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Abstract:  We propose novel algorithms to calculate the inverses of ill-conditioned
matrices, which have broad engineering applications. The vector-form of the con-
jugate gradient method (CGM) is recast into a matrix-form, which is named as
the matrix conjugate gradient method (MCGM). The MCGM is better than the
CGM for finding the inverses of matrices. To treat the problems of inverting ill-
conditioned matrices, we add a vector equation into the given matrix equation for
obtaining the left-inversion of matrix (and a similar vector equation for the right-
inversion) and thus we obtain an over-determined system. The resulting two modi-
fications of the MCGM, namely the MCGM1 and MCGM2, are found to be much
better for finding the inverses of ill-conditioned matrices, such as the Vandermonde
matrix and the Hilbert matrix. We propose a natural regularization method for solv-
ing an ill-posed linear system, which is theoretically and numerically proven in this
paper, to be better than the well-known Tikhonov regularization. The presently
proposed natural regularization is shown to be equivalent to using a new precondi-
tioner, with better conditioning. The robustness of the presently proposed method
provides a significant improvement in the solution of ill-posed linear problems, and
its convergence is as fast as the CGM for the well-posed linear problems.
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1 Introduction

In this paper we propose novel regularization techniques to solve the following
linear system of algebraic equations:

Vx = by, ey

where det(V) # 0 and V may be an ill-conditioned, and generally unsymmetric
matrix. The solution of such an ill-posed system of linear equations is an important
issue for many engineering problems while using the boundary element method [
Han and Olson (1987); Wen, Aliabadi and Young (2002); Atluri (2005); Karlis,
Tsinopoulos, Polyzos and Beskos (2008)], MLPG method [ Atluri, Kim and Cho
(1999); Atluri and Shen (2002); Tang, Shen and Atluri (2003); Atluri (2004); Atluri
and Zhu (1998)], or the method of fundamental solutions [ Fairweather and Kara-
georghis (1998); Young, Tsai, Lin and Chen (2006); Tsai, Lin, Young and Atluri
(2006); Liu (2008) ].

In practical situations of linear equations which arise in engineering problems, the
data b; are rarely given exactly; instead, noises in b; are unavoidable due to the
measurement error. Therefore, we may encounter the problem wherein the numer-
ical solution of an ill-posed system of linear equations may deviate from the exact
one to a great extent, when V is severely ill-conditioned and b is perturbed by
noise.

To account for the sensitivity to noise, it is customary to use a “regularization”
method to solve this sort of ill-posed problem [Kunisch and Zou (1998); Wang and
Xiao (2001); Xie and Zou (2002); Resmerita (2005)], wherein a suitable regular-
ization parameter is used to suppress the bias in the computed solution, by seeking
a better balance of the error of approximation and the propagated data error. Sev-
eral regularization techniques were developed, following the pioneering work of
Tikhonov and Arsenin (1977). For a large scale system, the main choice is to
use the iterative regularization algorithm, wherein the regularization parameter is
represented by the number of iterations. The iterative method works if an early
stopping criterion is used to prevent the introduction of noisy components into the
approximated solutions.

The Vandermonde matrices arise in a variety of mathematical applications. Some
example situations are polynomial interpolations, numerical differentiation, ap-
proximation of linear functionals, rational Chebyshev approximation, and differ-
ential quadrature. In these applications, finding the solution of a linear system with
the Vandermonde matrix as a coefficient matrix, and the inversion of Vandermonde
matrix are required. So an efficient method to finding the inversion of Vander-
monde matrix is desirable. The condition number of Vandermonde matrix may be



Novel Algorithms Based on the Conjugate Gradient Method 281

quite large [Gautschi (1975)], causing large errors when computing the inverse of
a large scale Vandermonde matrix. Several authors have therefore proposed algo-
rithms which exploit the structure of Vandermonde matrix to numerically compute
stable solutions in operations different from those required by the Gaussian elim-
ination [Higham (1987, 1988); Bjorck and Pereyra (1970); Calvetti and Reichel
(1993)]. These methods rely on constructing first a Newton interpolation of the
polynomial and then converting it to the monomial form. Wertz (1965) suggested
a simple numerical procedure, which can greatly facilitate the computation of the
inverse of Vandermonde matrix. Neagoe (1996) has found an analytic formula
to calculate the inverse of Vandermonde matrix. However, a direct application of
Neagoe’s formula will result in a tedious algorithm with O(n?®) flops. Other ana-
lytical inversions were also reported by El-Mikkawy (2003), Skrzipek (2004), Jog
(2004), and Eisinberg and Fedele (2006). Some discussions about the numerical
algorithms for the inversion of Vandermonde matrix are summarized by Gohberg
and Olshevsky (1997).

Indeed, the polynomial interpolation is an ill-posed problem and it makes the inter-
polation by higher-degree polynomials as not being easy for numerical implementa-
tion. In order to overcome those difficulties, Liu and Atluri (2009a) have introduced
a characteristic length into the high-order polynomials expansion, which improved
the accuracy for the applications to some ill-posed linear problems. At the same
time, Liu, Yeih and Atluri (2009) have developed a multi-scale Trefftz-collocation
Laplacian conditioner to deal with the ill-conditioned linear systems. Also, Liu
and Atluri (2009b), using a Fictitious Time Inegration Method, have introduced a
new filter theory for ill-conditioned linear systems. In this paper we will propose a
new, simple and direct regularization technique to overcome the above-mentioned
ill-conditioned behavior for the general ill-posed linear system of equations. This
paper is organized as follows. For use in the following sections, we describe the
conjugate gradient method for a linear system of equations in Section 2. Then we
construct a matrix conjugate gradient method (MCGM) for a linear system of ma-
trix equations in Section 3, where the left-inversion of an ill-conditioned matrix
is computed. In Section 4 we propose two modifications of the matrix conjugate
gradient method (MCGM) by adding a vector equation in the left-inversion ma-
trix equation and combining them with the right-inversion matrix equation. Those
two algorithms for the inversion of ill-conditioned matrix are called MCGM1 and
MCGM?2, respectively. Then we project the algorithm MCGMI into the vector
space of linear systems in Section 5, where we indeed describe a novel, simple, and
direct regularization of the linear system for the solution of ill-posed linear system
of equations, which is then compared with the Tikhonov regularization. In Section
6 we give the numerical examples of the Vandermonde matrix and the Hilbert ma-
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trix, to test the accuracy of our novel algorithms for the inversion of matrix via four
error measurements. Section 7 is devoted to the applications of the novel regular-
ization method developed in Section 5 to the polynomial interpolation and the best
polynomial approximation. Finally, some conclusions are drawn in Section 8.

2 The conjugate gradient method for solving Ax =b

The conjugate gradient method (CGM) is widely used to solve a positive definite
linear system. The basic idea is to seek approximate solutions from the Krylov
subspaces.

Instead of Eq. (1), we consider the normalized equation:

Ax =b, (2)
where
A:=V'V, 3)
b:=VTh,. )

The conjugate gradient method (CGM), which is used to solve the vector Eq. (2),
is summarized as follows:

(1) Assume an initial x.

(ii) Calculate ro = b — Axg and p; = ryp.

(iii) For k = 1,2... we repeat the following iterations:

1 ||?
oy = , )
p; Apk
X = Xg—1 + 0Pk, (6)
ry = b —Axy, (7
[[rel|*
= ; (8)
T a2
Pi+1 = T+ MiPk- )

If x;, converges according to a given stopping criterion, such that,

Iri|| < &, (10)
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then stop; otherwise, go to step (iii).

In the present paper we seek to find the inverse of V [see Eq. (1)], denoted nu-
merically by U. To directly apply the above CGM to finding U by VU = I,,,, we
have to solve for an m x m matrix U = [u],...,u}], where the i-th column of U is
computed via Vu; = e;, in which e; is the i-th column of the identity matrix I,,,. This
will increase the number of multiplications and the additions by m times, although
the computer CPU time may not increase as much bacause most elements of e; are
ZEros.

3 The matrix conjugate gradient method for inverting V
Let us begin with the following matrix equation:
viul =1, ie., (UV)T =1, (11)

if U is the inversion of V. Numerically, we can say that this U is a left-inversion of
V. Then we have

AUT = (vWhHu' =, (12)

from which we can solve for UT := C.

The matrix conjugate gradient method (MCGM), which is used to solve the matrix
Eq. (12), is summarized as follows:
(1) Assume an initial Cy.

(i1) Calculate Ry =V —ACj and P; = Ry.

(iii) For k = 1,2... we repeat the following iterations:

IR;—1]?

— LA 1
% B (AR -
Ci = Cr—1 + o4 Py, (14)
R, =V -AC,, (15)

IR I

_ 1

Pi1 = Ry + niPr. (17)

If C; converges according to a given stopping criterion, such that,

IRy]| < &, (18)
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then stop; otherwise, go to step (iii). In above the capital boldfaced letters denote
m X m matrices, the norm ||R|| is the Frobenius norm (similar to the Euclidean
norm for a vector), and the inner product is for matrices. When C is calculated, the
inversion of V is given by U= CT.

4 Two modifications of the matrix conjugate gradient method for inverting
\Y%

In our experience the MCGM is much better than the original CGM for finding
the inversion of a weakly ill-conditioned matrix. However, when the ill-posedness
is stronger, we need to modify the MCGM. The first modification is by adding a
natural vector equation into Eq. (11), borrowed from Eq. (1):

Vxo = yo, 19)

through which, given X, say xo = 1= [1,...,1]T, we can straightforwardly calcu-
late yo, because V is a given matrix. Hence, we have

yoUT =x{, ie., xo=Uyo. (20)

Together, Egs. (11) and (20) constitute an over-determined system to calculate Ut
This over-determined system can be written as

L,
BUT = [ o ] , (21)
0
where
VT
B:= 22
M 22

is an n x m matrix with n = m + 1. Multiplying Eq. (21) by BT, we obtain an m x m
matrix equation again:

[VVT 4+ yoydJUT = V4 yoxg, (23)

which, similar to Eq. (12), is solved by the MCGM. This algorithm for solving the
inverse of an ill-conditioned matrix is labelled here as the MCGM1 method. The
flow chart to compute the left-inversion of V is summarized in Fig. 1.

The above algorithm is suitable for finding the left-inversion of V; however, we
also need to solve

VU =1, (24)
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Box 1: Flow Chart for Left-Inversion of V
when V is ill-conditioned

(i) Choose a suitable xy and yy, = V.

(i) Let A = VIV + yoy?.

(iii) Let B = V + yoxU.

(iv) Assume an initial Cy.

(v) Calculate Ry = B — ACj and P; = Ry.

(vi) For k =1,2..., repeat the following iterations:

_ IR
k= P.(AP.)"

Cr =Cj_1 + Py,
R, — B - AC,,

_IRg?
e = TRy %>

Pii1 = Ry + i Py
If |Ry|| < €, then stop; otherwise, go to step (vi).
(vii) Let V- = CT.

Figure 1: The flow chart to compute the left-inversion of a given matrix V.

when we want U also as a right-inversion of V. Mathematically, the left-inversion
is equal to the right-inversion. But numerically they are hardly equal, especially for
ill-conditioned matrices.

For the right-inversion we can supplement, as in Eq. (19), another equation:
yiU=x], ie., yi = V'x. (25)

Then the combination of Egs. (24), (25), (11) and (20) leads to the following over-
determined system:

vV 0 L, 0

T T

yi, 0 u o | |[x 0

0 VI [ 0 UT| | o0 I (26)
0 ¥ 0 x5
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Then, multiplying the transpose of the leading matrix, we can obtain an 2m X 2m
matrix equation:

VIV +yyT 0 ] [U 0 } _ [ VT 4y xT 0 on

0 VVT +yoyd 0 UT 0 V+yoxg |’
which is then solved by the MCGM for the following two m X m matrix equations:

[VVT 4+ yoyd JUT = V4 yoxg, (28)
VIV4+yy U= VT +yx]. (29)

This algorithm for solving the inversion problem of ill-conditioned matrix is la-
belled as the MCGM?2 method. The MCGM?2 can provide both the solutions of U
as well as U7, and thus we can choose one of them as the inversion of V. For the
inversion of matrix we prefer the right-inversion obtained from Eq. (29).

5 A new simple and direct regularization of an ill-posed linear system
5.1 A natural regularization

Besides the primal system in Eq. (1), sometimes we need to solve the dual system
with

Vliy =b,. (30)

Applying the operators in Eq. (23) to b; and utilizing the above equation, i.e.,
y = UTb;, we can obtain

[VVT +yoyd]y = Vbi + (xo - b1)yo, (31)

where yp = Vxg.

Replacing the V in Eq. (31) by VT, we have a similar equation for the primal system
in Eq. (1):

[VIV +yoyg]x = Vb + (x0 - b1)yo, (32)

where yo = Vxo.

In Eq. (32), x¢ is a regularization vector, which can be chosen orthogonal to the
input data by, such that

VIV +yoyilx=b, (33)
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where b is defined in Eq. (4). It bears certain similarity with the following Tikhonov
regularization equation:

VIV +al,|x =b, (34)

where ( is a regularization parameter. However, we need to stress that Egs. (31)-
(33) are simple and direct regularization equations for an ill-posed linear system.
The Tikhonov regularization perturbs the original system to a new one by adding
a regularization parameter . The present novel regularization method does not
perturb the original system, but mathematically converts it to a new one through a
regularization vector yo = VXq. The flow chart to compute the solution of VX = b
is summarized in Fig. 2.

Box 2: Flow Chart for Solving Vx = by
when V is ill-conditioned, and b, is noisy
i) Choose a suitable x.
ii) Let yo = Vxg or yo = VTx,.
iii) Let A = VIV +yoyd and b = VTb; + (x¢ - by)yo.

(
(
(
(iv) Assume an initial cq.
(v) Calculate rg = b — Acg and p; = ry.
(

vi) For k =1,2..., repeat the following iterations:
_ el
Q% = pr(Apr)

Cip = Cp—1 + Py,
re = b — ACk,

Il
e = Te_1 2

Pk+t1 = T + NkPk-

If ||Iry|| < &, then stop; otherwise, go to step (vi).

(vii) Let x = c.

Figure 2: The flow chart to compute the solution of a given ill-posed linear system
Vx = b1 .

Regularization can be employed when one solves Eq. (1), when V is highly ill-
conditioned. Hansen (1992) and Hansen and O’Leary (1993) have given an illumi-
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nating explanation that the Tikhonov regularization of linear problems is a trade-off
between the size of the regularized solution and the quality to fit the given data:

. o . I 2 2
min ¢(x) = min [[|Vx—by "+ x|} (35)

A generalization of Eq. (35) can be written as

min @(x) = min [||[Vx—b; 12 —I—XTQX] , (36)
xcR"™ xcR™

where Q is a non-negative definite matrix. In our case in Eq. (33), Q := yoyg.
From the above discussions it can be seen that the present regularization method
is the most natural one, because the regularization vector yq is generated from the
original system.

A simple example illustrates that the present regularization method is much better
than the well-known Tikhonov regularization method. Before embarking on a fur-
ther analysis of the present regularization method, we give a simple example of the
solution of a linear system of two linear algebraic equations:

2 6 X 8
[ 2 6.00001 } [ y ] - [ 8.00001 ] ‘ (7

The exact solution is (x,y) = (1,1). We use the above novel regularization method
to solve this problem with xo = (1,1)T and yo = Vx is calculated accordingly. It is
interesting to note that the condition number is greatly reduced from Cond(VTV) =
1.59 x 10" to Cond(VTV +ypyl) = 19.1. Then, when we add a random noise 0.01
on the data of (8,8.00001)", we obtain a solution of (x,y) = (1.00005,1.00005)
through two iterations by employing the CGM to solve the resultant linear system
(32). However, no matter what parameter of ¢ is used in the Tikhonov regular-
ization method for the above equation, we get an incorrect solution of (x,y) =
(1356.4,—450.8) through four iterations by employing the CGM to solve the lin-
ear system.

5.2 The present natural regularization is equivalent to using a preconditioner

Now, we prove that the solution of Eq. (32) is mathematically equivalent to the
solution of Eq. (2). If A can be inverted exactly, the solution of Eq. (2) is written as

x=A"'b. (38)
Similarly, for Eq. (32) we have

x=[A+yoyp] ' [b+ (x0-b1)yo]. (39)
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By using the Sherman-Morrison formula:

-1 _ AleO)’gAfl

A+yoyel t=A —_— 40
[ yOYO] 1+ygA,1y0 ( )
we obtain
A lyoylA~1b
x = Alb- —yoTyo
1+ Yo AleO
A~ 'yoyp A 'yo
+ (x0-by) |[A7lyy - —=20— 2 41
( 0 1) Yo 1+yg‘A_1y0 ( )
By using Eq. (38) and through some algebraic manipulations we can derive
Xo-b; — TA-Ip _
= R 2 Ay, 42)
I+y,A~"yo
Further using the relation:
Xo-b; — oA 'b =x¢-b; —x{ V(VIV)"'VTh; =0,
we can prove that
X =% (43)

Next, we will explain that the naturally regularized Eq. (32) is equivalent to a
preconditioned equation. Let A = VIV. Then A is positive definite because of
det(V) # 0. Let xo = Vzy, where z( instead of xo, is a free vector. Then by
Yo = VTXO we have Yo = VTVZ() = AZ().

Inserting yo = Az into Eq. (32) and using Egs. (3) and (4) we can derive

[A +Azozi A]x = b+ (29 - b)Azy, (44)

where Xg -b| = zo - b was used.
Let

P:=1,+Azyz) (45)
be a preconditioned matrix. Then Eq. (44) can be written as
PAx = Pb, (46)

which is just Eq. (2) multiplied by a preconditioner P.
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By definition (45), it is easy to prove that
(PA)T = APT = A + AzgzJ A = PA, 47)

which means that the new system matrix in Eq. (46) is symmetric and positive
definite because A is positive definite.

From the above results, we can understand that the naturally regularized Eq. (32)
is equivalent to the original equation (2) multiplied by a preconditioner. This reg-
ularization mechanism is different from the Tikhonov regularization, which is an
approximation of the original system. Here, we do not disturb the original system,
but the use of the discussed preconditioner leads to a better conditioning of the
coefficient matrix PA (see the simple example given in Section 5.1 and the next
section).

5.3 Reducing the condition number by the use of the present type of a natural
regularization

At the very beginning, if the supplemented equations (19) and (25) are written as
Byo = BVxo and Byo = BV'x(, where B plays the role of a weighting factor for
weighting the supplemented equation in the least-squares solution, then we can
derive
Dual System: [VVT + B%yoyd]y = Vb + B2(Xo - b1)yo, Yo = Vxo, (48)
Primal System: [VTV + Bzyoyg]x =V'b, + ﬁ2(xo -b1)yo, Yo=V'x. (49)

Below we only discuss the primal system, while the results are also true for the
dual system. Suppose that A has a singular-value decomposition:

A = Wdiag{s;}WT, (50)

where s; are the singular values of A with 0 <s; <sp < ... <. Thus, Eq. (2) has
an exact solution:

x = A"'b = Wdiag{s; ' }W'b. (51)

However, this solution may be incorrect when the data of b are noisy. The effect of
regularization is to modify s; ! for those singular values which are very small, by

o(s7)s; !,

where @(s) is called a filter function. So, instead of Eq. (51) we can obtain a
regularized solution:

x = Wdiag{@(s?)s; ' JWTb, (52)
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; ' — 0 when s; — 0. Obviously, from the Tikhonov regularization,
we can derive a filter function such that

where ®(s?)s;

o(s) = — (53)

s+ a’

which is named the Tikhonov filter function, and ¢ is a regularization parameter.
The above discussions were elaborated on, in the paper by Liu and Atluri (2009b).

Suppose that e; is the corresponding eigenvector of s; for A:

Ae| = sje]. (54)
If the free vector Xxg is chosen to be

xo = Vey, (535
then we have

yo = VIxg = Ae; = syey. (56)
Inserting Eq. (56) into the system matrix in the primal system (49), we have
VIV + B?yoygler = Ae; + B2stller||Per = (s1 + Bst)er, (57)

where the eigenvector e; is normalized by taking |le;||> = 1. Eq. (57) means that
the original eigenvalue s; for A is modified to s; + st% for the primal system in
Eq. (49).

Unlike the parameter ¢ in the Tikhonov regularization, which must be a small value
in order to not disturb the original system too much, we can choose the parameter 3
to be large enough, such that the condition number of the primal system in Eq. (49)
can be reduced to

< Cond(A) = om

Cond[V'V + B2yoyd] = ~

Sm
51+ B2s? %)
For the ill-conditioned linear system in Eq. (2), the Cond(A) can be quite large
due to the small s;. However, the regularized primal system in Eq. (49) provides a
mechanism to reduce the condition number by a significant amount. This natural
regularization not only modifies the left-hand side of the system equations but also
the right-hand side. This situation is quite different from the Tikhonov regulariza-
tion, which only modifies the left-hand side of the system equations, and thus the
modification parameter « is restricted to be small enough. In our regularization, 3
can be quite large, because we do not disturb the original system any more.
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More interestingly, as shown in Egs. (52) and (53), while the Tikhonov regulariza-
tion disturbs all singular values by a quantity «, which causes solution error, the
present regularization does not disturb other singular values, because of

[VTV—I—Bzyoyg]e,- = Aei +st%(e1 . ei)ei = 5;€;, i> 2, (59)

where s; and e; are the corresponding eigenvalues and eigenvectors of A, and
e;-e; =0, i > 2 due to the positiveness of A.

6 Error assessment through numerical examples

We evaluate the accuracy of the inversion U for V by

e1 = [[[UV]| = v/ml, (60)
er = ||[UV -1, (61)
e3 = |[|[VU|| = v/ml, (62)
ey = ||[VU-L,]|, (63)

where m is the dimension of V. In order to distinguish the above algorithms intro-
duced in Sections 3 and 4 we call them MCGM, MCGM1, and MCGM2, respec-
tively.

6.1 Vandermonde matrices

First we consider the following Vandermonde matrix:

1 1 1 1

X1 X2 Xm—1 Xm

2 2 .2, 2

V= ) ) ] ) , (64)

i) 2 ) 2

g 1 2 1 xﬁ_} i 1
— m— - m—

XX X1 X

where the nodes are generated from x; = (i— 1) /(m— 1), which are eqidistant nodes
in the unit interval. Gohberg and Olshevsky (1997) have demonstrated the ill-
condition of this case that Cond(V) = 6 x 107 when m = 10, and Cond(V) = 4 x
10'® when m = 30.

The CGM to finding the inversion of matrix has been demonstrated in Section 2.
For m = 9 the CGM with £ = 1077 leads to the acceptable e3 = 2.36 x 107 and
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Table 1: Comparing the e; with different methods

Errors of e e e3 ey

CGM 4.42 2.679 236x10°° [ 2.06 x 107
MCGM 414x107° [ 1.26x 1077 [ 4.67x1073 | 0.17
MCGM1 1.85x 107 [ 590x10°° [ 6.47x 10T | 2.08
MCGM2R) | 2.82x 107* [ 4.15x107% | 5.14x 107 | 1.50 x 107>
MCGM2(L) | 531 x107° | 1.57x 107 | 477 x 1073 | 1.69 x 107!

eq = 2.06 x 107, but with the worser ¢; = 4.42 and e, = 6.79 as shown in Table

1, because the CGM is to finding the right-inversion by VU = I,,,.

For the comparison with the result obtained from the MCGM, the UV —1,,, obtained

from the CGM is recorded below:

UV-1,=
[ —0.358(—2) —0.356(—2) —0.350(—2) —0.315(—2)
0.182(—1)  0.181(—=1)  0.179(—=1)  0.158(—1)
—0.359(—1) —0.359(—1) —0.359(—1) —0.305(—1)
0.303(=1)  0.306(—1)  0.315(=1)  0.237(—1)
0.811(=3)  0.186(—3) —0.186(—2) 0.490(—2)
—0.234(—1) —0.228(—1) —0.206(—1) —0.242(—1)
0.200(—1)  0.196(—1)  0.184(—1)  0.195(—1)
—0.742(=2) —0.730(—=2) —0.691(—2) —0.708(—2)
| 0.108(—2)  0.106(—2)  0.101(=2)  0.102(—2)
0.239(—2)  0.118(=1) 0.302(—1) 0.623(—1) ]
—0.235(—1) —0.933(—1) —0233  —0.482
0.924(—1) 0.319 0.783 1.62
~0.197 —0.620 ~1.50 ~3.10
0.255 0.748 1.78 3.70
—0.207 ~0.575 ~1.36 —2.82
0.103 0.276 0.646 1.34
~0.291(—1) —0.755(—1) —0.176  —0.365
0.357(=2)  0.903(—2) 0.209(—1) 0.435(—1) |

—0.172(=2)
0.606(—2)
—0.116(=2)
~0.271(~1)
0.606(—1)
~0.636(—1)
0.370(—1)
—0.116(—1)
0.153(-2)

(65)

Obviously, the CGM provides a poor inversion with a large error 3.7.

Using the same m = 9 and € = 10~ the MCGM leads to much better e; = 4.14 x
107, and e; = 1.26 x 107 than those of the CGM, and the acceptable ez = 4.67 x
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103 and e4 = 0.167, where UV —1,,, is recorded below:

UV-1I,=
[ —0.100(—8) 0.144(—7) —0.533(=7) 0.972(=7) —0.107(—6)
0.134(=7) —0.912(=7) 0.278(—6) —0.492(—6) 0.549(—6)
—0.448(=7) 0.322(—6) —0.104(=5) 0.195(=5) —0.229(-5)
0.747(=7) —0.553(=6) 0.181(—=5) —0.342(—=5) 0.405(—5)
—0.909(—7) 0.678(—6) —0.221(=5) 0.412(=5) —0.482(—5)
0.832(=7) —0.576(—6) 0.178(=5) —0.315(=5) 0.351(=5)
—0.325(=7) 0.220(—6) —0.691(—6) 0.128(—5) —0.149(—5)
0.998(—8) —0.648(—7) 0.198(—6) —0.360(—6) 0.418(—6)
| —0.748(—9) 0.719(—8) —0.255(—7) 0.486(—7) —0.570(—7)

0.783(=7) —0.380(=7) 0.111(=7) —0.148(—8) T
~0.393(—6) 0.175(—6) —0.441(=7) 0.477(—8)
0.173(=5) —0.817(—6) 0.220(—6) —0.259(—7)
~0.307(=5) 0.146(—5) —0.395(—6) 0.467(—7)
0.362(—5) —0.171(=5) 0.464(—6) —0.553(—7) |. (66)
~0.251(=5) 0.113(=5) —0.290(—6) 0.328(—7)
0.111(=5) —0.514(—6) 0.135(=6) —0.156(—7)
—0.312(—6)  0.144(—6) —0.380(—7) 0.435(—8)
0431(=7) —0.206(—7) 0.572(—-8) —0.697(—9)

From Table 1 it can be seen that the MCGM2 provides the most accurate inversion
than other three methods. In this solution we let x; = xy = 1 in Egs. (28) and (29).
While the MCGM2(R) means the right-inversion, the MCGM2(L) means the left-
inversion. Whether one uses MCGM2(R) or MCGMZ2(L), the fact is that MCGM?2
has a better performance than the MCGM1 for the inversion of an ill-conditioned
matrix.

In order to compare the accuracy of inverting the Vandermonde matrices, by using
the MCGM1 and MCGM2, we calculate the four error estimations e;, k=1,...,4
in Fig. 3 in the range of 5 < m < 30, where the convergent criteria are € = 10~ for
the MCGM 1 and € = 10> for the MCGM2. From Fig. 3(a) it can be seen that both
the MCGM1 and MCGM2 have the similar e; and e;; but as shown in Fig. 3(b) the
MCGM?2 yields much better results in e3 and e4 than the MCGMI1. It means that
the MCGM2 is much better in finding the inversion of Vandermonde matrix.

Under the same m =9 and € = 10~ the MCGM 1 leads to a better e; = 1.85 x 1076
and e; = 5.89 x 107° than those of the CGM and MCGM as shown in Table 1. This
fact indicates that the MCGM1 is more accurate than the CGM and MCGM to solve
the linear system (1). For example, we let x; =i, i =1,...,9 be the exact solutions.
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Figure 3: Plotting the errors of (a) e; and e, and (b) e3 and e4 with respect to m for
the MCGM1 and MCGM?2 applied to the Vandermonde matrices.

Then we solve Eq. (1) with x = Ub; by the MCGM and MCGM1, whose absolute
errors are compared with those obtained by the CGM in Table 2. It can be seen that
for this ill-posed linear problem, the MCGM and MCGM!1 are much better than the
CGM.

The above case already revealed the advantages of the MCGM and MCGM 1 meth-
ods than the CGM. The accuracy of MCGM and MCGM1 is about four to seven
orders higher than that of the CGM. Here we have directly used the CGM to find
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Table 2: Comparing the numerical errors for a Vandermonde linear system with
different methods

Errors of | x; X2 X3 X4 X5 X6 X7 X3 X9

CGM__ | 0.181(-4) | 0.573(-4) | 0.450(-4) | 0.289(-4) | 0.423(-4) | 0.223(-4) | 0.527(-4) | 0.278(-4) | 0.498(-5)

MCGM_ | 0.182(-1D) | 0.102(-9) | 0.960(-9) | 0.157(-8) | 0.175(-8) | 0.140(-8) | 0.146(-8) | 0.509(-10) | 0.300(-10)
MCGMI | 0.382(-10) | 0.269(-9) | 0.524(-9) | 0.116(-8) | 0.268(-8) | 0.169(-8) | 0.640(-9) [ 0.138(-9) | 0.000

the solution of linear system, and not through the CGM to find the inversion of the
system matrix. As shown in Eq. (65), if we use the inversion U of V to calculate the
solution by x = Uby, the numerical results would be much worse than those listed
in Table 2 under the item CGM.

Furthermore, we consider a more ill-posed case with m = 50, where we let x; =
i, i=1,...,50 be the exact solutions. In Fig. 4 we compare the absolute er-
rors obtained by the CGM, the MCGM and the MCGM 1, which are, respectively,
plotted by the dashed-dotted line, solid-line and dashed-line. It can be seen that
the accuracy of the MCGM and MCGM1 is much better than the CGM, and the
MCGM1 is better than the MCGM, where both the stopping criteria of the MCGM
and MCGMI are set to be € = 1079, and that of the CGM is 1017,

6.2 Hilbert matrices
The Hilbert matrix

1

H;; = S 67
i1+ ©7

is notoriously ill-conditioned, which can be seen from Table 3 [Liu and Chang
(2009)].

Table 3: The condition numbers of Hilbert matrix
cond(H) m | cond(H)
524x10% |7 | 4.57x10%
1.55x10* | 8 | 1.53x10%0
477x10° |9 | 4.93x 10!
1.50 x 107 | 10 | 1.60 x 1013

SN IR

It is known that the condition number of Hilbert matrix grows as ¢>>” when m is

very large. For the case with m = 200 the condition number is extremely huge of
the order 1038, The exact inverse of the Hilbert matrix has been derived by Choi
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Errors of x,

L

Figure 4: For a Vandermonde linear system with m = 50 comparing the numerical
errors of the CGM, MCGM and MCGML1.

(1983):

o 1 1 i 9 \2
(H_l)ijz(_l)(lﬂ)(lﬂ_l)(mnjij ><m;:]_l )(ltil ) '
(68)

Since the exact inverse has large integer entries when m is large, a small perturba-
tion of the given data will be amplified greatly, such that the solution is contami-
nated seriously by errors. The program can compute the inverse by using the exact
integer arithmetic for m = 13. Past that number the double precision approximation
should be used. However, due to overflow the inverse can be computed only for m
which is much smaller than 200.

In order to compare the accuracy of inversion of the Hilbert matrices, by using the
MCGM1 and MCGM2, we calculate the four error estimations e, k =1,...,4 in
Fig. 5 in the range of 5 < m < 30, where the convergent criteria are € = 10~/ for
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the MCGM1 and & = 5 x 10~° for the MCGM2. In the MCGM2 we let xo = 1, and

2
. [Im_ ol H} }
x, Hxo

1E+1

1E+0

1E-1

1E-2

1E-3

1E-4

Errors of e, and e,

1E-5

1E-6

20 25 30

MCGM1

MCGM2

Errors of e, and e,

20 25 30

Figure 5: Plotting the errors of (a) e; and e, and (b) e3 and e4 with respect to m for
the MCGM1 and MCGM?2 applied to the Hilbert matrices.
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Figure 6: For a Hilbert linear system with m = 20 comparing the numerical errors
of the MCGM and MCGML.

From Fig. 5(a) it can be seen that both the MCGM1 and MCGM?2 have the similar
e and ep; but as shown in Fig. 5(b) the MCGM2 has much better results in e3
and e4 than the MCGMI. It means that the MCGM?2 is much better in finding the
inversion of Hilbert matrix.

We consider a highly ill-conditioned Hilbert linear system with m = 20. Under the

same € = 10~8 the MCGM 1 leads to better (e, ey, e3,e4) = (0.414,3.82,360276,360276)
than those of the MCGM with (ey, es,e3,e4) = (400.72,400.72,8.65 x 103,8.65 x

10%). This fact indicates that the MCGMI is more accurate than the MCGM to
solve the Hilbert linear system. We let x; = 1, i = 1,...,20 be the exact solutions,

and the absolute errors of numerical results are compared in Fig. 6, of which one

can see that the MCGM1 is much accurate than the MCGM.

From Table 2, Figs. 3 and 6 it can be seen that the MCGMI1 can provide a very
accurate solution of x in terms of x = Ub;, because the MCGM1 is a feasible al-
gorithm to finding the left-inversion of ill-conditioned matrix. However, we do not
suggest to directly use x = Ub; to find the solution of x, when the data b, are
noisy. The reason is that the noise in b; would be enlarged when the elements in
U are quite large. Then, we apply the Tikhonov regularization with & = 107, and
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the presently described regularizarion methods to solve the linear system (1) with
the Hilbert matrix, where a random noise with intensity s = 0.001 and mean 0.5
is added in the data on the right-hand side. We let x; =i, i = 1,...,20 be the ex-
act solutions, and the absolute errors of numerical results are compared in Fig. 7,
of which one can see that the presently described regularization (NR) in Eq. (32)

is more accurate than the Tikhonov regularization (TR). The numerical results are
listed in Table 4.

Table 4: Comparing numerical results for a Hilbert linear system under noise

Solutions | x; X2 X3 X4 X5 X6 X7 X8 X9 X10
Exact 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
TR 090 | 3.34 1.58 2.19 3.85 576 | 7.61 9.25 10.67 | 11.87
NR 1.05 1.43 399 | 439 | 468 5.33 6.32 | 7.52 8.82 10.12
Solutions | x1; X12 X13 X14 X15 X16 X17 X18 X19 X20
Exact 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0
TR 12.87 | 13.69 | 14.35 | 14.89 | 15.32 | 15.66 | 1592 | 16.12 | 16.26 | 16.35
NR 11.39 | 12.57 | 13.67 | 14.68 | 15.58 | 16.39 | 17.11 | 17.75 | 18.31 | 18.80

7 Applications of the presently proposed regularization
7.1 Polynomial interpolation

As an application of the new regularization in Eq. (31) we consider a polynomial
interpolation. Liu and Atluri (2009a) have solved the ill-posed problem in the high-
order polynomial interpolation by using the scaling technique.

Polynomial interpolation is the interpolation of a given set of data by a polyno-
mial. In other words, given some data points, such as obtained by sampling of a

measurement, the aim is to find a polynomial which goes exactly through these
points.

Given a set of m data points (x;,y;) where no two x; are the same, one is looking for
a polynomial p(x) of degree at most m — 1 with the following property:

P(xi):)’h iZla"'ama (69)

where x; € [a, D], and [a, D] is a spatial interval of our problem domain.

The unisolvence theorem states that such a polynomial p(x) exists and is unique,
and can be proved by using the Vandermonde matrix. Suppose that the interpolation
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polynomial is in the form of
p(x) =Y an'"", (70)

where x' constitute a monomial basis. The statement that p(x) interpolates the data
points means that Eq. (69) must hold.

If we substitute Eq. (70) into Eq. (69), we can obtain a system of linear equations
in the coefficients a;, which in a matrix-vector form reads as

(1 x o T e ] [ oy ]
1 X2 x% .. x?,Z x?fl a 2
: : = : . (71)
2 m—2 -1
Xm—1 Xp_1 X1 Xy an—1 Ym—1
i X X, S e B R B S

We have to solve the above system for @; to construct the interpolant p(x). As
suggested by Liu and Atluri (2009a) we use a scaling factor Ry in the coefficients
b; = aiRg’l to find b; and then a;. In view of Eq. (30), the above is a dual system
with V defined by Eq. (64).

The Runge phenomenon illustrates that the error can occur when constructing a
polynomial interpolant of higher degree [Quarteroni, Sacco and Saleri (2000)]. The
function to be interpolated is

) = —

We apply the regularization technique in Section 5 by solving Eq. (30), which is
regularized by Eq. (31), to obtain b; = a,-RE)_l, where Ry = 1.2, and then a; are
inserted into the interpolant in Eq. (70) to solve this problem.

Under a random noise s = 0.01 on the data b; we take xo perpendicular to b; by

xo = |I, — b1 VT | b,. (73)
bTVTh,

In Fig. 8(a) we compare the exact function with the interpolated polynomial. Al-
though m is large up to 120, no oscillation is observed in the interpolant by the
novel regularization method, where the interpolated error as shown in Fig. 8(b) is
smaller than 0.0192. The CGM used to solve the regularized Eq. (31) is convergent
rather fast under € = 10~7. On the other hand, we also applied the Tikhonov reg-
ularization method to calculate this example with o = 107>, However, its result is
not good, and the maximal error can be large up to 0.16.
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Tikhonov regularization

Errors of z,

3 New regularization

Figure 7: For a Hilbert linear system with m = 20 comparing the numerical errors
of the Tikhonov regularization and the new regularization in the present paper.

7.2 Best polynomial approximation

The problems with an ill-conditioned V may appear in several fields. For example,
finding an (m — 1)-order polynomial function p(x) = ag +ajx+...+a, 1x" ' to
best match a continuous function f(x) in the interval of x € [0, 1]:

min / |f(x x)|dx, (74)
deg(p)<m—1
leads to a problem governed by Eq. (1), where V is the m x m Hilbert matrix defined
by Eq. (67), x is composed of the m coefficients ag,ay, ..., a,— appearing in p(x),
and
Jo S (x)dx
1
b= fO xf(x)dx (75)

e (dx
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Figure 8: (a) Comparing the exact function and the polynomial interpolant cal-
culated by the novel regularization (NR) method and the Tikhonov regularization
(TR) method, and (b) the numerical errors.

is uniquely determined by the function f(x).

Encouraged by the above well-conditioning behavior of the Hilbert linear system
after the presently proposed regularization, now, we are ready to solve this very
difficult problem of a best approximation of the function ¢* by an (m — 1)-order
polynomial. We compare the exact solution ¢* with the numerical solutions with-
out noise and with a random noise s = 0.001 with zero mean in Fig. 9(a), where
m = 12 and m = 3 were used, respectively. The absolute errors are also shown in
Fig. 9(b). The results are rather good. The present results are better than those in
Liu, Yeih and Atluri (2009), which are calculated by the preconditioning technique.
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Figure 9: (a) Comparing the exact function and the best polynomial approximation
calculated by the new regularization method, and (b) the numerical errors.

8 Conclusions

We have proposed a matrix conjugate gradient method (MCGM) to directly invert
ill-conditioned matrices. Two novel algorithms MCGM1 and MCGM?2 were devel-
oped in this paper, for the first time, to find the inversion of V, which can overcome
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the ill-posedness of severely ill-conditioned matrices appearing in linear equations:
Vx = b;. By adding two compatible vector equations into the matrix equations,
we obtained an over-determined system for the inversion of an ill-conditioned ma-
trix. The solution is then a least-squares one, which can relax the ill-posedness
of ill-conditioned matrices. Eqgs. (28) and (29) constitute a regularized pair of
dual and primal systems of matrix equations for the two-sided inversions of an
ill-conditioned matrix. When V is a non-symmetric matrix we can let x; = Xg; oth-
erwise, x; must be different from xo. Thus, the MCGMI1 can provide an accurate
solution of x by x = Ub;, when there exists no noise on the data of b;. In contrast
to the Tikhonov regularization, we have projected the regularized matrix equation
into the vector space of linear equations, and obtained a novel vector regularization
method for the ill-posed linear system. In this new theory, there exists a feasible
generalization from the scalar regularization parameter & for the Tikhonov regular-
ization technique to a broad vector regularization parameter yo = VXg or yo = VTxo
for a novel regularization technique presented in this paper. Through some numeri-
cal tests of the Vandermonde and Hilbert linear systems we found that the presently
proposed algorithms converge rather fast, even for the highly ill-posed linear prob-
lems. This situation is quite similar to the CGM for the well-posed linear problems.
The new algorithms have better computational efficiency and accuracy, which may
be applicable to many engineering linear problems with ill-posedness.
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