT (10)

∑
i

eiαeiβ geq
i = ρuαuβ T +C2

s ρT δi j (11)

For the present 2D and 3D applications, D2Q9 and D3Q19 models are adopted.
The equilibrium density distribution functions and equilibrium temperature energy
distribution functions for these two models are

f eq
i = ωiρ[1+

3~ei ·~u
C2 +

9(~ei ·~u)2

2C4 − 3~u ·~u
2C2 ] (12)

geq
i = ωiρT [1+

3~ei ·~u
C2 +

9(~ei ·~u)2

2C4 − 3~u ·~u
2C2 ] (13)

where the weighting factors ωi are ω0 = 4/9, ωi=1∼4 = 1/9, ωi=5∼8 = 1/36, and
ω0 = 1/3, ωi=1∼6 = 1/18, ωi=7∼18 = 1/36 for D2Q9 and D3Q19 models, respec-
tively. C =4x/4t is the lattice speed, where4x and4t are the lattice width and
time step, respectively.

The macroscopic temperature equation can be derived through the Chapman-Enskog
procedure. Details of the derivation are given in Appendix A.

∂T
∂ t

+O · (~uT ) =
k

ρcv
O2T +

Φ

ρcv
(14)
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The corresponding kinematic viscosity and thermal conductivity are calculated by
ν = (τ f −0.5)C2

s4t and k = ρcv(τg−0.5)C2
s4t , where Cs =

√
RT = C/

√
3 is the

speed of sound.

The present study is concerned with laminar flow simulations. However, for turbu-
lent flow simulations, the relaxation times should be modified [Teixeira (1998)] to
account for the eddy viscosity from the turbulence models [Hwang and Lin (1999,
2000)].

3 Boundary conditions

3.1 Hydrodynamic boundary conditions

Boundary condition proposed in [Chang, Liu, and Lin (2009)] and [Ho, Chang, Lin,
and Lin (2009)] is employed to determine the unknown particle density distribution
functions along the boundary, which are expressed as a combination of the local
known value and a corrector,

fp(~x,~ep, t) = f ∗p(~x,~ep, t)+
ωp

C
~ep · ~Q (15)

where ~Q is the corrector to enforce the required momentum. For instance, consider
a node at the top boundary as shown in Fig. 1, where the unknown density distri-
bution functions are f4, f7 and, f8, i.e. f4 = f ∗4 −ω4Qy, f7 = f ∗7 −ω7(Qx + Qy),
and f8 = f ∗8 +ω8(Qx−Qy). Therefore, the macroscopic velocity and density at the
node using Eqs. 7 and 8, in conjunction with Eq. 15, can be expressed as,

ρ = f0 + f1 + f2 + f3 +( f ∗4 −ω4Qy)+ f5 + f6

+ [ f ∗7 −ω7(Qx +Qy)]+ [ f ∗8 +ω8(Qx−Qy)] (16)

ρu = f1 + f5 +[ f ∗8 +ω8(Qx−Qy)]− f3− f6− [ f ∗7 −ω7(Qx +Qy)] (17)

ρv = f2 + f5 + f6− ( f ∗4 −ω4Qy)
− [ f ∗7 −ω7(Qx +Qy)]− [ f ∗8 +ω8(Qx−Qy)] (18)

If velocities u and v are known at the boundary, Eq. 16 to 18 can be used to
solve for ρ , Qx, and Qy, and then f4, f7, and f8 are obtained. For simplicity,
f ∗p(~x,~ep, t) = fp(~x,−~ep, t) are adopted. The explicit forms of the unknown particle
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density distribution functions are shown as below.

ρ =
1

1+ v
[ f0 + f1 + f3 +2( f2 + f5 + f6)]

f4 = f2−
2
3

ρv

f7 = f5 +
1
2
( f1− f3)−

1
2

ρu− 1
6

ρv

f8 = f6−
1
2
( f1− f3)+

1
2

ρu− 1
6

ρv (19)

For boundary does not coincide with the lattices, special treatment has to be taken
to model the solid-fluid boundary, such as those in [Chen, Lin, and Lin (2007)]
and [Yang, Chang, and Lin (2009)], which are based on the immersed boundary
methods in [Su, Lai, and Lin (2007)] and [Liao, Chang, Lin, and McDonough
(2010)], respectively.

Inlet Outlet
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Figure 1: The 2D and 3D models.

3.2 Thermal boundary conditions

Here, similar to its hydrodynamic counterpart, a consistent thermal boundary con-
dition is introduced [Liu, Lin, Mai, and Lin (2010)]. The unknown particle energy
distribution function at the plane boundary is assumed to be,

gp(~x,~ep, t) = g∗p(~x,~ep, t)+ωpGc (20)
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where Gc is the correction to enforce the internal energy.

For instance, consider a node at the top boundary as shown in Fig. 1, where the
unknown particle energy distribution functions are (g4, g7, g8) and (g4, g8, g9, g12,
g14), respectively for D2Q9 and D3Q19 models. Therefore, the internal energy
density at the node using Eq. 9, in conjunction with Eq. 20, can be expressed as,

For the D2Q9 model,

ρT = g0 +g1 +g2 +g3 +[g∗4 +ω4Gc]+g5 +g6

+ [g∗7 +ω7Gc]+ [g∗8 +ω8Gc] (21)

ρT ∗ = g0 +g1 +g2 +g3 +g∗4 ++g5 +g6 +g∗7 +g∗8 (22)

Gc =
ρT −ρT ∗

ω4 +ω7 +ω8
(23)

For the D3Q19 model,

ρT = g0 +g1 +g2 +g3 +[g∗4 +ω4Gc]+g5 +g6 +g7

+ [g∗8 +ω8Gc]+ [g∗9 +ω9Gc]+g10 +g11

+ [g∗12 +ω12Gc]+g13 +[g∗14 +α14Gc]
+ g15 +g16 +g17 +g18 (24)

ρT ∗ = g0 +g1 +g2 +g3 +g∗4 +g5 +g6 +g7 +g∗8 +g∗9 +g10

+ g11 +g∗12 +g13 +g∗14 (25)

Gc =
ρT −ρT ∗

ω4 +ω8 +ω9 +ω12 +ω14
(26)

The temperature T is known at the boundary, hence (g4, g7, g8) and (g4, g8, g9, g12,
g14) are obtained for D2Q9 and D3Q19 models. The explicit forms of the unknown
particle energy distribution functions are shown below.

For the D2Q9 model,

T ∗ =
1
ρ

(g0 +g1 +g2 +g3 +g∗4 +g5 +g6 +g∗7 +g∗8)

g4 = g∗4 +
2
3

ρ(T −T ∗)

g7 = g∗7 +
1
6

ρ(T −T ∗)

g8 = g∗8 +
1
6

ρ(T −T ∗) (27)
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For the D3Q19 model,

T ∗ =
1
ρ

(g0 +g1 +g2 +g3 +g∗4 +g5 +g6 +g7 +g∗8 +g∗9 +g10

+ g11 +g∗12 +g13 +g∗14 +g15 +g16 +g17 +g18)

g4 = g∗4 +
1
3

ρ(T −T ∗)

g8 = g∗8 +
1
6

ρ(T −T ∗)

g9 = g∗9 +
1
6

ρ(T −T ∗)

g12 = g∗12 +
1
6

ρ(T −T ∗)

g14 = g∗14 +
1
6

ρ(T −T ∗) (28)

For simplicity, the formulation of g∗p = geq
p (~x,~ep, t) is adopted here. Other forms

have been explored such as, g∗p(~x,~ep, t)= gp(~x,−~ep, t) and g∗p(~x,~ep, t)= gp(~x,~ep, t−
4t), and influences were found to be marginal on the predicted results as shown in
Liu, Lin, Mai, and Lin (2010).

4 Numerical results

4.1 2-D thermal Poiseuille flow

Fully developed flow in a channel is a typical case to examine the accuracy of
boundary conditions. Here, the two-dimensional Poiseuille flow with constant wall
temperature Tt is considered. The Reynolds number is defined as Re = U0H/ν in
a channel of height H, and U0 is the maximum velocity. The effect of viscous heat
dissipation is controlled by the Prandtl number Pr = ν/χ . The pressure gradient is
set as ∂ p/∂x =−8ρνU0/H2. The analytical solution for the temperature field and
the maximum relative error are defined as,

Texact(y) = Tt +
1
3

PrU2
0 [1− (

2y
H
−1)4] (29)

Errmax = max(

√
(T −Texact)2

Tt
) (30)

Velocity boundary conditions and the proposed Dirichlet thermal boundary con-
ditions are applied along the channel walls. Mixed pressure velocity boundary
conditions and periodic thermal boundary conditions are used at the channel inlet
and outlet. Fig. 2 shows the temperature profiles in comparison with the analytic
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Figure 2: The temperature profiles of
2-D Poiseuille flow with Re = 10, 5×
129 grid, and τ f = 1.1.
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Figure 3: Maximum predicted
temperature relative errors of 2-D
Poiseuille flow.

solution for different Prandtl numbers. Five different lattice densities in the y direc-
tion are adopted, (21, 41, 81, 161, and 321). Fig. 3 shows that the predicted results
are slightly higher than second-order accurate for the Prandtl numbers investigated.
This is due to the periodic boundary conditions adopted for the energy equation.

4.2 2-D thermal Couette flow

Next, attention is directed to the two-dimensional thermal Couette flow. This is
to examine the validity of the proposed thermal boundary conditions at moving
wall. Here, the channel top wall is moving at a constant velocity Ut with a higher
constant temperature Tt , and the bottom wall is stationary with a lower constant
temperature Tb. The Reynolds number is defined as Re = UtH/ν in a channel
of height H. The major control parameters are the Prandtl number and the Eckert
number Ec =U2

t /(Cv4T ), where4T is the temperature difference between the hot
and cold walls. The effect of viscous heat dissipation is controlled by the Brinkman
number Br = PrEc. The analytical solution for this temperature field is expressed
as,

Texact(y) = Tb +
y
H

[1+0.5Br(1− y
H

)]4T (31)

Velocity boundary conditions and the proposed Dirichlet thermal boundary condi-
tions are applied along the channel walls, and the periodic boundary condition is
applied at the inlet and outlet. Fig. 4 shows the temperature profiles in compar-
ison with the analytic solution for different Brinkman numbers while the Prandtl
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Figure 4: The temperature profiles of
2-D Couette flow with Re = 10, 5×41
grid, and τ f = 0.9.
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Figure 5: Maximum predicted tem-
perature relative errors of 2-D Couette
flow.

number is fixed. Five different lattice densities in the y direction are adopted, (21,
41, 81, 161, and 321), to determine the convergence rate in space. To examine the
convergence, Eq. 30 is also used to determine the maximum relative error using
different lattices. Fig. 5 shows the predicted results and the second-order accuracy
is achieved.

4.3 3-D thermal Poiseuille flow in a square duct

Here, the capability of the proposed thermal boundary conditions to model 3-D
problems is examined. A pressure driven 3-D square duct flow with constant wall
temperatures is simulated by the D3Q19 model. Mixed pressure velocity boundary
conditions and periodic thermal boundary conditions are applied at the duct inlet
and outlet boundaries. No-slip condition and Dirichlet thermal boundary conditions
are imposed along the bounding walls. The corner treatment is similar to its 2D flow
counterpart and is not repeated here. The size of the square duct is 0≤ x≤ L,−H ≤
y≤H and −H ≤ z≤H, where L and H are duct length and half of the duct height,
with x being the flow direction. The lattice sizes are Nx×Ny×Nz:5×33×33. The
adopted Reynolds number is 1 and the Prandtl number is 0.7. The corresponding
τ f and τg are both 0.9.

Figs. 6 and 7 show the streamlines and isotherms within the square duct. The
velocity and temperature profiles along the vertical wall bisector at x/L = 0.5 can
be referred to Figs. 8 and 9. It is clear that the presence of the viscous dissipation
increases the temperature levels within the square duct, which is observed by the
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Figure 6: The streamline of 3-D
Poiseuille flow in a square cavity.
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Figure 7: The isotherm of 3-D
Poiseuille flow in a square cavity.

elevated level of temperature gradient compared to its hydrodynamic counterpart
at the near wall region. Here, the flow is driven by a constant pressure gradient.
However, for the temperature equation, the viscous dissipation is not uniform and
depends on the velocity gradient, which is higher at the near wall region. This
difference is reflected in the different distributions of the predicted velocity and
temperature profiles.

4.4 2-D natural convection in a square cavity

Natural convection problems within confined enclosure were commonly investi-
gated [Davis (1983); Nicolas, Bermudez, and Baez (2009); Anguiano-Orozco and
Avila (2009); Liu, Lin, Mai, and Lin (2010)]. Here, focus is directed to the natu-
ral convection in a square cavity, where the flow is driven by the buoyancy force
due to the differential temperature of the sidewalls. The left wall is at the higher
uniform temperature Tl and the right wall is at the lower uniform temperature Tr.
Both the top and bottom walls are adiabatic. With the Boussinesq approximation,
the buoyancy term is assumed to depend linearly on the temperature as,

ρ~G = ρβg(T −Tm)~j (32)

where β is the thermal expansion coefficient, g is the acceleration due to gravity,
Tm = (Tl +Tr)/2 is the average temperature, and ~j is the vertical direction opposite
to that of gravity. To account for this Buoyancy induced force, an extra forcing
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Figure 8: The velocity profiles of 3-D
Poiseuille flow in a square duct along
the vertical wall bisectors at x/L =
0.5..
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Figure 9: The temperature profiles of
3-D Poiseuille flow in a square duct
along the vertical wall bisectors at
x/L = 0.5..

term Fi is added to Eq. 1 and is expressed as [He, Zou, Luo, and Dembo (1997)],

Fi = 3ωi
~G ·~ei

C
(33)

The major control parameter is the Rayleigh number Ra = βg4T H3Pr/ν2 asso-
ciated with the heat transfer within the fluid, where H is the height or width of the
cavity. For the Rayleigh number investigated, the influence of the viscous dissipa-
tion is negligible. However, the present section serves to examine the applicability
of the present thermal model under such conditions by comparing with previous
predicted results [Davis (1983) and Liu, Lin, Mai, and Lin (2010)] using different
methodologies.

The domain is covered by a lattice sizes of 101× 101, 151× 151, 201× 201,
201× 201, and 251× 251, respectively for Ra = 103,104,105 and 106. Table 1
shows the numerical results of the maximum horizontal velocity on the vertical
midplane of the cavity, umax , and its location y, the maximum vertical velocity
on the horizontal midplane of the cavity, vmax, and its location x, and the average
Nusselt number Nu for Rayleigh numbers conducted at Ra = 103,104,105 and 106.
Note that the velocity shown in the table is normalized by the reference velocity of
χ/H. Figs. 10, and 11 show the streamlines, and isotherms at different Rayleigh
numbers, respectively. The simulated results are contrasted with the solutions of
Davis (1983) and Liu, Lin, Mai, and Lin (2010) using different methodologies and
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Table 1: Predicted results compared with the solutions of Davis (1983) and Liu,
Lin, Mai, and Lin (2010) for 2-D natural convection in a square cavity.

Ra 103 104 105 106

umax Davis 3.649 16.178 34.73 64.63
Liu et al. 3.649 16.148 34.485 63.421
present 3.648 16.138 34.459 63.413

y Davis 0.813 0.823 0.855 0.850
Liu et al. 0.810 0.820 0.855 0.848
present 0.810 0.820 0.855 0.848

vmax Davis 3.697 19.617 68.590 219.360
Liu et al. 3.697 19.608 68.563 219.699
present 3.697 19.602 68.551 219.708

x Davis 0.178 0.119 0.066 0.0379
Liu et al. 0.180 0.120 0.065 0.036
present 0.180 0.120 0.065 0.036

Nu Davis 1.118 2.243 4.519 8.800
Liu et al. 1.115 2.230 4.488 8.747
present 1.116 2.230 4.488 8.745

the agreements are satisfactory, as shown in Table 1.

5 Conclusion

A thermal BGK lattice Boltzmann model for flows with viscous heat dissipation is
proposed, where a separate distribution function is adopted to solve for the tem-
perature field. The thermal lattice Boltzmann equation is modeled through the
convection-diffusion equation with a viscous dissipation source term, and the tem-
perature is regarded as a scalar quantity. Proposed thermal equilibrium distribu-
tion function is similar to its hydrodynamic counterpart, except that the leading
quantity is temperature. The viscous dissipation rate is obtained by computing
the second-order moments of non-equilibrium distribution function, which avoids
the discretization of the complex gradient term, and can be easily implemented.
The proposed thermal lattice Boltzmann model is scrutinized by computing two-
dimensional thermal Poiseuille flow, thermal Couette flow, natural convection in
a square cavity, and three-dimensional thermal Poiseuille flow in a square duct.
Numerical simulations indicate that the second order accurate LBM scheme is not
degraded by the present thermal BGK lattice Boltzmann model. Also, the pre-
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(b) Ra=104

(d) Ra=106(c) Ra=105

(a) Ra=103

Figure 10: The streamline profiles of 2-D natural convection in a square cavity.

(d) Ra=106(c) Ra=105

(b) Ra=104(a) Ra=103

Figure 11: The isotherm profiles of 2-D natural convection in a square cavity.
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dicted natural convection results compare favorably with the existing benchmark
solutions.
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Appendix A:

Here, the Chapman-Enskog procedure is used to derive the macroscopic energy
equation from the thermal lattice Boltzmann equation. The following expansion is
similar to that adopted in Deng, Shi, and Wang (2005) for the convection diffusion
equation.

Firstly, the multiscale expansion of the temperature distribution function is intro-
duced, i.e.

gi = geq
i + εg(1)

i + ε
2g(2)

i + · · · (34)

where ε is the time step4t.

Reevaluate Eq. 9 using Eq. 34, the following prevails, i.e.

∑
i

g(k)
i = 0,k ≥ 1. (35)

Applying the multi-scale and Taylor expansions to Eq. 2, the following equation
can be obtained,

Dig
eq
i +4tDig

(1)
i +

4t
2

D2
i geq

i =− 1
τg

(g(1)
i +4tg(2)

i )+Fi +
4t
2

∂Fi

∂ t
+O(4t2) (36)
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where Di = ∂/∂ t +~ei ·O and Fi is,

Fi = ωiF [1+
~ei ·~u
C2

s

τg−1/2
τg

] (37)

It is clear that Fi satisfies the following equations.

∑
i

Fi = F,

∑
i
~eiFi = ((τg−0.5)/τg)~uF (38)

From Eq. 36, we can get the following equation

(4t)0 : Dig
eq
i =− 1

τg
g(1)

i +Fi +O(4t) (39)

Substituting Eq. 39 into the lefthand side of Eq. 36, we can rewrite Eq. 36 as,

Dig
eq
i +4t(1− 1

2τg
)Dig

(1)
i +

4t
2

~ei ·5Fi =−
1
τg

(g(1)
i +4tg(2)

i )+Fi +O(4t2) (40)

Summing Eq. 39 over i and applying Eq. 9, we can obtain

∂ρT
∂ t

+~u ·5ρT = ∑
i

Fi +O(4t) (41)

If, F is defined as

F =
Φ

cv
(42)

and applying Eq. 39 and Eq. 41 to Eq. 40, then we take summation of Eq. 40 over
i, we can obtain the macroscopic conservation equation of energy:

∂T
∂ t

+O · (~uT ) =
k

ρcv
O2T +

Φ

ρcv
(43)

and the thermal conductivity coefficient is determined as k = ρcvC2
s4t(τg−1/2).


