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Unconditionally Stable Convergence with Power
Principle-based Time-Integration Schemes

G. Formica1 and F. Milicchio2

Abstract: This manuscript introduces a novel sufficient condition for the un-
conditionally stable convergence of the general class of trapezoidal integrators.
Contrary to standard energy-based approaches, this convergence criterion is de-
rived from the power principles, in terms of both balance and dissipation. This
result improves the well-known condition of stable convergence based on the en-
ergy method, extending its applicative spectrum to a variety of physical problems,
whose constitutive prescriptions may be more appropriately characterized by means
of evolving field equations.
Our treatment, tailored for generalized trapezoidal integrators, addresses both lin-
ear and nonlinear problems, extending its applicability to contexts where standard
energy-based schemes present loss of stable convergence, as well as an uncon-
trolled increase in terms of energy. To appreciate such novel result, the Newmark-
based numerical solution scheme is applied to a simplified nonlinear problem, with
hardening plasticity and finite deformations within a one-dimensional description.
The proposed test shows how the power-based method attains a stable convergence
and overcomes the requirement for additional conservative invariants, such as en-
ergy and angular momentum.

Keywords: Numerical algorithms, Stable convergence, Constitutive behaviour

1 Introduction

Over the last several years, a fair amount of work has been devoted to the numer-
ical solution of linear and nonlinear problems with time integration; the areas of
application span diverse contexts, all accompanied by the use of energy-like quan-
tities in order to stabilize the numerical convergence. Trapezoidal rules are often
employed to solve these problems numerically; for a general overview, we refer the
reader to Hughes (2000).
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A well-known proof of stable convergence for energy-based algorithms was only
given for linear contexts, except for some specific nonlinear cases, e.g., in struc-
tural dynamics with finite deformations by Belytschko and Schoeberle Belytschko
and Schoeberle (1975). In more general nonlinear contexts, conserving energy-like
conditions are often a fortiori introduced into the modeling process, in order to
achieve more stable numerical properties. In fact, various nonlinear systems are
particularly deficient in conservative properties, resulting in the loss of stable con-
vergence yielding an unbounded growth of physical quantities expected to be con-
served. Just to cite few cases, we mention the works in structural dynamics, where
angular momentum conservation is prescribed a posteriori Gams, Planinc, and Saje
(2008); Armero (2006), or in fluid dynamics, where similar constraints, derived
from known solutions, are added to the model equations Wallstedt and Guilkey
(2008). All these approaches are specifically tailored for individual physical prob-
lems. Nevertheless, an initial effort addressing nonlinear systems in a variational
formulation was given in Carini and Genna (2000); Bardella and Genna (2005), in-
vestigating and extending the Newmark family of time integration schemes. How-
ever, a general framework regarding stable convergence still lacks, at the best of
our knowledge.

We propose a fundamental shift of perspective: the use of a stable numerical cri-
terion derived from a thermodynamically consistent framework, employed in the
generation of a model. Such a framework has been introduced in the past by sev-
eral scholars in various fields of continuum physics. In fact, as emphasized by
Truesdell and Noll Truesdell and Noll (2004), a weak formulation of the governing
equations—the principle of virtual power or the null working principle—does not
give enough conditions to attain solutions of nonlinear problems: further assump-
tions concerning the preservation of the second law of thermodynamics allow the
physical behavior to be properly restricted in terms of constitutive relations.

Specifically, to serve our purposes, we refer to the framework by DiCarlo and
Quiligotti DiCarlo and Quiligotti (2002), allowing the definition of a problem in
terms of balance (or of null working) and dissipation power principles, and widely
employed in heterogeneous physical problems Cherubini, Filippi, Nardinocchi,
and Teresi (2009); Olsson and Klarbring (2008). Hence, we discard the above-
mentioned limitations of recovering suitable energy stabilization criteria, and we
provide a stable convergence criterion proving a sufficient condition entirely based
on the power balance and dissipation principles. We mention in passing that Simo
and Tarnai Simo and Tarnow (1992) first attempted to suggest power dissipation
principles in the context of numerical time discretization; however, no discussion
has been purported aimed at proving stable convergence conditions, with the treat-
ment being restricted to the one-parameter family of generalized mid-point rule
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algorithms.

Besides overcoming the weakness imposed by energy-based approaches, our method
not only possesses the advantage of scrapping the constraint of positive definite-
ness of the system response, but also applies to general nonlinear problems. In fact,
convergence is obtained by means of the very same principles involved in the gen-
eration of the model, i.e., in the constitutive prescription; moreover, as emphasized
in our convergence proof, we widely make use of the non-negative definition of the
dissipated power, without any additional restriction on the definition of other oper-
ators, e.g., the structural response in structural dynamics Hughes (2000), a common
requirement for stability.

Our treatment focuses on generic trapezoidal rules, with the special case of the
Newmark family of time integrators, and may be applied to both first and second
order differential problems.

In order to provide an operational application, we pose our focus on a one-dimensional
mechanical problem, consisting in a mass constrained by a spring exhibiting a non-
linear response in terms of strain and stress Armero (2006). Such example is a
simplified test, yet not simple, employed to stress the limitations of energy-based
algorithms, which require the additional constraint of the angular momentum con-
servation. We will show how such a constraint is implicitly satisfied by our simu-
lation, framed within the power paradigm as well as our modeling.

Overview

This manuscript is organized as follows. The ensuing Section 2 will provide the
reader with the adequate knowledge of the general power framework, focused on
the derivation of thermodynamically consistent equations from the power dissipa-
tion principle. Section 3 will then propose the novel stable convergence criterion,
and therefore on the conditions of convergence, originating from the aforemen-
tioned principle. Finally, in order to bring forth a clear applicative perspective on
our results, Section 4 will be focused on the comparison of a classical Newmark
scheme with our power-dissipation based algorithm.

2 Background

This section is devoted to the introduction of basic notions needed to describe the
general framework, exhaustively detailed in DiCarlo and Quiligotti (2002), based
on the power balance (or null working) and dissipation principles, and giving rise
to thermodynamically consistent models. Let us describe a process by means of the
kinematic descriptor q; the evolutive equations governing the process are derived



202 Copyright © 2010 Tech Science Press CMES, vol.60, no.3, pp.199-219, 2010

from such physical principles, respectively:

Pe−P i = 0 (1a)

P i− ψ̇ ≥ 0 , (1b)

where we denoted as Pe and P i the external and the internal powers, respectively;
ψ indicates a generic free energy.

We may then restate the principles expressed in (1) independently from their alge-
braic representation as follows:

〈Qe, q̇〉−〈Qi, q̇〉= 0 (2a)

〈Qi, q̇〉−〈s, q̇〉 ≥ 0 , (2b)

where 〈·, ·〉 denotes an inner product, while Qe and Qi represent the dynamic actions
spending power on q̇; s is the internal response of the system, i.e., the action arising
from the differentiation of ψ with respect to q̇. Generally speaking, Qe and s are
assumed to be known, while Qi results as a constitutive prescription, holding the
inequality in (2).

Definition (Remodeling action) We define the remodeling action of the process

the quantity
+
Q, prescribed by a positive-defined operator M, as the following:

+
Q := Qi− s≡M−1q̇ . (3)

Therefore, by virtue of (3), we satisfy the power dissipation principle (2b) as

〈Qi− s, q̇〉 ≡ 〈
+
Q, q̇〉= 〈M−1q̇, q̇〉 ≥ 0 . (4)

As a side note, we stress the fact that M−1 represents a dissipative modulus, ruling
the evolution of q, in both linear and nonlinear cases.

Hence, by picking a kinematic descriptor and a suitable representation of the free
energy, the associated dynamic actions are directly defined and the overall process
evolution is constitutively correct. The evolutive equation, i.e., the strong form
of (2a), may be then restated from (2) and (4) as follows:

Qe− s−M−1q̇ = 0 . (5)

Note that in this formulation, the inertia forces may be framed in Qe, i.e., as an
external power contribution.
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Example of Formulation

For clarity’s sake, we will refer to a classical dynamic problem, characterized by
the kinematic descriptor x. The system, with inertia I, is subject to an external
force F varying in time, and it is described by a linear response with an elastic
and a damping factor, K and C, respectively. Hence, the power expressions of the
above-mentioned process are formalized by the following equations:

Pe = 〈(F− Iẍ) , ẋ〉 ,
ψ̇ = 〈K x, ẋ〉 .

Let us use C as the positively defined coefficient to satisfy the dissipation principle;
the constitutive prescription is therefore obtained as the ensuing inequality:

Pe− ψ̇ =: 〈Cẋ, ẋ〉 ≥ 0 .

According to the previous equations, we finally attain the standard equilibrium con-
dition of the system:

Iẍ+Cẋ+Kx = F .

3 Power Stability

This section is devoted to the definition of a novel stability criterion for the family
of Newmark time-dependent algorithms. We will show how the power dissipation
principle, as stated in Section 2, yields a sufficient condition for the stability of
generalized Newmark algorithms.

An unconditional stability criterion for the Newmark β -method has been shown
in Belytschko and Schoeberle (1975), and later, the generalized Newmark scheme
has been proved to be conditionally stable (see e.g., Hughes (2000)). In such cases,
stability conditions are based on the definition of mechanical energy, and the lin-
earized system response is assumed to be positively defined. In contrast with previ-
ous works, we depend solely on the definition of the dissipative operator, discarding
the limitation of positive-definiteness of the system response. Moreover, our results
are directly applicable to the broad category of nonlinear problems, and introduces
no additional constraints on integrating quantities, e.g., energy, angular or linear
momentum.

First, let us introduce two supplementary operators, the average and the gap oper-
ators, defined as follows. For any field φ , sampled at a specific time-step tn÷ tn+1,
we define:

{φn} := 1/2

(
φn+1 +φn

)
, [φn] := φn+1−φn .
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Since the power dissipation principle holds for any test velocity ˙̃q, we may re-
state (1) using the dissipative prescription (3) as follows:

Pe− ψ̇ ≥ ε ˙̃q ·M−1 ˙̃q , (6)

with ε being an arbitrarily small positive constant, and the dot operator being the
shot-hand form of an inner product. Since Pe = ˙̃q ·Qe and ψ̇ = ˙̃q · s, equation (6),
by applying the average operator, reads as:

˙̃q · {Qe
n− sn} ≥ ε ˙̃qM−1 ˙̃q ,

and therefore by virtue of (5),

˙̃q · {rn}+ ˙̃q · {M−1q̇n} ≥ ε ˙̃qM−1 ˙̃q , (7)

where rn is a numerical residue originating from the field equation (5). We may then
proceed in defining our stability criterion based on the power dissipation principle.

Definition (Power stability) We define the power stability criterion as follows:∣∣ ˙̃q · {rn}
∣∣≤ ε ˙̃q ·M−1 ˙̃qn , (8)

where ˙̃q defines a test velocity, rn is a numerical residue, M−1 is a positively-defined
operator, and ε represents an arbitrary positive constant.

Granted that the previous inequality holds, i.e., the above-defined power stability
condition is satisfied, we deduce from the expression (7) the following:

˙̃q · {M−1q̇n} ≥ 0 , (9)

being valid for any test velocity ˙̃q. Therefore, the inequality (9) expresses a condi-
tion for stable convergence, as defined by the above criterion (8).

Note that the condition expressed in equation (9) states the non-negative definition
of the mobility operator M−1. We use this as key-point for getting sufficient con-
ditions of stability. Finally, we mention in passing that M−1 may also depend on
time, but we may omit the more respectable form M−1

n , due to the fact that M−1

shall be utilized as an operator applied to a velocity, therefore implicitly containing
information regarding the time dependence.

Preliminary definitions

By virtue of the integrating parameters, we may express the set of all test velocities
˙̃q of interest by means of the initial and final velocities and displacements, with
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three independent parameters for time discretization. Thus, we formally express
the test velocities as the following three forms:

˙̃q1 = q̇n+1− [qn]/h , (10a)
˙̃q2 = [qn]/h− q̇n , (10b)
˙̃q3 = [qn]/h , (10c)

with h := tn+1− tn, i.e., the time gap measure between two successive integrating
steps.

Note that by combining ˙̃q1 and ˙̃q2 we obtain [q̇n] = ˙̃q1 + ˙̃q2 as a valid test veloc-
ity satisfying (9); analogously, {q̇n} may be obtained as the linear combination
1/2( ˙̃q1− ˙̃q2)+ ˙̃q3, as a valid test velocity. Additionally to the above, other types of
test velocities will be introduced as the number of integrating parameters increases,
e.g., in presence of acceleration terms.

First order time integration

We shall proceed then introducing a numerical integration scheme based on the
Newmark method, i.e., let us define the discrete kinematics with the following nu-
merical integrating scheme:

qn+1 = qn +hq̇n+α ,

where the numerical velocity q̇n+α is the velocity at a generic time step n+α , i.e.:

q̇n+α := {q̇n}+
(

α− 1/2

)
[q̇n] ,

α ∈ [0,1] being the integrating parameter ruling the variation of the kinematics.

Let us proceed then employing the aforementioned test velocities (10) in (9), ob-
taining the following inequalities that should hold in order to attain a stable conver-
gence, as defined by the power stability criterion:

(1−α)[q̇n] · {M−1q̇n} ≥ 0 , (11a)

α[q̇n] · {M−1q̇n} ≥ 0 , (11b)

({q̇n}+(α− 1/2)[q̇n]) · {M−1q̇n} ≥ 0 , (11c)

Recalling the previously expressed relation between velocity and displacement, i.e.,
[qn] := h(1−α)q̇n +hα q̇n+1, we obtain three conditions to be satisfied by the inte-
grating parameter α: α ≤ 1 from (11a), α ≥ 0 from (11b), and α ≥ 1/2 from (11c),
since {q̇n} · {M−1q̇n} ≥ 0 and [q̇n] · {M−1q̇n} ≥ 0.

Therefore, a sufficient condition for the unconditionally stable convergence of the
Newmark family of integrating schemes is α ∈ [1/2,1].
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Second order time integration

Let us consider now a general Newmark integrating scheme Hughes (2000), i.e.,
accounting for both acceleration q̈ and velocity q̇, numerically obtained as follows,
given the integrating parameters β ,γ:

qn+1 := qn +hq̇n +
h2

2

(
{q̈n}+(2β − 1/2) [q̈n]

)
, (12a)

q̇n+1 := q̇n +h
(
{q̈n}+(γ− 1/2) [q̈n]

)
. (12b)

We may therefore mimic the demonstration provided earlier, employing the afore-
mentioned test velocities (10), and introducing an additional one, i.e., h{q̈n}. As a
result, we obtain:

˙̃q1 = q̇n+1− [qn]/h≡ 1/2 h{q̈n}+h(γ−β − 1/4)[q̈n] , (13a)
˙̃q2 = [qn]/h− q̇n ≡ 1/2 h{q̈n}+h(β − 1/4)[q̈n] , (13b)
˙̃q3 = [qn]/h≡ {q̇n}+h(β − 1/2 γ)[q̈n] , (13c)
˙̃q4 = h{q̈n} , (13d)

and as explained previously for the first-order time integration, we obtain as valid
test velocities h[q̈n] and {q̇n}, resulting as linear combination of ˙̃q1, . . . , ˙̃q4. Hence,
the following inequalities have to be satisfied:

(1/2 h{q̈n}+h(γ−β − 1/4)[q̈n]) · {M−1q̇n} ≥ 0 , (14a)

(1/2 h{q̈n}+h(β − 1/4)[q̈n]) · {M−1q̇n} ≥ 0 , (14b)

(h{q̇n}+h(β − 1/2 γ)[q̈n]) · {M−1q̇n} ≥ 0 , (14c)

(h{q̈n}+h(γ− 1/2)[q̈n]) · {M−1q̇n} ≥ 0 . (14d)

We therefore have that a sufficient condition for the unconditionally stable conver-
gence of Newmark integrating schemes is the region delimited by the inequalities
obtained from (14), i.e., β ≤ γ − 1/4 , β ≥ 1/2 γ , and γ ≥ 1/2. We mention in pass-
ing that the first condition imposed on the Newmark integration-parameters restrict
the limitations known in literature, proved only for particular classes of physical
problems.

Preliminary considerations

Contrary to a classical energy-driven approach, limiting the scope of its utilization
to specific nonlinear problems Belytschko and Schoeberle (1975), our approach is
directly applicable to a broader class of nonlinear systems. Moreover, in nonlinear
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contexts, approaches based on the energy method require some efforts in order
to stabilize the energy, usually introducing additional constraints in the numerical
integration process: as the ensuing numerical example will show, a power-based
approach embodies the supplementary conditions needed by the energy method—
for more details, we refer the reader to Crisfield and Shi (1994); Armero (2006);
Gonzalez (2000), and Section 4.5 of this manuscript.

4 A Derivation Example of Hardening Plasticity

In order to provide an elucidatory application, we adapt the modeling framework re-
ported in Section 2 to a one-dimensional example of hardening plasticity, generally
described by postulating stress yield criterions governing the nonlinear response.
For an extensive treatise on classical elasto-plastic processes, we refer the reader
to Simo and Hughes (2000).

Our approach follows a different perspective, found practical by other authors in
recent scholarly works Gurtin (2000); Del Piero (2009); Gurtin and Reddy (2009),
where isotropic hardening plasticity is formulated by means of variational inequal-
ities.

We hence refer to one mass-spring system with an elasto-plastic behavior. Such a
system, even in a simplified form, presents crucial hardships in convergence when
time discretization techniques are employed, as we will show in Section 4.4, where
a detailed numerical investigation is reported.

The following sections are devoted to introduce a classical approach to elasto-
plasticity, and next we present the same laws derived from the power dissipation
principle, as presented in DiCarlo and Quiligotti (2002). For simplicity’s sake, we
initially neglect to define the strain measure explicitly, namely ε , while focusing
only on the constitutive assumptions modeling the inelastic part; we furthermore
consider the absence of external loads.

4.1 The Classic Approach

Let the constitutive coefficients of the aforementioned spring be σY , E, K and H,
defining the limit plastic stress, the elastic coefficient, the isotropic and the kine-
matic hardening moduli, respectively. The elastic stress response in the spring is
then equal to

σ = E (ε− p) ,

where p is the plastic part of the total strain ε . In the classical perspective on elasto-
plasticity, the equilibrium equation, in absence of external loads, is defined by the
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following:

I ε̈ +E (ε− p) = 0 . (15)

We may therefore proceed in characterizing the hardening plasticity, by postulating
the yield criterion:

f (σ ,b,a) := |σ − τ |− (σY +K a)≤ 0 , (16)

where τ represents the back stress, and the internal isotropic hardening is denoted
by the variable a, corresponding to the amount of the accumulated plastic strain.
The overall hardening plastic process, given the rate λ ≥ 0, is characterized by the
following:

ṗ = λ sign(σ − τ) , (17a)

τ̇ = λ H sign(σ − τ) , (17b)

ȧ = λ . (17c)

The above-mentioned equations are the flow rule, the kinematic, and isotropic hard-
ening law, respectively. Note that the equation (17b) represents the well-known
Ziegler rule, i.e.,

τ̇ := H ṗ . (18)

Finally, the plastic parts τ and a are allowed to evolve as defined by (17), abiding
the Kuhn-Tucker complementary conditions

λ ≥ 0

f (σ ,τ,a)≤ 0 (19a)

λ f (σ ,τ,a) = 0 ,

and the consistency conditions:

λ ḟ (σ ,τ,a) = 0 , if f (σ ,τ,a) = 0 . (19b)

For sake of completeness, we mention the fact that classical finite element methods
evaluate the plastic increments by means of the return mapping algorithm, i.e., via
an iterative scheme. This process is governed by the strain measure, with the basic
independent variable set as ε̇ , and the outcomes being σ̇ and the internal (p, a, τ)
variables. In the case of a one dimensional problem, as we present in this section,
the equations (17) and (19) are satisfied by

λ =
sign(σ − τ)
E +H +K

E ε̇ , (20)
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and hence the elasto-plastic tangent modulus is:E if λ = 0

E
H +K

E +H +K
if λ > 0 .

4.2 A Growth and Remodeling Approach

The power-based approach needs, in order to be properly defined, an internal en-
ergy ψ , whose time-derivative has to be compared with the external power.

From equation (1) we have that Pe− ψ̇ ≥ 0, and therefore, for our elasto-plastic
example, we posit:

ψ :=
1
2

E(ε− p)2 +
1
2

H−1
τ

2 +
1
2

Ka2 . (21)

Note that different definitions of a free energy are admissible in order to produce
similar models Gurtin and Reddy (2009); Del Piero (2009), as we will show in the
present section.

Hence, since Pe = (−I ε̈) ε̇ , we have

Pe− ψ̇ = (−I ε̈−E (ε− p)) ε̇

+
(
E(ε− p)ṗ− (H−1

τ)τ̇− (K a)
)

ȧ≥ 0 .
(22)

The first term represents the balance conditions, as expressed in equation (15):
in other words, the dissipative term associated to ε̇ is zero. The choices for the
remaining dissipative quantities, i.e., for the remaining velocities, shall define the
overall plastic evolution and complete the governing equations of our problem as
constitutive laws. We may in the following simplify the inequality (22) by applying
Ziegler’s rule (18), obtaining the subsequent inequality:

(E(ε− p)− τ)ṗ− (K a) ȧ≥ 0 . (23)

Finally, by considering the yield criterion (16), we may require that ṗ evolves in
such a way that the effective stress expending power with respect to ṗ, namely
(σ − τ), tends to a limit condition: (σ − τ)→ σY + K a. This limitation is consis-
tent with (16). Moreover, under this perspective, we may require that the plastic
rate tends to be proportional to the strain rate, i.e., by virtue of equation (20):

ṗ → | ε̇ | E
E +H +K

.
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Therefore, uncoupling the evolution of both p and a, and assuming ȧ = | ṗ |, hence
neglecting the prescription regarding the dissipative term associated with ȧ, the
previous considerations may be recast in the following evolving condition:

ṗ :=
(

σ − τ

σY +Ka

)N

| ε̇ | E
E +H +K

, (24)

where an odd N ∈ N satisfies the inequality (23). In fact, in equation (24), the only
negative term can be the effective stress σ − τ , the same term that multiplies ṗ and
giving rise to a non-negative dissipation.

Equations (15) and (24) completely establish the elasto-plastic problem, once the
assumptions τ̇ = H ṗ and ȧ = | ṗ | have been accounted for.

4.3 Preliminary Numerical Comparisons

We may now test the classic formulation of an elasto-plastic process with the
power-based methodology. In order to highlight how classical plastic constitu-
tive prescriptions may be promptly recovered in our alternative model, we compare
a β -Newmark scheme based on the power dissipation principle, with a reference
numerical solution of the same problem following a standard approach.

Our tests are conducted imposing a cyclic and a monotonic strain, with the fol-
lowing conditions: E = 50 GPa, σY = 1.5 GPa, H = 0.25 GPa, K = 2.5 GPa, and
N = 5. The imposed strain functions employed in this example are

ε = v0 kT
(

1− e−t/50
)

,

ε = v0 kT sin
(

π

2T k
t
)

,

with v0 = 0.001 s−1 being the initial strain rate, the total time of the experiment
being T = 600 seconds. The time-step employed in the numerical integration is
h = 1 s, with k = 0.25. The algorithm is detailed in Alg. 1.

It is worth noticing as the results do not differ from a reference numerical solution
obtained with a commercial software. The outcomes of computations, for both our
algorithm and the reference, are pictured in Fig. 1 for both the cyclic and monotonic
prescribed displacement.
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1: function PLASTICITY(h, xn, ẋn) . Solves (24) at time step n+1
2: j← 0
3: x0

n+1← xn +(1−β )h ẋn . x := (p, τ, a)>

4: c← E/(E +H +K)

5: while e≥ toll do
6: r j

n+1← ṗ j
n+1− cabs(ṗn+1)((E(εn+1− pn+1)− τ

j
n+1)/(σY +Hα

j
n+1))

N

7: δ ṗn+1←−(J j
n+1)

−1r j
n+1 . Update the current solution

8: ṗ j+1
n+1← ṗ j

n+1 +δ ṗn+1

9: τ̇
j

n+1← H ṗ j+1
n+1

10: ȧ j
n+1← abs(ṗ j

n+1)
11: e← δ ṗ2

n+1K
12: j← j +1
13: end while

14: x j∗
n+1← x j

n+1 . Solution at convergence

15: ẋ j∗
n+1← ẋ j

n+1

16: return x j∗
n+1 and ẋ j∗

n+1
17: end function

Algorithm 1: Sketch of the algorithm employed to solve equation (24).
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Figure 1: The results of cyclic (on the left) and monotonic (on the right) load with a
Newmark time-integration algorithm (in red) compared to a reference solution (in
blue): by rows, the time-dependent strain (a), the strain-stress cycle outcome (b),
and plasticity (c) graphed over time.
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4.4 Nonlinear Numerical Results

We showed in the previous section as the power dissipation principle leads to a
constraint of integrating parameters, a sufficient condition for satisfying the power
stability criterion, as expressed in (8).

In the following, we will focus on a nonlinear problem, expressed within the power-
based approach presented in Section 4.2, and solved numerically with a generalized
Newmark scheme. This particular test, presented in Armero (2006), is an exempli-
fication of the inability of classical Newmark schemes of solving nonlinear prob-
lems, i.e., they exhibit an unbounded growth of physical energy. Nonlinearity is
present in both the elasto-plastic material response, and the strain measure. As a
side-note, we mention that nonlinear elasto-plasticity is still a open issue across
several years of numerical researches in structural dynamics, and it is sometimes
faced extending standard trapezoidal schemes by means of two additional integra-
tion parameters Casciaro (1975); Corigliano and Perego (1993).

As discussed before, we are proposing a radical change in perspective: employing
power dissipation principles in lieu of energy conservation prescriptions. As we
will show in the following, not only such variation benefits the overall stability,
but also embodies prescriptions that are otherwise explicitly accounted for in the
algorithmic development.

Let us consider the process underlying a rotating elasto-plastic spring-mass system
fixed at one end, as pictured in Fig. 2. The system is exempt from external forces,
evolving with the constraint that its associated angular momentum is constant in
time.

massx

J

O

Figure 2: The mass-spring system detailed in Section 4.4.

The system, presenting a strong nonlinearity in both geometric and material prop-
erties, is modeled through equations expressed in terms of the mass position vector
x = (x1,x2)>, rotating around the fixed end O . The geometrical nonlinearity is
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defined by the elastic and inelastic stretching, composed multiplicatively, i.e.,

λ :=
‖x‖
L0

= λpλi ,

with L0 > 0 being a reference length, and ‖x‖ :=
(
x2

1 + x2
2
)1/2. The spring strain

follows the multiplicative rule, i.e., given the strain ε , it may be decomposed in its
elastic and inelastic (plastic) parts, or in other words:

ε := log(λ ) = εe + εp =: εe + p ,

given that εe := log(λe), p := log(λp), and ε = log(‖x‖)− log(L0). Therefore, pro-
ceeding along the same path we outlined in Section 4.2, and noting that the external
power is now represented as Pe = (−Iẍ)>ẋ, the combined inequality Pe− ψ̇ ≥ 0,
with the free energy defined as in (21), yields the following:

Pe− ψ̇ =
(
−I ẍ−E (ε− p)‖x‖−2x

)>
ẋ

+
(
E(ε− p)ṗ− (H−1

τ)τ̇− (K a)
)

ȧ≥ 0 .
(25)

Similarly as before, we may then separate the two dynamic variables ẋ and ȧ ob-
taining the system of differential equations:{

Iẍ+‖x‖−2
σx = 0

σ ṗ− (H−1
τ)τ̇− (K a) = mȧ ,

(26)

where σ = E(ε− p).

4.5 Results and Discussion

The algorithm employed to solve the system of differential equations reported
in (26) is a standard Newmark time-integration scheme, and the algorithm is briefly
sketched in Alg. 2. For a fair comparison, we made use of the same parameters as
in Armero (2006), i.e., with the discrete time-step h ∈ {0.3,1.0,3.0} seconds, and
Newmark integration parameters β = 1/4, and γ = 1/2.

The results are pictured in Fig. 3, where we outlined the mass trajectory, the angular
momentum, the total energy, and the equivalent plastic strain; the results include
the graph of the afore-mentioned quantities for all the three time-steps h. As we
may notice from the algorithmic outline, no constraint was imposed explicitly in
the integrating process: the system in itself, being exempt from external forces, ex-
hibits a constant angular momentum, accounted for implicitly by the power-based
approach described in previous sections.
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1: function NONLINEARPLASTICITY(h, xn, pn, τn, an) . Solves equations (26) at time step n+1
2: j← 0
3: x0

n+1← xn +hẋn +h2/2(1−2β ) ẍn . xn := (x1,x2)>

4: [p,τ,a]0n+1← [p,τ,a]n +h [ṗ, τ̇, ȧ]n(1−α)

5: ẋ0
n+1← ẋn +h(1− γ)ẍn

6: [ṗ, τ̇, ȧ]0n+1← [ṗ, τ̇, ȧ]n
7: ẍ0

n+1← 0

8: while e≥ toll do
9: L←‖x j

n+1‖
10: ε

j
n+1← log(L j

n+1)− log(L0)
11: ε̇

j
n+1← hα−1 ((ε j

n+1− εn)− (1−α)ε̇n)
12: [p,τ,a] j

n+1← PLASTICITY(h, [p,τ,a]n, [ṗ, τ̇, ȧ]n) . See Fig. 1

13: σ
j

n+1← E(ε j
n+1− p j

n+1)
14: r j

n+1← mẍ j
n+1 +L0/L2 σ

j
n+1 x j

n+1

15: δxn+1←−(J j
n+1)

−1r j
n+1 . Update the current solution

16: x j+1
n+1← x j

n+1 +δxn+1

17: ẋ j+1
n+1← γ (h−1)β−1(x j+1

n+1− xn)+(1− γ/β ) ẋn +h(1− γ/2β ) ẍn

18: ẍ j+1
n+1← (h−2)β−1(x j+1

n+1− xn)− (hβ )−1 ẋn +(1−1/2β ) ẍn

19: e← δxn+1 · r j
n+1

20: j← j +1
21: end while

22: [x, ẋ, ẍ] j∗
n+1← [x, ẋ, ẍ] j

n+1 . Solution at convergence

23: [p,τ,a] j∗
n+1← [p,τ,a] j

n+1

24: return [x, ẋ, ẍ] j∗
n+1 and [p,τ,a] j∗

n+1
25: end function

Algorithm 2: Sketch of the algorithm used to solve the problem detailed in Sec-
tion 4.4. The notation [·] indicates an ordered list, for brevity’s sake.

Comparing our results to the reference solutions provided in Armero (2006), we
may observe as the energy, angular momentum, and the equivalent plastic strain
do not diverge. In particular, the total energy ψ , and the plastic strain a display
a divergent behavior for h = 3.0, whereas in our tests they all saturate to a con-
stant solution. Evidently, the diverging process we may perceive in Armero (2006)
is not found, attaining convergence with no additional constraint on the angular
momentum.
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Figure 3: Solution for the mass-spring system detailed in Section 4.4 (β = 1/4 and
γ = 1/2): the mass trajectory (a), the angular momentum (b), the total energy (b),
and the equivalent plastic strain (d). The solution has been obtained with time
lapses h of 0.3 (in red), 1.0 (in green), and 3.0 seconds (in blue).

Our results show clearly that with a power-based approach, the nonlinear problem
detailed in Section 4.4 can be solved without explicitly imposing the constraint
on the angular momentum, while converging for every time gap h, contrary to a
standard energy-based Newmark integrating scheme. As a side-note, we highlight
the fact that convergence is guaranteed by means of the same parameters employed
in the construction of the (numerical) constitutive model.
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(a)

(b)

(c)

limitation of the return mapping employed in the simulation. The low accuracy in time that the results in Fig. 1.2 seem to
indicate is also worth noting.

The limited conservation/dissipation properties in energy and momentum of standard schemes have motivated a large
amount of recent works in the formulation of energy–momentum-conserving schemes. We refer, among others, to
[4,5,12,21] for conserving schemes involving a modified stress formula, and [10,13] for the use of Lagrange multipliers
to enforce the conservation laws as a constraint. The work presented in [2,3] show extensions of the modified stress formula
incorporating a controllable numerical energy dissipation in the high-frequency to handle the high numerical stiffness of the
systems of interest.

All these references have considered the nonlinear elastic case. A notable exception is the work presented in [14] that
considers the problem of finite strain plasticity. It also shows the unbounded growth of solutions computed with the
mid-point rule, reproducing a similar behavior of this scheme in the elastic case, to be contrasted to the observations made
above for the trapezoidal rule directed linked to the plastic integration scheme. In the context of multiplicative finite strain
plasticity (see e.g. [20] and references therein), the authors in [14] applied the conserving stress formula presented in [5] as a
projection of the solution obtained by a standard exponential return mapping algorithm integrating the plastic evolution
equations so the plastic dissipation applies in a given time step. Even though the non-negative character of the dissipation
can be certainly obtained by this procedure, the final stresses appearing in the discrete equations of motion do not satisfy
the yield condition in general due to the added projection step. Given the clear physical significance of the yield constraint
on the stresses in elastoplastic models, we judge that its enforcement is crucial in practical applications. We also note the
recent work presented in [15] on the temporal integration of finite strain J2-theory based on an hypoelastic model. The lack
of an elastic energy potential in this type of models forces the authors to develop numerical schemes that show the physical
energy dissipation for particular deformation processes in time only.

In this context, the goal of this paper is the development of a new and general time-stepping algorithm that preserves
exactly the conservation laws of linear and angular momenta of the physical system and that shows the exact energy dis-
sipation associated to the plastic response, including as a particular case the full energy conservation for elastic steps in the
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Fig. 1.2. Plastic-spring mass system. Solution obtained with the trapezoidal rule (Newmark bNW = 0.25, cNW = 0.5).
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recent work presented in [15] on the temporal integration of finite strain J2-theory based on an hypoelastic model. The lack
of an elastic energy potential in this type of models forces the authors to develop numerical schemes that show the physical
energy dissipation for particular deformation processes in time only.

In this context, the goal of this paper is the development of a new and general time-stepping algorithm that preserves
exactly the conservation laws of linear and angular momenta of the physical system and that shows the exact energy dis-
sipation associated to the plastic response, including as a particular case the full energy conservation for elastic steps in the
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Fig. 1.2. Plastic-spring mass system. Solution obtained with the trapezoidal rule (Newmark bNW = 0.25, cNW = 0.5).
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Figure 4: Solution for the mass-spring system detailed in Section 4.4, provided
in Armero (2006) and obtained through a standard Newmark scheme (β = 1/4 and
γ = 1/2): the mass trajectory (a), the angular momentum (b), the total energy (b),
and the equivalent plastic strain (d). The solution has been obtained with time
lapses h = ∆t, as reported in the legends.

5 Concluding Remarks

This manuscript presents a novel stability criterion for the trapezoidal rule integrat-
ing schemes, proving a sufficient condition for the unconditionally stable conver-
gence. Contrary to other standard energy-based approaches, relying on the power
balance and dissipation principle allows us to generalize this result to evolutive
nonlinear problems.

In fact, the power criterion does not require any particular property concerning the
system response in order to prove stable convergence, such as positive-definiteness.
Moreover, convergence criteria are originated from the (power) principles adapted
to generate a thermodynamically consistent model, without introducing additional
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energy-like conserving constraints, apt at limiting energy oscillations leading to
convergence loss. The numerical stability was proved for both first and second
order nonlinear problems, extending the applicability of such numerical schemes
previously employed in linear contexts Hughes (2000), and very specific nonlinear
ones Belytschko and Schoeberle (1975).

We numerically tested a simplified one-dimensional problem, consisting of a one
mass-spring system, nonlinearly modeled in terms of both finite deformations and
hardening plasticity. As detailed in the last section, such power-based approach
benefits the numerical stability when compared to a standard trapezoidal scheme,
and convergence has been attained, specifically without imposing the angular mo-
mentum conservation. In particular, the absence of such a constraint would lead a
standard Newmark algorithm to loose convergence Armero (2006) with increasing
integrating time steps.
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