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Reduced Polynomials and Their Generation in
Adomian Decomposition Methods

Jun-Sheng Duan1 and Ai-Ping Guo2

Abstract: Adomian polynomials are constituted of reduced polynomials
and derivatives of nonlinear operator. The reduced polynomials are inde-
pendent of the form of the nonlinear operator. A recursive algorithm of the
reduced polynomials is discovered and its symbolic implementation by the
software Mathematica is given. As a result, a new and convenient algorithm
for the Adomian polynomials is obtained.
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1 Introduction

The Adomian decomposition method and its modifications [Adomian (1986,
1989, 1994); Lai, Chen, and Hsu (2008); Soliman and Abdou (2008);
Wazwaz (1999, 2009); Wazwaz and El-Sayed (2001)] provide an effective
procedure for analytical solution of many kinds of, linear or nonlinear, func-
tional equations in science and engineering. The advantage of the decompo-
sition method is that it is straightforward, without restrictive assumptions,
and does not change the problem into a convenient one for the use of linear
theory.
Let us recall the basic principles of the Adomian decomposition methods.
Consider an equation in the form

Lu+Ru+Nu = g, (1)
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where L is an easily invertible linear operator, R is the remaining linear part,
N represents an analytical nonlinear operator and g is a given function.
For an initial value problem, for example, we assume that L−1Lu = u−φ .
Applying operator L−1 on both sides of (1) gives

u = φ +L−1g−L−1Ru−L−1Nu. (2)

The tactic of the method is to look for a solution in the series form u =
∑

∞
n=0 un and to decompose the nonlinear term Nu into a series

Nu =
∞

∑
n=0

An, (3)

where An depends on u0,u1, · · · ,un, called the Adomian polynomials that
are obtained for the analytical nonlinearity Nu = f (u) by the formula

An =
1
n!

dn

dλ n

[
f

(
∞

∑
n=0

unλ
n

)]
λ=0

, n = 0,1,2, · · · . (4)

The first few Adomian polynomials are

A0 = f (u0),
A1 = f ′(u0)u1,

A2 = f ′(u0)u2 + f ′′(u0)
u2

1
2! ,

A3 = f ′(u0)u3 + f ′′(u0)u1u2 + f (3)(u0)
u3

1
3! .

The decomposition method consists in identifying the un’s by means of the
formulae

u0 = φ +L−1g, (5)

un+1 =−L−1Run−L−1An,n = 0,1,2, · · · . (6)

Convergence of this method was studied in, e.g., [Abbaoui and Cherruault
(1994); Cherruault (1989); Gabet (1994); Rach (2008)].
The calculation of the Adomian polynomials is a key issue and different al-
gorithms were proposed [Abdelwahid (2003); Azreg-Aïnou (2009); Babo-
lian and Javadi (2004); Biazar and Shafiof (2007); Rach (1984, 2008);
Wazwaz (2000); Zhu, Chang, and Wu (2005)].
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Symbolic implementation of the algorithms by using software Mathematica
or Maple was considered in, e.g, [Azreg-Aïnou (2009); Chen and Lu (2004);
Choi and Shin (2003); Pourdarvish (2006)].
Most of the algorithms involve with parametrization, derivatives about the
parameter, expanding and regrouping, etc. Recursive methods for An should
be more efficient. The algorithms in [Babolian and Javadi (2004); Biazar
and Shafiof (2007)] are recursive, used self-defined operator and derivatives
about parameter, respectively.
In this article we give a new recursive algorithm for An in terms of the re-
duced polynomials.
The Rach’s Rule [Adomian (1989, 1994)] for the Adomian polynomials
reads

Am =
m

∑
k=1

f (k)(u0)C(k,m), (7)

where C(k,m) are the sums of all probably products of k components of
u whose subscripts sum to m, divided by the factorial of the number of
repeated subscripts. The explicit expression of C(k,m) is

C(k,m) = ∑
∑

m
j=1 ν j=k, ∑

m
j=1 jν j=m

uν1
1

ν1!
· · · u

νm
m

νm!
. (8)

2 Reduced polynomials and their generation

From the difference of the equations ∑
m
j=1 jν j = m and ∑

m
j=1 ν j = k one

deduces that

νm−k+2 = · · ·= νm = 0, (9)

so (8) is refined as [Azreg-Aïnou (2009)]

C(k,m) = Zm,k(u1,u2, · · · ,um−k+1)

= ∑
∑

m−k+1
j=1 ν j=k, ∑

m−k+1
j=1 jν j=m

uν1
1

ν1!
· · ·

uνm−k+1
m−k+1

νm−k+1!
. (10)

The function Zm,k is used to replace C(k,m) for convenience. Zm,k (u1,
u2, · · · , um−k+1) is a function of m− k + 1 variables, called reduced poly-
nomials. This terminology was first introduced in [Azreg-Aïnou (2009)].
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Therein the reduced polynomials are described through solving the indeter-
minate equations under the ∑ in Eq. (10), the recursive algorithm does not
be given.
We give a recursive generation method for the reduced polynomials as fol-
lows:
Algorithm for reduced polynomials:
〈1〉 For m≥ 1,k = 1,

Zm,1(u1,u2, · · · ,um) = um. (11)

〈2〉 For m≥ 2, if 2≤ k ≤
[m

2

]
, then

Zm,k(u1,u2, · · · ,um−k+1) =
k−1

∑
l=0

u1
l

l!
Zm−k,k−l(u2, · · · ,um−2k+l+2), (12)

if
[m

2

]
< k ≤ m, then

Zm,k(u1,u2, · · · ,um−k+1) =
∫ u1

0
Zm−1,k−1(u1,u2, · · · ,um−k+1)du1. (13)

Proof of the algorithm: Eq. (11) is immediate from (10). Let 2 ≤ k ≤[m
2

]
. Then in Eq. (10) ν1 can take the values 0,1, · · · ,k− 1. If ν1 = l then

ν2, · · · ,νm−k+1 satisfy

m−k+1

∑
j=2

ν j = k− l,
m−k+1

∑
j=2

jν j = m− l, 0≤ l ≤ k−1.

Hence Eq. (10) can be rewritten as

Zm,k(u1,u2, · · · ,um−k+1) =
k−1

∑
l=0

u1
l

l! ∑

∑
m−k+1
j=2 ν j = k− l

∑
m−k+1
j=2 ( j−1)ν j = m− k

m−k+1

∏
j=2

uν j
j

ν j!
.

The system of equations under ∑ is equivalent to

m−2k+l+2

∑
j=2

ν j = k− l,
m−2k+l+2

∑
j=2

( j−1)ν j = m− k,
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and

νm−2k+l+3 = · · ·= νm−k+1 = 0.

According to the definition of the reduced polynomials one derives

Zm,k(u1,u2, · · · ,um−k+1) =
k−1

∑
l=0

u1
l

l!
Zm−k,k−l(u2, · · · ,um−2k+l+2).

If
[m

2

]
< k ≤ m, from the equations ∑

m−k+1
j=1 jν j = m, ∑

m−k+1
j=1 ν j = k it fol-

lows that ν1 ≥ 1. The reduced polynomials in Eq. (10) are rewritten as

Zm,k(u1,u2, · · · ,um−k+1) =
∫ u1

0
∑

∑
m−k+1
j=1 jν j = m

∑
m−k+1
j=1 ν j = k

uν1−1
1

(ν1−1)!

m−k+1

∏
j=2

uν j
j

ν j!
du1.

On rewriting the system of equations under ∑ as

(ν1−1)+
m−k+1

∑
j=2

jν j = m−1,(ν1−1)+
m−k+1

∑
j=2

ν j = k−1,

one obtains

Zm,k(u1,u2, · · · ,um−k+1) =
∫ u1

0
Zm−1,k−1(u1,u2, · · · ,um−k+1)du1.

The proof is completed. �

Although Eq. (13) involves with integrals the calculation is very simple.

One only needs to replace uν1
1

ν1! in the expanding summation of Zm−1,k−1 (u1,

u2, · · · , um−k+1) by uν1+1
1

(ν1+1)! . If u1 does not appear in some summand we

regard u0
1

0! is contained.

From Z1,1 = u1 it follows that Z2,2 = u2
1

2 by using (13). Further from Z2,1 and

Z2,2 one obtains Z3,2 = u1u2 and Z3,3 = u3
1

3! . Z4,2 is given by using (12) from
Z2,1 and Z2,2. We give the reduced polynomials Zm,k from m = 1 to m = 6
in Tab. 1.
Symbolic implementation using Mathematica for the reduced polynomials
is as follows.
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Table 1: Reduced polynomials Zm,k(u1,u2, · · · ,um−k+1)

k=1 k=2 k=3 k=4 k=5 k=6

m = 1 u1

m = 2 u2
u2

1
2

m = 3 u3 u1u2
u3

1
3!

m = 4 u4 u1u3 + u2
2

2
u2

1
2 u2,

u4
1

4!

m = 5 u5 u1u4 +u2u3
u2

1
2 u3 +u1

u2
2

2
u3

1
3! u2

u5
1

5!

m = 6 u6
u1u5 +u2u4

+u2
3

2

u2
1

2 u4 +u1u2u3

+u3
2

3!

u3
1

3! u3 + u2
1

2
u2

2
2

u4
1

4! u2
u6

1
6!

poly[n_]:=Module[{Z,U},Z=Table[0,{i,1,n},{j,1,i}];
Z[[1,1]]=Subscript[u,1];U=Table[Subscript[u,1]^l/l!,{l,0,n}];
For[m=2,m<=n,m++,Z[[m,1]]=Subscript[u,m];
For[k=2,k<=Floor[m/2],k++,
Z[[m,k]]=Expand[Take[U,k].(Table[Z[[m-k,k-l]],{l,0,k-1}]/.

Table[Subscript[u,i]->Subscript[u,i+1],{i,1,n}])]];
For[k=Floor[m/2]+1,k<=m,k++,
Z[[m,k]]=Integrate[Z[[m-1,k-1]],Subscript[u,1]]]];

Z];

Further the Adomian polynomials are given by the following Mathematica
program.

Ado[n_]:=Module[{Z,dir},Z=poly[n];
dir=Table[D[f[Subscript[u,0]],{Subscript[u,0],k}],{k,1,n}];
For[m=1,m<=n,m++,Subscript[A,m]=Take[dir,m].Z[[m]]]];

We illustrate the calculation and use of Adomian polynomials by some ex-
amples.
Example 1. Consider the Riccati equation

u′(t) = u2, 0 < t < 1, u(0) = 1.

The exact solution of the equation is u∗(t) = 1
1−t ,0≤ t < 1.
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Integrating the equation yields

u = 1+
∫ t

0
u2dt.

Let u = ∑
∞
n=0 un. The Adomian polynomials for u2 are

A0 = u2
0, A1 = 2u0u1, A2 = u2

1 +2u0u2, A3 = 2u1u2 +2u0u3,

A4 = u2
2 +2u1u3 +2u0u4, · · · .

By iteration

u0 = 1, un =
∫ t

0 An−1dt,n = 1,2, · · · ,

we obtain

u1 = t, u2 = t2, u3 = t3, u4 = t4, · · · .

The solution is derived

u(t) = 1+ t + t2 + t3 + · · ·= 1
1− t

,0≤ t < 1.

Example 2. Consider the Riccati equation

u′ = t2 +u2, u(0) = 0.

The exact solution of the equation is u∗(t) =
tJ3/4(t2/2)
J−1/4(t2/2) ,0≤ t < c [Edwards

and Penney (2004)], where Jp(z) is the Bessel function of the first kind,
c = 2.00315 · · · satisfies u∗(t)→+∞, as t→ c−.

By integrations we get

u =
t3

3
+
∫ t

0
u2dt.

Applying the iteration

u0 = t3

3 , un =
∫ t

0 An−1dt,n = 1,2, · · · ,
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Table 2: Error |φ22(t)−u∗(t)|

t error

0.0 0.0

0.2 4.33681×10−19

0.4 1.04083×10−17

0.6 0.0

0.8 2.77556×10−17

1.0 5.55112×10−17

1.2 4.44089×10−16

1.4 1.82077×10−14

1.6 4.42956×10−9

1.8 0.000340938

Table 3: Error |φ5(t)−u∗(t)|

t error

0.5 1.28231×10−14

1.0 1.18104×10−10

1.5 1.77473×10−8

2.0 4.6394×10−7

2.5 3.51076×10−6

3.0 5.13328×10−6

3.5 0.000256459

4.0 0.00213891

4.5 0.0108976

5.0 0.0407117

the n-term approximation φn = ∑
n−1
i=0 ui can be obtained. Using the soft-

ware Mathematica we calculate 22-term approximation φ22, and the error
|φ22(t)−u∗(t)| in the interval [0, 1.8] is examined, see Tab. 2.
Example 3. Consider the pendulum equation

u′′+
1
4

sinu = 0, u(0) = 0, u′(0) =
1
2
.

The solution can be expressed as u∗(t) = 2arcsin(1
2sn( t

2 , 1
4)), where sn(z, m)

is the Jacobi elliptic function.
Integrating the equation yields

u =
t
2
− 1

4

∫ t

0

∫ t

0
sinudtdt

The Adomian polynomials for sinu are

A0 = sinu0, A1 = u1 cosu0, A2 = u2 cosu0−
u2

1
2 sinu0,

A3 =−u3
1

6 cosu0−u1u2 sinu0 +u3 cosu0, · · · .
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Using the iteration

u0 =
t
2
,un =−1

4

∫ t

0

∫ t

0
An−1dtdt,n = 1,2, · · · ,

the 5-term approximation φ5(t) is obtained with the help of the software
Mathematica

φ5 = t
2 + 1

2

(
2sin t

2 − t
)
+ 1

4

(
−5t

2 +8sin t
2 + sin t

2 −2t cos t
2

)
+

1
48

(
−3
(
2t2−83

)
sin t

2 −66t +24sin t + sin 3t
2 −78t cos t

2 −6t cos t
)
+

1
384

(
4t
(
2t2−501

)
cos t

2 −3
(
72t2 sin t

2 +8t2 sin t +469t−1936sin t
2−

232sin t−16sin 3t
2 +4t cos 3t

2 − (sin t−84t)cos t
))

.

The graphs of the functions u∗(t) and φ5(t) on the interval [0,5] are plotted
in Fig. 1.

1 2 3 4 5
t

0.2

0.4

0.6

0.8

1.0

Figure 1: The exact solution u∗(t) (solid line) and the approximate solution
φ5(t) (dashed line).

The error of the approximate solution φ5(t) on the interval [0,5] is checked,
see Tab. 3.
Example 4. Solve the inhomogeneous advection problem [Wazwaz (2009)]

ut +
1
2
(u2)x = ex + t2e2x, u(x,0) = 0.

Integrating with respect to t results in

u(x, t) = tex +
t3

3
e2x− 1

2

∫ t

0

∂

∂x
u2dt.
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Using Wazwaz’s modification of the decomposition method [Wazwaz (1999)]

u0 = tex, u1 =
t3

3
e2x− 1

2

∫ t

0

∂

∂x
A0dt,un =−1

2

∫ t

0

∂

∂x
An−1dt,n = 2,3, · · · ,

yields un = 0,n = 1,2, · · · . Thus u(x, t) = tex, which is verified to be the
solution.
In Examples 2 and 3 the programs generating the reduced polynomials and
Adomian polynomials are carried out by Mathematica 7.
Adomian polynomials occur also in the power series method (modified de-
composition method [Rach, Adomian, and Meyers (1992)]) for nonlinear
problems. For instance, consider the differential equation

u′(t)+h(t) f (u) = g(t), u(0) = a, (14)

where we suppose h(t) = ∑
∞
n=0 hntn, g(t) = ∑

∞
n=0 gntn.

Let u(t) = ∑
∞
n=0 cntn. Then f (u) = ∑

∞
n=0 An(c0,c1, · · · ,cn)tn. Substituting

into the differential equation and comparing the like power terms, and ap-
plying the initial value yield [Adomian (1994); Rach, Adomian, and Meyers
(1992)]

c0 = a,cn+1 =
1

n+1

(
gn−

n

∑
k=0

hn−kAk(c0,c1, · · · ,ck)

)
,n = 0,1, · · · . (15)

3 Conclusion

The reduced polynomials constituting Adomian polynomials are studied
and their recursive algorithms are given. Based on the algorithms the sym-
bolic implementation by the software Mathematica for the reduced polyno-
mials and Adomian polynomials is obtained. We illustrate by some nonlin-
ear examples the Adomian decomposition method gives the exact analytical
solutions or approximate analytical solutions.
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