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Finite Element Analysis of Discrete Circular Dislocations

K.P. Baxevanakis1 and A.E. Giannakopoulos2

Abstract: The present work gives a systematic and rigorous implementation of
(edge type) circular Volterra dislocation loops in ordinary axisymmetric finite el-
ements using the thermal analogue and the integral representation of dislocations
through stresses. The accuracy of the proposed method is studied in problems
where analytical solutions exist. The full fields are given for loop dislocations in
isotropic and anisotropic crystals and the Peach-Koehler forces are calculated for
loops approaching free surfaces and bimaterial interfaces. The results are expected
to be very important in the analysis of plastic yield strength, giving quantitative re-
sults regarding the influence of grain boundaries, interstitial particles, microvoids,
thin film constraints and nano-indentation phenomena. The interaction of few dis-
locations with various inhomogeneities gives rise to size effects in the yield strength
which are of great importance in nano-mechanics.
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1 Introduction

Volterra dislocation loops have Burgers vector normal to the plane of the loop and
can form in a solid due to irradiation or quenching by the precipitation of vacancies
or interstitial atoms [Khraishi et al. (2000)]. Steketee (1958) indicated that apart
from major importance in solid state physics, dislocation theory is of great use in
geophysics, since the mechanics involved in earthquakes imply displacement dis-
continuities across the fractured zones. The mechanics of dislocations is a promi-
nent and difficult subject of Linear Elasticity [Hirth and Lothe (1982)], and closed
form solutions exist for relatively simple problems [Mastrojannis et al. (1977);
Wang (1996); Khraishi et al. (2000); Kroupa (1960); Vagera (1970); Dundurs and
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Salamon (1972); Ohr (1978)]. The analysis of the interactions of a dislocation loop
with other dislocations, with free surfaces, with grain interfaces, with voids and
interstitials are important for the physical properties of plasticity, friction, micro
and nano-indentation, strength of nano-composites and micro-electro-mechanical
devices, see for example Philips (2001), Cotrell (1961), Petch (1953), Hall (1951),
Rice (1992).

At the atomic level, a prismatic loop dislocation can be viewed as a stacking fault
in an fcc crystal system. An extrinsic stacking fault can be formed, if clusters of
interstitials are condensed to form an extra plane of atoms to give a stacking se-
quence: ABCABCBABCABC. . . On the other hand, an intrinsic stacking fault can
be formed by a collapse of vacancy clusters to form a missing plane of atoms to
give a stacking sequence: ABCABCACABCABC. . . Another appearance of a pris-
matic loop dislocation is during the growth of a coherent precipitate. In such case,
stresses are generated because the lattice dimensions of the precipitate differ from
those of the matrix [Baker et al. (1959)]. When the strain energy is large enough, it
will be relieved by the precipitate becoming non-coherent (losing continuity with
the matrix) and this is done by the formation of dislocation loops at the interface.

Extended prismatic loops have been identified as one possible mechanism of quench
hardening in copper [Kimura and Hasiguti (1962)]. In such case, these loops
should require an activation energy of about 5eV to disappear. Clarebrough et
al. (1964) used electrical resistance measurements and transmission electron mi-
croscopy (TEM) to show that dislocation loops predominate as the clustered va-
cancy defects in gold if, after quenching from high temperature to 0˚C, the gold
is rapidly up-quenchened to 100˚C. The oxidation of small amounts of impurities
present in the copper give rise to prismatic punching of dislocation loops.

Humphreys (1968) examined single crystals of copper containing coherent precip-
itates of cobalt. The crystals were deformed in tension and the dislocation distribu-
tions were determined by TEM. Coherent particles with a radius of 120Å remained
coherent after deformation and were sheared together with the matrix. Particles
with a radius of 170Å and above lost coherency spontaneously upon deformation,
resulting in rows of prismatic loops of primary Burgers vector.

Weatherly (1968) indicated that a growing precipitate can lose coherency by punch-
ing of prismatic dislocation loops, depending on the shape of the precipitate and
the dilatation transformation strain. In this way it was explained why Ni-Cr-Ti-Al
alloys and Cu-Al2O3 alloys showed no evidence of punching, whereas Cu-MgO
alloys did. Weatherly and Nicholson (1968) investigated the mechanism of co-
herency loss of four semi-coherent precipitates (Al-Cu, Al-Cu-Mg, Al-Mg-Si and
Ni-Cr-Ti-Al) using TEM. In the last three cases, loss of coherency was due to the
attraction of matrix dislocation to the particle/matrix interface. In the first case,
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loss of coherency was by nucleation of dislocation loops within the plate-shaped
precipitate (as the thickness of the precipitate increases).

Humphreys and Stewart (1972) examined single crystals of Cu-20 wt % Zn, con-
taining spherical silica particles, which had been deformed in tension at room tem-
perature. Around the smallest particles (diameter less than 0.11µm), primary pris-
matic loops are formed. Dislocation debris accumulates at the particles with in-
creasing strain and is responsible for the high rate of work hardening.

The paper is structured as follows. Firstly, we present a thermal analogue of an
edge-type loop dislocation. We focus on axisymmetric cases, with the dislocation
axis being the axis of axisymmetry. The remaining of the paper presents various
applications, comparing with known analytic results, when possible, and present-
ing new results in cases of material anisotropy. Finally, we investigate the loop
dislocations in the context of nano-indentation.

2 The thermal analogue and its implementation in finite elements

2.1 The thermal analogue for discrete circular dislocations

In the present work, we are inspired by the work of Biot (1935) who presented a
thermal analogue for the two-dimensional edge dislocation and used it with optical
methods to study dislocations. The analysis of a Volterra circular dislocation of
radius rd with a Burgers’ vector bz normal to the plane of the loop requires an axial
polar coordinate system (r,θ ,z) with the z-axis being in the direction normal to the
centre of the dislocation loop, r being the radial direction and θ the circumferential
coordinate (Fig. 1).

For any closed circuit embracing the dislocation line we must have (in a Cartesian
system (x1,x2,x3) shown in Fig. 1

b3 = bz =
∮

u3, jdx j (1)

where repeated index implies the well known summation from 1 to 3.

In order to make eq. (1) single valued, the displacement field must decay to zero as

ui→ O

 1√
x2

1 + x2
2 + x2

3

 , i = 1,2,3 (2)

The corresponding Peach-Koehler force can be deduced from the corresponding
Maxwell tensor according to Eshelby, which in a Cartesian system reads as

F̀ = b3εk` j

∮
L

σ3kdx j = lim
δξ`→0

δUi

δξ`
, ` = 1,2,3 (3)
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where L is the dislocation line of the loop, εk` j is the alternating tensor and U is the
internal energy. The local coordinates ξ` describe the radial (ξ1 = r), the vertical
(ξ3 = z) and the circumferential (ξ2 = 2πr) directions. The last are also called line
tension of the dislocation loop. The stress field σi j includes the influence of other
dislocations, free surfaces etc.

In the absence of body forces, the equilibrium equations in polar coordinates are

∂σrr

∂ r
+

∂σrz

∂ z
+

1
r

(σrr−σθθ ) = 0

∂σrz

∂ r
+

∂σzz

∂ z
+

σrz

r
= 0

(4)

The strains are related to the displacements through the geometric relations

εrr =
∂ur

∂ r
, εzz =

∂uz

∂ z
, εθθ =

ur

r

2εrz = γrz =
∂ur

∂ z
+

∂uz

∂ r

(5)

and the spin

2ωrz =
∂uz

∂ r
− ∂ur

∂ z
(6)

The compatibility equations are

2
∂ 2εrz

∂ r∂ z
=

∂ 2εrr

∂ z2 +
∂ 2εzz

∂ r2

εrr =
∂

∂ r
(rεθθ )

(7)

Using the axisymmetric coordinates (r,z) we enclose the dislocation by a circuit C,
as shown in Fig. 2. Then, from eq. (1) we have

bz =
∮
C

duz =
∮
C

(
∂uz

∂ r
dr +

∂uz

∂ z
dz
)

(8)

If n is the unit vector normal to the circuit C, then we have the auxiliary relations
for the infinitesimal segment ds along C:

∂

∂ r
dz− ∂

∂ z
dr =

∂

∂n
ds

∂

∂ r
dr +

∂

∂ z
dz =

∂

∂ s
ds

(9)
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We now assume a homogeneous linear thermo-elastic material with cubic elastic
symmetry and stress-strain relations taken as

εrr =
1
E

(σrr−ν (σθθ +σzz))

εθθ =
1
E

(σθθ −ν (σrr +σzz))

εzz =
1
E

(σzz−ν (σθθ +σrr))+αzT (z)

εrz =
1
G

σrz

(10)

Note that in this case we have three independent elastic constants: the elastic mod-
ulus E, the Poisson ratio ν and the shear modulus G. Isotropic material implies
that

G =
E

2(1+ν)
(11)

It should be also noted that the thermal strain αzT (z) is added to help establish the
thermal analogue and it is not a physical thermal strain (αz is a “thermal” expansion
coefficient and T (z) is a “temperature” distribution).

Misra and Sen (1975) have shown that two stress functions are necessary to de-
scribe the stresses in this case, Φ(r,z) and R(r,z). These functions are continuous
with continuous derivatives up to 4th order.

σrz =− ∂ 2Φ

∂ r∂ z

σrr =
∂ 2Φ

∂ z2 +R

σzz =
∂ 2Φ

∂ r2 +
1
r

∂Φ

∂ r
σθθ = ν∇

2
Φ−R

(12)

Integrating with respect to r the compatibility eq. (7), we obtain

∂

∂ z
εrz =

∂ 2

∂ z2

(
r2

εθθ

)
+

∂

∂ r
εzz (13)

Substituting eq. (10) into equation (13), we obtain a relation between Φ and R

∂ 2

∂ z2 (rR) = (1−ν)
∂

∂ r
∇

2
Φ+

E
(1+ν)

[
1
G
− 1+ν

E

]
∂ 3Φ

∂ r∂ z2 (14)
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Substituting eq. (10) into equation (7b), we obtain another relation between Φ and
R:

r
∂R
∂ r

+2R = ν∇
2
Φ− ∂ 2Φ

∂ z2 (15)

Obviously, eq. (14) and (15) are the driving equations of the problem.

We now turn our attention to the kinematics of the Burgers vector and use Cesaro’s
integrals, Cesaro (1906). Let C be the amplitude of the disclination. Then

C =
∮
C

dωrz =
∮
C

(
∂εrz

∂ r
− ∂εrr

∂ z

)
dr+

∮
C

(
∂εzz

∂ r
− ∂εrz

∂ z

)
dz (16)

Continuity of σrz and the constitutive eq. (10d) implies that

C =
∮
C

(
−∂εrr

∂ z
dr +

∂εzz

∂ r
dz
)

(17)

Using eq. (12) and the continuity of Φ and R we can conclude that

C = 0 (18)

which assures us that there will be no disclination, precluding a Somigliana type of
dislocation. Then Cesaro’s integral for bz becomes

bz =
∮
C

[
εrz− r

(
∂εrz

∂ r
− ∂εrr

∂ z

)]
dr+

∮
C

[
εrz− r

(
∂εzz

∂ z
− ∂εrz

∂ z

)]
dz (19)

Due to continuity of zεzz and rεrz, eq. (19) reduces to

bz =−
∮
C

(
z
∂εzz

∂ z
+ r

∂εzz

∂ r

)
dz+

∮
C

r
(

∂εrr

∂ z
−2

∂εrz

∂ r

)
dr−

∮
C

r
∂εzz

∂ r
dz (20)

Using eq. (13) and continuity of Φ and R, we obtain

bz =
∮
C

z
∂ (αzT (z))

∂ z
ds (21)

We decided to use a simple temperature distribution as in Fig. 3a or Fig. 3b.

αzT (z) = ∆T z = zd 0≤ r ≤ rd

αzT (z) = ∆T
(z− zd +h)

h
zd−h≤ z 0≤ r ≤ rd

αzT (z) = ∆T
−(z− zd−h)

h
z≤ zd +h 0≤ r ≤ rd

αzT (z) = 0 everywhere else

(22)
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where h is the element size and

αzT (z) =
bz

h
(23)

Note that eq. (21) is the key theoretical result that needs to be implemented in the
finite element codes and then, after selecting an appropriate temperature field as in
eq. (22), solve the thermoelastic problem.

2.2 Finite element implementation

Turning to the finite element method, we can discretize the space around the loop
dislocation by a uniform fine element distribution of element size h. Assuming
linear thermoelastic response, we can assign a temperature distribution as in eq.
(22) on the nodes of the mesh as shown in Fig. 3. It should be emphasized that
the thermal expansion coefficient αz is not the physical one, but takes apparent
values that are suitable for computations, keeping in mind that there is no actual
temperature field in the problem. This procedure forces ordinary finite elements to
produce dislocation stress field in a straightforward way.

The ABAQUS general purpose finite element code was used and a uniform mesh
of 25,000 axisymmetric, four-noded elements was picked for all applications. The
outer boundary was 100 times the Burgers vector in all directions. Note that no spe-
cial attention was taken for mesh optimization. Mesh optimisation can be achieved
by utilising various remeshing techniques and error norms e.g. Zienkiewicz and
Zhu (1987).

3 Numerical examples

3.1 The dislocation loop in an infinite medium

In order to test the accuracy of the proposed method, we selected to check the
existing analytical solutions for several cases. The simplest case is to consider
a circular dislocation loop in an infinite isotropic medium (the geometry of the
problem is shown again on Fig. 1).

This problem was studied by Kroupa (1960) and Bullough and Newman (1960).
Based on Kroupa’s work, Gavazza and Barnett (1976) presented the equation for
the self-force per unit dislocation length (tending to shrink the dislocation loop),
which is

fr = fcut + ftube =− µb2

4π (1−ν)R

(
ln
(

8R
ε

)
−1
)
− µb2 (3−2ν)

16π (1−ν)2 R
(24)
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In eq. (24), R≡ rd is the dislocation loop radius and εis the radius of the dislocation
core which, from a physical point of view, has magnitude ε ≈ bz. Strictly speaking,
the energy density cannot be described inside the core by classic elasticity.

Lubarda and Markenscoff (2007) presented a solution for an edge dislocation which
can be used to give an estimation of the core radius. They showed that the width
of the dislocation is the region within which the slip discontinuity is less than bz/2,
when the maximum discontinuity is bz. Following their suggestion, we considered
ε = bz for all our computations, based on the linear distribution of bz within one
element which plays the role of the dislocation width and has size h = bz.

The stress distribution around a Volterra dislocation loop, in the context of isotropic
linear elasticity, is given by Khraishi et al. (2000):

σrr =−Gbz

π
[C1E(k)+C2K(k)]− Gbz

2π (1−ν)
[C5E(k)+C6K(k)]

σθθ =−Gbz

π
[C9E(k)+C10K(k)]− Gbz

2π (1−ν)
[C13E(k)+C14K(k)]

σzz =− Gbz

2π (1−ν)
[C17E(k)+C18K(k)]

σrz =− Gbz

2π (1−ν)
[C27E(k)+C28K(k)]

(25)

The coefficients Ci j are functions of spatial coordinates and given by the relations

C1 =
−(a+b)1/2

ρ2 , C2 =
a

ρ2 (a+b)1/2 ,

C5 =

(
a2−b2

)[
ar2

d +2ρ2
(
a−3r2

d

)]
+ p2ρ2

[
8ar2

d−
(
a2 +3b2

)]
ρ2 (a−b)2 (a+b)3/2 ,

C6 =
−
[(

a2−b2
)(

r2
d +2ρ2

)
+ p2ρ2

(
2r2

d−a
)]

ρ2 (a−b)(a+b)3/2 , C9 =

(
a2−b2

)
+ρ2

(
2r2

d−a
)

ρ2 (a−b)(a+b)1/2 ,

C10 =
ρ2−a

ρ2 (a+b)1/2 , C13 =
a
(
ρ2− r2

d

)
ρ2 (a−b)(a+b)1/2 , C14 =

−
(
ρ2− r2

d

)
ρ2 (a+b)1/2 , (26)

C17 =

(
a2−b2

)(
a−2r2

d

)
+ p2

(
a2 +3b2

)
−8ap2r2

d

(a−b)2 (a+b)3/2

C18 =
−
[(

a2−b2
)
+ p2

(
a−2r2

d

)]
(a−b)(a+b)3/2 , C27 =

−p
[
a
(
a2−b2

)
− p2

(
a2 +3b2

)]
ρ (a−b)2 (a+b)3/2 ,
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C28 =
p
[(

a2−b2
)
−ap2

]
ρ (a−b)2 (a+b)3/2

The variables a, b, ρ, r, p and k are functions of the Cartesian coordinates (x1,x2,x3)
shown in Fig. 1 and given by the relations

ρ =
(
x2

1 + x2
2
)1/2

, r =
(
ρ

2 + z2)1/2
, a = r2 + r2

d , b = 2ρrd ,

p =−z, k =
(

2b
a+b

)1/2 (27)

The terms K(k) and E(k) in eq. (25) are complete elliptic integrals of the first and
second kind respectively. Their definition is given in eq. (36).

The analytical solutions are useful only if the infinite medium is isotropic. Anisotropic
lattices with cubic crystal symmetry can be studied numerically by implementing
the elastic constants in the finite element code.

In Table 1 (Appendix A), the elastic constants ci j of the materials used in this work
are given as well as the anisotropy factor H = 2c44 + c12− c11 and the anisotropy
ratio A = 2c44

c11−c12
.

The calculation of the force (Fr,Fz)that acts on the dislocation loop is based on the
energy released by a small advancement of the dislocation in the r and z direction
respectively. Then

Fr =−∂U
∂ r

, Fz =−∂U
∂ z

(28)

where U is the total elastic energy of the material with the dislocation.

In the numerical implementation of eq. (28), we move the dislocation (and the
associate temperature distribution) by one finite element of length h in the (positive)
r and (positive) z direction, separately. Then, we compute the total energy in the
initial and in the new positions of the dislocation to find the changes of energy ∆U .
The acting forces on the dislocation forces are then

Fr =−∂U
∂ r

=−Unew−Uinitial

h
, Fz =−∂U

∂ z
=−Unew−Uinitial

h
(29)

Note that the resulting from eq. (29) force has to be divided by the loop cir-
cumference 2πR so as it can become self-force per unit length, fr = Fr/2πR and
fz = Fz/2πR.

In Fig. 4 we present some results for an isotropic material like W. For brevity, only
the normalized shear stress component σrz/G distribution is shown for material W
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(Fig. 4a). The normalized self force per unit length fr/Gbz (tending to shrink the
dislocation loop) calculation is shown in Fig. 4b. The analytical solution is denoted
by the continuous line and the FEM results are denoted by the square symbols. As
discussed before, we have assumed the dislocation core radius ε = bz. The force
in z direction is zero in this case and indeed our computations based on eq. (29b)
verified that.

At the final part of this section, the influence of the anisotropy is investigated. In
Fig. 5a, the out of plane normalized stress σzz/G distribution is shown for materials
Cu (upper part) and Cr (lower part). The isocontour spatial and shape difference is
obvious. In Fig. 5b, the normalized self force per unit length fr/Gbz is given for
isotropic W and the anisotropic Cu and Cr.

3.2 The dislocation loop near a free surface

Consider a circular dislocation loop of radius R lying in an isotropic half space at a
distance a from the free surface z = 0 as shown in Fig. 6. This problem has been
studied by Bastecka (1964). The stress fields in this case become asymmetric in the
z direction and a force towards the free surface is exerted to the dislocation loop.

An examination of Bastecka’s solution for the attractive force and its corresponding
values leads to the conclusion that the printed version of this work contains some
misprints.

The force per unit length that exerts on the dislocation loop is given by the equation

fz =
a2b2

z G
R3 (1−ν)

∫
∞

0
t3J2

1 (t)e−(2a/R)tdt (30)

where J1 denotes a Bessel function of the first kind and first order.

By introducing d = a/R and doing the integration, we obtain

fz =
b2

z G
8πR(1−ν)

{
−3d4 +7d2 +2

(1+d2)3 E
(
− 1

d2

)
+

3d4 +2d2−1

(1+d2)3 K
(
− 1

d2

)}
(31)

where K(k) and E(k) are complete elliptic integrals of the first and second kind
respectively.

Then, we calculate the theoretical values of fz for different values of d. Turning
to the finite elements, we use the methodology described in the previous section to
calculate the resulting force per unit length for the isotropic material W. The results
are presented in Fig. 6a. It is obvious that the match is almost exact.

Again, we investigate the variation of the result in anisotropic materials. In Fig. 6b,
the results for the material Cu and Cr are shown. We observe that for low values
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of a/R, anisotropy plays a significant role: the force that attracts the loop to the
surface is stronger if H < 0 and weaker if H > 0 compared to the isotropic case
H = 0.

3.3 The dislocation loop in a two phase material

3.3.1 The displacement field of the two-phase material

Consider a two-phase material, idealized as two isotropic half spaces with perfect
adhesion and a dislocation loop in a plane parallel to the interface. The geometry of
the problem is shown in Fig. 8. This problem was solved by Salamon and Dundurs
(1971).

For consistency reasons the loop radius is denoted by R and the positive z-axis is
placed as shown so that a positive force would mean attraction of the loop to the
interface. The distance from the loop to the interface is denoted by z′. The shear
modulus and the Poisson ratio of the two materials are G1,ν1 and G2,ν2 respec-
tively. The influence of the elastic constants can be reduced to two parameters α

and β (Dundurs constants)

α =
(G2/G1)(κ1 +1)− (κ2 +1)
(G2/G1)(κ1 +1)+(κ2 +1)

, β =
(G2/G1)(κ1−1)− (κ2−1)
(G2/G1)(κ1 +1)+(κ2 +1)

(32)

where κ1 = 3−4ν1 and κ2 = 3−4ν2.

The representation of the elastic fields is given through integrals of the Lipschitz-
Hankel type. The following special functions of the space coordinates are used

J(1) (m,n; p) =
∫

∞

0
Jm (t)Jn (ρt)e−|ζ−ζ ′|tt pdt

J(2) (m,n; p) =
∫

∞

0
Jm (t)Jn (ρt)e−|ζ+ζ ′|tt pdt

(33)

where Jk denotes a Bessel function of the first kind and order k. Also, the dimen-
sionless variables ρ = r/R, ζ = z/R and ζ ′ = z′/R are used.
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The displacement field in the regions I and II is given by the equations

uI
γ =

bzγ

2(κ1 +1)r

{
−(κ1−1)J(1) (1,1;0)+2

∣∣ζ −ζ
′∣∣J(1) (1,1;1)−

−
[
(α−β )κ1

1+β
− α +β

1−β

]
J(2) (1,1;0)+

+
2(α−β )

1+β

[(
ζ −κ1ζ

′)J(2) (1,1;1)+2ζ
′
ζ J(2) (1,1;2)

]}
uII

γ =−(1−α)bzγ

2(κ2 +1)r{(
κ2

1−β
− 1

1+β

)
J(1) (1,1;0)+2

(
ζ

1−β
− ζ ′

1+β

)
J(1) (1,1;1)

}
(34)

uI
z =

bz

2(κ1 +1)

{
±(κ1 +1)J(1) (1,0;0)+2

(
ζ −ζ

′)J(1) (1,0;1)+

+
[
(α−β )κ1

1+β
+

α +β

1−β

]
J(2) (1,0;0)+

+
2(α−β )

1+β

[(
ζ +κ1ζ

′)J(2) (1,0;1)+2ζ
′
ζ J(2) (1,0;2)

]}
uII

z =−(1−α)bz

2(κ2 +1){(
κ2

1−β
+

1
1+β

)
J(1) (1,0;0)−2

(
ζ

1−β
− ζ ′

1+β

)
J(1) (1,0;1)

}
(35)

In the expression of uI
z, the upper sign is to be taken for ζ − ζ ′ > 0 and the lower

for ζ −ζ ′ < 0. In the expressions of uI
γ and uII

γ , γ = x or y.

In order to evaluate numerically the equations above, it is better to use the complete
elliptical integrals representation. The special functions J (m,n; p) can be expressed
in terms of the complete elliptic integrals of the first, second and third kind

K(k) =
∫

π/2

0

(
1− k2 sin2

ϕ
)−1/2

dϕ

E(k) =
∫

π/2

0

(
1− k2 sin2

ϕ
)1/2

dϕ

ΠΠΠ(h,k) =
∫

π/2

0

(
1−hsin2

ϕ
)−1 (

1− k2 sin2
ϕ
)−1/2

dϕ

(36)

where

k2 =
4ρ

(1+ρ)2 +ξ 2
, k′2 = 1− k2 =

(1−ρ)2 +ξ 2

(1+ρ)2 +ξ 2
, h =

4ρ

(1+ρ)2 (37)
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Also, ξ = |ζ −ζ ′| for J(1) (m,n; p) and ξ = |ζ +ζ ′| for J(2) (m,n; p).
Below, we quote the necessary special functions for the calculation of the displace-
ment components.

2πJ (1,0;0) =


−kρ−1/2ξ

(
K(k)+ 1−ρ

1+ρ
ΠΠΠ(h,k)

)
+2π (ρ < 1)

−kξ K(k)+π (ρ = 1)

−kρ−1/2ξ

(
K(k)− ρ−1

ρ+1ΠΠΠ(h,k)
)

(ρ > 1)

2πJ (1,0;1) =kρ
−1/2

(
k2
(
1−ρ2−ξ 2

)
4k′2ρ

E(k)+K(k)

)

2πJ (1,0;2) =
k3ξ

4k′2ρ3/2
k4

[
1−
(
ρ2 +ξ 2

)2
]

4k′2ρ2 +3

E(k)−
k2
(
1−ρ2−ξ 2

)
4ρ

K(k)


2πJ (1,1;0) =

4
kρ1/2

[(
1− 1

2
k2
)

K(k)−E(k)
]

(38)

2πJ (1,1;1) =kρ
−3/2

ξ

[(
1− 1

2
k2
)(

k′
)−2 E(k)−K(k)

]
2πJ (1,1;2) =kρ

−3/2{
k2

4k′2ρ

[
k4ξ 2

k′2
−
(
1+ρ

2)]E(k)+

[
1−

k2
(
2− k2

)
ξ 2

8k′2ρ

]
K(k)

}
The special cases of a dislocation loop in a homogeneous medium and a dislocation
loop near a free surface can be studied using eq. (34) and (35). Ohr (1978) used
these equations to visualize the displacement fields of a dislocation loop near a free
surface (α =−1.0, β = - 0.5).

We consider a material that consists of Cu in region I to study the free surface
case. The material properties of Cu will be taken to be isotropic (see Table 1). The
distance from the dislocation loop bz to the interface is selected z′ = 10bz. The
comparison between the analytical solution and the finite elements prediction of
the displacement fields is illustrated in Fig. 9.

3.3.2 The forces acting on the dislocation loop

The existence of the bimaterial interface changes the elastic field around the dislo-
cation loop. As a result, a force is exerted on the dislocation. The force can be either
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attractive towards the interface or repulsive, depending on the elastic constants of
the two materials.

Dundurs and Salamon (1972) give the expression for the force components (per
unit length). The expression of the component fr contains the variable ε (the radius
of the dislocation core) which does not have an exact value. We will focus on
the calculation of the component fz which is of great practical value in dislocation
stacking close to bimaterial interfaces. The following special function of the space
coordinates is defined

J∗ (m,n; p) =
∫

∞

0
Jm (t)Jn (t)e−2ζ ′tt pdt (39)

where Jk denotes a Bessel function of the first kind and order k.

Then, the force per unit length of the dislocation loop is given by

fz =
2G1b2

z

(1+β )(κ1 +1)R

{
(1+α)β

1−β
J ∗ (1,1;1)+2(α−β )ζ

′2J ∗ (1,1;3)
}

(40)

Using this formula, we investigate the force distribution in a variety of material
combinations. We solve the same problems using the finite element code and the
thermal analogue and calculate the force per unit length as described in previous
sections. The results are shown in Fig. 10. The analytical results are presented on
the left side and the FEM results on the right. A force with a positive sign means
attraction of the loop to the interface (negative sign implies repulsion of the loop
from the interface). For certain material combinations, there is either attraction
or repulsion depending on the size of the loop or the distance from the interface.
To the best of our knowledge, it is the first time that eq. (40) has been checked,
independently.

3.3.3 The nano-indentation problem

In the nano-indentation problem, it is often the case that a metallic substrate is
probed by a diamond punch. Dislocation loops are often created near the surface
(Fig. 11). The stress field created by the punch forces to the substrate influences the
dislocation kinematic inside the substrate. Regardless of applied load, the punch-
substrate interface creates self-stresses that can repel or attract dislocations to the
interface. Fig. 12a indicates that a diamond punch would lead to the repulsion of
dislocations from the surface for most cases. On the other hand, a steel punch could
lead to attraction of dislocations in some cases, as shown in Fig. 12b. The present
methodology can be very useful in cases when several dislocations can be trapped
in stable or unstable locations.
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4 Conclusions

We have used a thermal analogue to describe an edge-type circular Volterra disloca-
tion loop by ordinary axisymmetric finite elements. We were able to reproduce all
available analytic solutions regarding displacement and self-stress field, as well as
the Peach-Koehler configuration forces acting on loop dislocations. Moreover, we
were able to extend the existing solution for anisotropic crystals. Our approach can
be readily implemented in any finite element code as a thermoelasticity problem.
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Appendix A Elastic constants

The elastic constants of the materials used throughout the text are listed in Table 1
(Hirth and Lothe, 1982).

Table 1: Elastic constants of the materials used in this work.

Crystal
c11 c12 c44 H

A
G

ν(
1010Pa

) (
1010Pa

) (
1010Pa

) (
1010Pa

) (
1010Pa

)
Al 10.82 6.13 2.85 1.01 1.22 2.65 0.347
Ag 12.40 9.34 4.61 6.16 3.01 3.38 0.354
Au 18.60 15.70 4.20 5.50 2.90 3.10 0.412
Cr 35.00 5.78 10.10 -9.02 0.69 11.90 0.130
Cu 16.84 12.14 7.54 10.38 3.21 5.46 0.324
Fe 24.20 14.65 11.20 12.85 2.35 8.63 0.291
Ge 12.89 4.83 6.71 5.36 1.67 5.64 0.200
K 0.457 0.374 0.263 0.443 6.34 0.17 0.312

Mo 46.00 17.60 11.00 -6.40 0.77 12.28 0.305
Na 0.603 0.459 0.586 1.028 8.14 0.38 0.201
Nb 24.60 13.40 2.87 -5.46 0.51 3.96 0.392
Ni 24.65 14.73 12.47 15.02 2.51 9.47 0.276
Pb 4.66 3.92 1.44 2.14 3.89 1.01 0.387
Ta 26.70 16.10 8.25 5.90 1.56 7.07 0.339
Th 7.53 4.89 4.78 6.92 3.62 3.40 0.254
Si 16.57 6.39 7.96 5.74 1.56 6.81 0.218
V 22.80 11.90 4.26 -2.38 0.78 4.74 0.352
W 52.10 20.10 16.00 0.00 1.00 16.00 0.278

Diamond 107.60 12.50 57.60 20.10 1.21 53.58 0.068




