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A Backward Group Preserving Scheme for
Multi-Dimensional Backward Heat Conduction Problems
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Abstract: In this article, we propose a backward group preserving scheme (BGPS)
to tackle the multi-dimensional backward heat conduction problem (BHCP). The
BHCP is well-known as severely ill-posed because the solution does not continu-
ously depend on the given data. When eight numerical examples (including non-
linear and nonhomogeneous BHCP, and Neumann and Robin conditions of homo-
geneous BHCP) are examined, we find that the BGPS is applicable to the multi-
dimensional BHCP. Even with noisy final data, the BGPS is also robust against
disturbance. The one-step BGPS effectively reconstructs the initial data from the
given final data, which with a suitable grid length produces a highly accurate so-
lution never seen before. The results are very important in the computations of
multi-dimensional BHCP.

Keywords: Nonlinear backward heat conduction problem, Strongly ill-posed prob-
lem, Nonhomogeneous heat conduction equation, Backward group preserving scheme
(BGPS), Group preserving scheme (GPS)

1 Introduction

Heat conduction problems that appear from engineering applications are usually di-
vided into direct heat conduction problems and inverse heat conduction problems.
Among the inverse heat conduction problems, the backward heat conduction prob-
lems (BHCPs) are the most strongly ill-posed ones since the solution is unstable
for any given final data. Many methods have been proposed for solving the ho-
mogeneous BHCP, for example, the boundary element method [Han, Ingham and
Yuan (1995)], the iterative boundary element method [Mera, Elliott, Ingham and
Lesnic (2001); Mera, Elliott and Ingham (2002); Jourhmane and Mera (2002)],
the explicit inversion algorithm and the sequential scheme of inversion [Muniz, de

1 Grid Applied Technology Division, National Center for High-Performance Computing, Taichung
40763, Taiwan. Corresponding author, E-mail: d93510002@ntou.edu.tw

2 Department of Civil Engineering, National Taiwan University, Taipei 10617, Taiwan



240 Copyright © 2010 Tech Science Press CMES, vol.59, no.3, pp.239-274, 2010

Campos Velho and Ramos (1999)], the Tikhonov regularization, maximum entropy
principle and truncated singular value decomposition [Muniz, Ramos and de Cam-
pos Velho (2000)], the operator-splitting methods [Kirkup and Wadsworth (2002)],
the regularized successive over-relaxation inversion [Liu (2002)], the method of
fundamental solutions and the standard Tikhonov regularization technique [Mera
(2005)], and the high order lattice-free finite difference method [Iijima (2004)].

Recently, Liu, Chang and Chang (2006) have employed the backward group pre-
serving scheme (BGPS) to tackle the nonhomogeneous BHCP. Lack of need for a
priori regularization in use, makes the BGPS more appealing for inverse problems
with a final value problem. Actually the BGPS was an extension of the work by
Liu (2004) by taking time regression of equations into account in the formation of
backward group theory. In the paper of Liu (2004), the group preserving scheme
(GPS) was first adopted to deal with the nonhomogeneous BHCP because the GPS
[Liu (2001)] was an effective numerical approximation for solving nonlinear dif-
ferential equations. The BHCP has been solved by using the BGPS [Liu, Chang
and Chang (2006)], and the Lie-group shooting method (LGSM) [Chang, Liu and
Chang (2007)] to a moderate time span, and Liu (2004) utilized two transformations
to resolve BHCPs; nevertheless, he did not consider how the final time data were
affected by noises. Later, Liu, Chang and Chang (2006) proposed an explicit single-
step algorithm to resolve BHCPs, but they could not tackle the BHCPs with time
varying boundary conditions very well when there were noisy final data. Recently,
Chang, Liu and Chang (2007) and Chang, Liu and Chang (2009) have used the
numerical implementation of quasi-reversibility together with the time-direction
LGSM to solve the BHCP and obtained good results. Besides, Chang, Liu and
Chang (2010a) and Chang, Liu and Chang (2010b) used the quasi-boundary semi-
analytical approach to tackle BHCPs and achieved nearly exact solutions. A recent
review of the numerical BHCP was provided by Chiwiacowsky and de Campos
Velho (2003).

For the multi-dimensional nonlinear and nonhomogeneous BHCPs, Long and Dinh
(1994) proposed the regularization method to tackle the nonlinear BHCP, but its
maximum error is quite large over 0.2. After that, Feng, Qian and Fu (2008)
used the Tikhonov regulization method to deal with the nonhomogeneous BHCP.
However, this approach did not give good results even with a small final time T =
0.1. Later, the quasi-reversibility method for the nonhomogeneous BHCP was em-
ployed by Trong and Tuan (2006). Although the approach gave good results, the
retrieved time T = 0.5 is still small. Nevertheless, Trong and Tuan (2009a) used a
method of integral equation to resolve the nonlinear BHCP, and they reported that
regularized results are better than their previous results [Trong, Quan, Khanh and
Tuan (2007); Trong and Tuan (2008b)]. Apart from this, Trong and Tuan (2008a)
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proposed a simple and convenient regularization method to tackle the nonhomoge-
neous BHCP. However, they claimed that the regularized results are better than their
previous results [Trong and Tuan (2006)]. For the two-dimensional (2-D) BHCP,
Trong and Tuan (2009b) employed a truncated Fourier series method to solve the 2-
D nonlinear BHCP, but this approach was complicated. After that, Tuan and Trong
(2009) adopted a new regularized method to deal with the 2-D nonhomogeneous
BHCP.

The BHCP is unlike the sideways heat conduction problem recently reviewed and
calculated by Chang, Liu and Chang (2005). The degree of the ill-posedness of
BHCP is greater than that of the sideways heat conduction problem, which is coped
with by the reconstruction of unknown boundary conditions.

The present paper is organized as follows. Section 2 illustrates the multi-dimensional
nonlinear and nonhomogeneous BHCP and its final condition, boundary conditions
and semi-discretization. We give a sketch of the GPS for ordinary differential equa-
tions (ODEs) and derive the BGPS [Liu, Chang and Chang (2006); Liu (2006); Liu,
Chang and Chang (2010)] for the backward differential equations system in Section
3. In Section 4, we employ the semi-discretization and a one-step BGPS to solve
some numerical examples. Finally, we draw some conclusions in Section 5.

2 Backward heat conduction problems

The multi-dimensional nonlinear and nonhomogeneous BHCP we ponder is re-
spectively given by the following equations:

∂u
∂ t

= γ∆u+F(u)+ f in Ω, (1)

u = uB on ΓB, (2)

u = uF on ΓF, (3)

where u is a scalar temperature field of heat distribution, F(u) is a nonlinear func-
tion of u, and f is the heat source. We take a bounded domain D in R j, j = 1,2,3
and a spacetime domain Ω = D×(0,T ) in R j+1 for a final time T > 0, and write two
surfaces ΓB = ∂D× [0,T ] and ΓF = ∂D×{T} of the boundary ∂Ω. ∆ represents the
j-dimensional Laplacian operator. While Eqs. (1)-(3) constitute a j-dimensional
backward heat conduction problem for a given boundary data uB: ΓB 7→ R and a
final data uF : ΓF 7→ R.

Applying a semi-discrete procedure to Eq. (1), yields a coupled system of ODEs:

u̇i, j,k(t)− γ

{
[ui+1, j,k(t)−2ui, j,k(t)+ui−1, j,k(t)]

(∆x)2
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+
[ui, j+1,k(t)−2ui, j,k(t)+ui, j−1,k(t)]

(∆y)2

+
[ui, j,k+1(t)−2ui, j,k(t)+ui, j,k−1(t)]

(∆z)2

}
−F(ui, j,k) = fi, j,k(t), (4)

where ∆x,∆y and ∆z are uniform spatial lengths in x, y and z directions, ui, j,k(t) =
u(i∆x, j∆y, k∆z, t), fi, j,k(t) = f (i∆x, j∆y, k∆z, t,u(i∆x, j∆y, k∆z, t)), and u̇ denotes
the differential of u with respect to t. Obviously, in Eq. (4) there are totally n3 cou-
pled nonlinear differential equations for the n3 variables ui, j,k(t), i, j, k = 1,2, · · · ,n,
which, even for a specified final time condition can be numerically integrated by
the BGPS developed in Section 3.2 for the resulting backward ODEs.

3 Numerical methods

We will divide problems and solvers into two classes: section 3.1 Forward problems
and group preserving scheme, and section 3.2 Backward problems and backward
group preserving scheme.

3.1 Forward problems and Group preserving scheme

3.1.1 Dynamics on a future cone

GPS can preserve the internal symmetry group of the considered system. For non-
linear differential equations systems, Liu (2001) has embedded them into the aug-
mented dynamical systems, which concern with not only the evolution of state
variables but also the evolution of the magnitude of state variables vector. That is,
for an n ordinary differential equations system:

ẋ = f(x, t), x ∈ Rn, t ∈ R+, (5)

we can embed it into the following n+1-dimensional augmented dynamical system:

d
dt

[
x
‖x‖

]
=

[
0n×n

f(x,t)
‖x‖

fT(x,t)
‖x‖ 0

] [
x
‖x‖

]
. (6)

Here, we assume ‖x‖> 0 and hence, the above system is well-defined.

It is obvious that the first row in Eq. (6) is the same as the original Eq. (5), but
the inclusion of the second row in Eq. (6) gives us a Minkowskian structure of the
augmented state variables of X := (xT,‖x‖)T satisfying a future cone condition as
shown in Fig. 1:

XTgX = 0, (7)
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where

g =
[

In 0n×1
01×n −1

]
(8)

is a Minkowski metric. In is the identity matrix of order n, and the superscript T
denotes the transpose. In terms of (xT,‖x‖), Eq. (7) holds, as

XTgX = x ·x−‖x‖2 = ‖x‖2−‖x‖2 = 0, (9)

where the dot between two n-dimensional vectors represents their Euclidean inner
product. The cone condition is thus the most natural constraint that we can impose
on the dynamical system (6).

Consequently, we have an n+1-dimensional augmented system:

Ẋ = AX (10)

with a constraint (7), where

A :=

[
0n×n

f(x,t)
‖x‖

fT(x,t)
‖x‖ 0

]
(11)

is an element of the Lie algebra so(n,1) of the proper orthochronous Lorentz group
SOo(n,1), satisfying

ATg+gA = 0. (12)

This fact prompts us to employ the group preserving scheme, and its discretized
mapping G exactly preserves the following properties:

GTgG = g, (13)

detG = 1, (14)

G0
0 > 0, (15)

where G0
0 is the 00th component of G. Such G is an element of SOo(n,1). The term

orthochronous should be understood as the preservation of the sign of ‖x‖ > 0.
The discretization procedure will be presented depending on each problem after
this section.

Remarkably, the original n-dimensional dynamical system (5) in the usual Eu-
clidean space En can be embedded very naturally into an augmented n+1-dimensional
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dynamical system (10) in the Minkowski space Mn+1 and these two systems are
mathematically equivalent. Although the dimension of the new system rises by
one, Liu (2001) has shown that, under the Lipschitz condition of

‖f(x, t)− f(y, t)‖ ≤L ‖x−y‖ , ∀(x, t), (y, t) ∈ D, (16)

where D is a domain in Rn×R+, and L is known as a Lipschitz constant, the
new system has the advantage of admitting a group preserving numerical scheme
as follows:

X`+1 = G(`)X`, (17)

where X` stands for the numerical evaluation of X at the discrete time t`, and
G(`) ∈SOo(n,1) is the group evaluation at time t`.

3.1.2 GPS for forward differential equations system

To give a step by step numerical scheme, we suppose that A(`) in Eq. (10) is a
constant matrix, taking its value at the l-th step. An exponential mapping of A(`) for
the interval t` ≤ t < t` +∆t, when the time parameter t in Eq. (11) is approximately
fixed as t = t`, admits:

exp[∆tA(`)] =

In + (a`−1)
‖f`‖2 f`fT

l
b`f`
‖f`‖

b`fT
l

‖f`‖ a`

 , (18)

where

a` := cosh
(

∆t ‖f`‖
‖x`‖

)
, b` := sinh

(
∆t ‖f`‖
‖x`‖

)
. (19)

For saving notation, we use f` = f(x`, t`). Substituting the above exp[∆tA(`)] for
G(`) into Eq. (17) and taking its first row, we obtain

xl+1 = x` +
(a`−1)f` ·x` +b` ‖x`‖‖f`‖

‖f`‖2 f` = x` +η`f`. (20)

From f` ·x` ≥−‖f`‖‖x`‖, we can prove that

η` ≥
[

1− exp
(
−∆t ‖f`‖
‖x`‖

)]
‖x`‖
‖f`‖

> 0, ∀∆t > 0. (21)

This scheme is group properties preserved for all ∆t > 0.
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3.2 Backward problems and backward group preserving scheme

3.2.1 Dynamics on a past cone

Corresponding to the initial value problems governed by Eq. (5) with a specified
initial value x(0) at an initial time, for many systems in the engineering applications,
the final value problems may happen because one wants to retrieve the past histories
of state variables exhibited in the physical models. These time backward problems
of ordinary differential equations type can be described by

ẋ = f(x, t), x ∈ Rn, t ∈ R−. (22)

With a specified final value x(0) at t = 0, we intend to recover the past values of x
in the past time of t < 0.

We can embed Eq. (22) into the following n+1-dimensional augmented dynamical
system:

d
dt

[
x
−‖x‖

]
=

[
0n×n − f(x,t)

‖x‖

− fT(x,t)
‖x‖ 0

] [
x
−‖x‖

]
. (23)

It is obvious that the first row in Eq. (23) is the same as the original Eq. (22), but
the inclusion of the second row in Eq. (6) gives us a Minkowskian structure of the
augmented state variables of X := (xT,−‖x‖)T satisfying a past cone condition:

XTgX = x ·x−‖x‖2 = ‖x‖2−‖x‖2 = 0. (24)

Here, we should stress that the cone condition imposed on the dynamical system
(6) is a future cone as shown in Fig. 1, while that for the dynamical system (23) the
cone condition (24) imposed is a past cone as shown in Fig. 1.

Consequently, we have an n+1-dimensional augmented system:

Ẋ = BX (25)

with a constraint (24), where

B :=

[
0n×n − f(x,t)

‖x‖

− fT(x,t)
‖x‖ 0

]
, (26)

satisfying

BTg+gB = 0, (27)
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which is a Lie algebra so(n,1) of the proper orthochronous Lorentz group SOo(n,1).
The term orthochronous used here is referred to the preservation of the sign of
−‖x‖< 0.

According to the above Lie algebra property of B, we can derive a backward group
preserving scheme as Eq. (17) for Eq. (10):

X`−1 = G(`)X`. (28)

The above is a backward single-step numerical scheme. Below we derive a group
preserving scheme for Eq. (25).

3.2.2 BGPS for backward differential equations system

Similarly, by assuming that B(`) is a constant matrix, an exponential mapping of
B(`) admits a closed-form representation:

exp[−∆tB(`)] =

In + (a`−1)
‖f`‖2 f`fT

l
b`f`
‖f`‖

b`fT
l

‖f`‖ a`

 , (29)

where a` and b` are still defined by Eq. (19).

Substituting the above exp[−∆tB(`)] for G(`) into Eq. (28) and taking its first row,
we obtain

x`−1 = x` +
(a`−1)f` ·x`−b` ‖x`‖ ‖f`‖

‖f`‖2 f` = x` +η`f`. (30)

From f` ·x` ≤ ‖f`‖ ‖x`‖, we can prove that

η` ≤
[

exp
(
−∆t ‖f`‖
‖x`‖

)
−1
]
‖x`‖
‖f`‖

< 0, ∀∆t > 0. (31)

This scheme is group properties preserved for all ∆t > 0.

Comparing Eqs. (30) with (20), we note that they have the same form except that
the sign before b` ‖x`‖ ‖f`‖ in the numerators. We will call this numerical scheme
a backward group preserving scheme (BGPS), which is slightly different from the
group preserving scheme (GPS) introduced in Section 3.2.1 for the forward differ-
ential dynamics.

4 Numerical examples

We will apply the BGPS to the calculations of BHCP through numerical examples.
We are interested in the stability of our approach when the input final measured data
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are polluted by random noise for different problems. We can evaluate the stability
by increasing the different levels of random noise in the final data:

ûF = uF + s[2R(i)−1], (32)

where uF is the final exact data, respectively. We use the function RANDOM_NUMBER
given in Fortran to generate the noisy data R(i), which are random numbers in [-1,
1], and s means the level of absolute noise. Then, the final noisy data ûF are em-
ployed in the calculations. Usually, when the exact data is small, we use the relative
random noise to represent noise

sr =
s∣∣umax
F

∣∣ ×100%, (33)

where umax
F is the maximum exact data.

4.1 Example 1

Consider the following one-dimensional homogeneous BHCP:

ut = γuxx, 0 < x < π , 0 < t < T, (34)

with the Robin boundary condition

ux(0, t) = ux(π, t)+u(π, t) = 0, (35)

and the initial condition

u(x,0) = cos(5x). (36)

Here, the final data is calculated by the GPS with a time increment ∆t = 0.001 and
a grid length ∆x = π/100:

g(x) = u(x,T ), T > t ≥ 0. (37)

In the literature, this one-dimensional BHCP often arose in the area of archeology
[Li and Liu (2005)]. For this computational example, we have taken γ = 0.01, T =
0.5, 1 and 5, and calculated this example by the one-step BGPS. The accuracy as
can be seen from Fig. 2(a) is rather good. Li and Liu (2005) have calculated this
example by the Morozov discrepancy principle and shown that this method does
not give satisfactory results with terminal times T = 0.5, 1, 5 as shown in their
Figure 3.
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Figure 1: The construction of deleted cones in the Minkowski space for forward and
backward problems signifies a conceptual breakthrough. The trajectory observed
in the state space x is a parallel projection of the trajectory in the null cones along
the ‖x‖ or −‖x‖-axis.

In this example, when the input final measured data are polluted by random noise,
we are concerned about the stability of BGPS, which is investigated by adding the
level of random noise on the final data. The results of T = 0.5 are compared with
the numerical result without considering the relative random noise in Fig. 3. Note
that the relative noise level with sr = 0.2% disturbs the numerical solutions a little
from that without adding the noise.
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Figure 2: Comparisons of the exact solutions and numerical solutions with final
times T = 0.5, 1, 5, and the corresponding numerical errors.

4.2 Example 2

The following one-dimensional homogeneous BHCP is considered:

ut = uxx, 0 < x < π , 0 < t < T, (38)

with the Neumann boundary conditions

ux(0, t) = ux(π, t) = 0, (39)
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Figure 3: Comparisons of numerical solutions were made in (a) with different levels
of noise sr = 0, 0.2%, and (b) the corresponding numerical errors.

and the final time condition

u(x,T ) = e−T cos(x). (40)

The data to be retrieved is given by

u(x, t) = e−tcos(x), 0≤ t < T . (41)

Fig. 4 demonstrates the numerical results and numerical errors for the final time



A Backward Group Preserving Scheme 251

0.0 0.8 1.6 2.4 3.2

x

0.0E+0

2.2E-3

4.4E-3

6.6E-3 (b)

-1.0

-0.5

0.0

0.5

1.0

u(
x,

0)

0.0 0.8 1.6 2.4 3.2

(a)

Exact
   =  10

E
rr

or
 o

f 
u(

x,
0)

T

 

Figure 4: Comparisons of the exact solutions and numerical solutions with the final
time T = 10, and the corresponding numerical errors.

of T = 10 is in the order of O(10−5). We attempt to use the BGPS to retrieve
the desired initial data of cosx, which are in the order of O(1). The final time of
Example 2 is calculated by the BGPS with one step but keeps ∆x = 1/200. Upon
comparing with the numerical results of T = 0.005 in Li and Liu (2005) with that
from the Morozov discrepancy principle, we can say that the BGPS is much better
than the Morozov discrepancy principle.

The results under noise are compared with the numerical result without considering
the relative random noise in Fig. 5(a). The numerical errors are presented in Fig.
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Figure 5: Comparisons of numerical solutions were made in (a) with different levels
of noise sr = 0, 0.2%, and (b) the corresponding numerical errors.

5(b), which are smaller than 0.12. Note that the relative noise level with sr = 0.2%
disturbs the numerical solutions a little from that without considering the noise.

4.3 Example 3

The following one-dimensional nonhomogeneous BHCP is considered:

ut = uxx +2etsin(x), 0 < x < π , 0 < t < T, (42)
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with the boundary conditions

u(0, t) = u(π, t) = 0, (43)

and the final time condition

u(x,T ) = eTsin(x). (44)

The data to be retrieved is given by

u(x, t) = etsin(x), 0≤ t < T . (45)

Fig. 6 presents the numerical results and numerical errors for the final time of T =
10. The final time of Example 3 is also calculated by the BGPS with one step but
keeping ∆x = 1/75. Upon comparing with the numerical results in [Trong and Tuan
(2006); Trong and Tuan (2008a)] with that from the quasi-reversibility method (see
Table 1 of the above cited papers), we can say that the BGPS does not need to use
the regularization technique and still obtain good results.

In the case, adding a relative noise with level sr = 0.2% on the input final data, we
plotted the numerical result in Fig. 7(a) by the dotted line. Note that the accuracy
is still better than the order of 10−1 even under a disturbance.

4.4 Example 4

Let us consider another one-dimensional nonhomogeneous BHCP:

ut = uxx−2e−(x+t), 0 < x < π , 0 < t < T, (46)

with the time varying boundary conditions

u(0, t) = e−t , u(π, t) = e−(π+t), (47)

and the final time condition

u(x,T ) = e−(x+T ). (48)

The exact solution is given by

u(x, t) = e−(x+t). (49)

Fig. 8 shows the numerical results and numerical errors for the final time of T =
10. The final time of Example 4 is also calculated by the BGPS with one step but
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Figure 6: Comparisons of the exact solutions and numerical solutions with the final
time T = 10, and the corresponding numerical errors.

keeping ∆x = 1/90. Upon comparing with the numerical results of T = 0.1 in [Feng,
Qian and Fu (2008)] with that from the Tikhonov regularization method (see Figs.
4 and 5 of the above cited paper), we can say that the BGPS does not require to
employ the regularization technique and still attain good results.

In the instance, adding a relative noise with level sr = 0.6% on the input final data,
we plotted the numerical result in Fig. 9(a) by the dotted line. Note that the accu-
racy is still better than [Feng, Qian and Fu (2008)] even under a disturbance.
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Figure 7: Comparisons of numerical solutions were made in (a) with different levels
of noise sr = 0, 0.2%, and (b) the corresponding numerical errors.

4.5 Example 5

The following one-dimensional nonlinear BHCP is considered:

ut = uxx +F(u)+2etsin(x)− e4tsin4(x), 0 < x < π , 0 < t < T, (50)

with the boundary conditions

u(0, t) = u(π, t) = 0, (51)
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Figure 8: Comparisons of the exact solutions and numerical solutions with the final
time T = 10, and the corresponding numerical errors.

and the final time condition

u(x,T ) = eTsin(x), (52)

where F(u) =


u4 u ∈ [−e10, e10]
−e10

e−1 u+ e41

e−1 u ∈ (e10, e11]
e10

e−1 u+ e41

e−1 u ∈ (−e11, − e10]
0 |u|> e11

.
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Figure 9: Comparisons of numerical solutions were made in (a) with different levels
of noise sr = 0, 0.6%, and (b) the corresponding numerical errors.

The data to be retrieved is given by

u(x, t) = etsin(x), 0≤ t < T . (53)

Fig. 10 displays the numerical results and numerical errors for the final time of T
= 1. This example is also calculated by the BGPS with one step but keeping ∆x
= 1/295. Upon comparing with the numerical results in [Trong and Tuan (2009a)]
with that from the method of integral equation (see Table 2 of the above cited pa-
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Figure 10: Comparisons of the exact solutions and numerical solutions with the
final time T = 1, and the corresponding numerical errors.

per), and in [Nam (2010)] with that from the truncation method (see Table 1 of the
above cited paper), we can say that the BGPS does not need to use those complex
procedures (e.g., the regularization technique, the method of integral equation) and
still obtain good results. Besides, we give a more ill-posed example than the one
above by employing the BGPS. Let T = 7.5. The final data are large and on the or-
der of O(103). In Fig. 11(b), the errors of numerical solutions calculated by BGPS
with one step and ∆x = 1/40, and note that the accuracy is the order of 10−3.
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We plotted the numerical result with adding a relative noise with level sr = 0.1% on
the input final data in Fig. 12(a) by the dotted line. Note that the accuracy is still
better than the order of 10−2 even under a disturbance.
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Figure 11: Comparisons of the exact solutions and numerical solutions with the
final time T = 7.5, and the corresponding numerical errors.
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Figure 12: Comparisons of numerical solutions were made in (a) with different
levels of noise sr = 0, 0.1%, and (b) the corresponding numerical errors.

4.6 Example 6

Let us consider the two-dimensional nonhomogeneous BHCP:

ut = uxx +uyy +3etsin(x)sin(y), 0 < x < π , 0 < y < π , 0 < t < T, (54)

with the boundary conditions

u(0,y, t) = u(π,y, t) = u(x,0, t) = u(x,π, t) = 0, (55)
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Figure 13: The errors of BGPS solutions for Example 6 are plotted in (a) with T =
0.5, and in (b) with T = 16.

and the final time condition

u(x,y,T ) = eTsin(x)sin(y). (56)

The exact solution is given by

u(x,y, t) = etsin(x)sin(y). (57)
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Figure 14: The numerical errors of BGPS solutions with and without random noise
effect for Example 6 are plotted in (a) with respect to x at fixed y = π/3, and in (b)
with respect to y at fixed x = π/4.

Fig. 13(a) indicates the errors of numerical solutions obtained from the BGPS for
the case of T = 0.5 where the grid lengths ∆x = ∆y = π/295 and the time stepsize
∆t = 0.5. At the point x = 72π/295, the error is plotted with respect to y by a dashed
line, and at the point y = 97π/295, the error is plotted with respect to x by a solid
line. The latter one is smaller than the former one because the point y = 97π/295
is near the boundary. However, the errors are smaller than that calculated by Tuan
and Trong (2009) as shown in Table 1 therein.



A Backward Group Preserving Scheme 263

 

 

 

Figure 15: The exact solution for Example 6 of two-dimensional nonhomogeneous
BHCP with T = 0.25 are shown in (a), in (b) the BGPS solution without random
noise effect, and in (c) the FTIM solution with random noise.
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Figure 16: The errors of BGPS solutions for Example 7 are plotted in (a) with T =
1, and in (b) with T = 8.5.

To give a stringent test of the BGPS when applied the BGPS to this example, we
let T = 16, and the final data is very large in the order of O(107). However, we
can use the BGPS to retrieve the desired initial data sinβxsinβy, which is in the
order of O(1). The errors of numerical solutions calculated by the BGPS with
∆x = ∆y = π/180 and one step in the calculation are shown in Fig. 13(b), where at
the point x = 44π/180, the error is plotted with respect to y by a dashed line, and
at the point y = 58π/180, the error is plotted with respect to x by a solid line. For
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Figure 17: The numerical errors of BGPS solutions with and without random noise
effect for Example 7 are plotted in (a) with respect to x at fixed y = π/3, and in (b)
with respect to y at fixed x = π/4.

this very difficult problem, the BGPS proposed here is also good with a maximum
error 1.28×10−2.

In Fig. 14, we compare the numerical errors with T = 0.25 for two cases: one
without the random noise and the other with the relative random noise in the level
of sr = 0.02%. The exact solutions and numerical solutions are plotted in Figs.
15(a)-(c) sequentially. Even under the noise, the numerical solution displayed in
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Figure 18: The exact solution for Example 7 of two-dimensional nonlinear BHCP
with T = 0.25 are shown in (a), in (b) the BGPS solution without random noise
effect, and in (c) the BGPS solution with random noise.
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Figure 19: The numerical errors of BGPS solutions with and without random noise
effect for Example 8 are plotted in (a) with respect to x at fixed y = 0.3 and z = 0.8,
(b) with respect to y at fixed x = 0.1 and z = 0.8, and (a) with respect to z at fixed x
= 0.1 and y = 0.3.

Fig. 15(c) is a good approximation to the exact initial data as shown in Fig. 15(a).



268 Copyright © 2010 Tech Science Press CMES, vol.59, no.3, pp.239-274, 2010

 

 

 

 
Figure 20: The exact solution for Example 8 of three-dimensional nonhomoge-
neous BHCP with T = 0.25 are shown in (a), in (b) the BGPS solution without
random noise effect, and in (c) the BGPS solution with random noise.
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Figure 21: The errors of BGPS solutions for Example 8 with T = 1.5.

4.7 Example 7

Let us then consider the simple two-dimensional Allen-Cahn equation:

ut = uxx +uyy +u−u3 +2etsin(x)sin(y)+e3tsin3(x)sin3(y), 0 < x < π , 0 < y < π , 0 < t < T,

(58)

with the boundary conditions

u(0,y, t) = u(π,y, t) = u(x,0, t) = u(x,π, t) = 0, (59)

and the final time condition

u(x,y,T ) = eTsin(x)sin(y). (60)

The exact solution is given by

u(x,y, t) = etsin(x)sin(y). (61)
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Fig. 16(a) indicates the errors of numerical solutions obtained from the BGPS for
the case of T = 1 where the grid lengths ∆x = ∆y = π/295 and the time stepsize
∆t = 1. At the point x = 72π/295, the error is plotted with respect to y by a dashed
line, and at the point y = 97π/295, the error is plotted with respect to x by a solid
line. The latter one is smaller than the former one because the point y = 97π/295,
is near the boundary. Furthermore, the errors are much smaller than that calculated
by Trong and Tuan (2009b) as shown in Table therein.

When applied the BGPS to this instance, we give a strict test of the BGPS, let T =
8.5, and the final data is large in the order of O(104). Nevertheless, we can use the
BGPS to retrieve the desired initial data sinxsiny, which is in the order of O(1). The
errors of numerical solutions calculated by the BGPS with ∆x = ∆y = π/40 and one
step in the calculation are shown in Fig. 16(b), where at the point x = 9π/40, the
error is plotted with respect to y by a dashed line, and at the point y = 12π/40, the
error is plotted with respect to x by a solid line. For this very difficult problem, the
BGPS proposed here is also good with a maximum error 7×10−3.

In Fig. 17, we compare the numerical errors with T = 0.25 for two cases: one
without the random noise and the other with the relative random noise in the level
of sr = 0.02%. The exact solutions and numerical solutions are plotted in Figs.
18(a)-(c) sequentially. Even under the noise, the numerical solution displayed in
Fig. 18(c) is a good approximation to the exact initial data as presented in Fig.
18(a).

4.8 Example 8

Let us consider a three-dimensional nonhomogeneous BHCP:

ut = uxx +uyy +uzz +4π
2eπ2tsin(πx)sin(πy)sin(πz),

0 < x < 1, 0 < y < 1, 0 < z < 1, 0 < t < 1, (62)

with the boundary conditions

u(0,y,z, t) = u(1,y,z, t) = u(x,0,z, t) = u(x,1,z, t) = u(x,y,0, t) = u(x,y,1, t) = 0,

(63)

and the final time condition

u(x,y,z,T ) = eπ2T sin(πx)sin(πy)sin(πz). (64)

The exact solution is given by

u(x,y,z, t) = eπ2tsin(πx)sin(πy)sin(πz). (65)
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In Fig. 19, we compare the numerical errors with T = 0.25 for two cases: one
without the random noise and the other with the relative random noise in the level
of sr = 0.02%. The exact solutions and numerical solutions are plotted in Figs.
20(a)-(c) sequentially. Even under the noise, the numerical solution displayed in
Fig. 20(c) is a good approximation to the exact initial data as displayed in Fig.
20(a).

In Fig. 21, we compare the numerical errors with T = 1.5, where the grid lengths
are taken to be ∆x = ∆y = ∆z = 1/20, the time stepsize is taken to be ∆t = 1.5. At
the point x = 0.1 the error is plotted with respect to y and z by a dashed line, at the
point y = 0.3 the error is plotted with respect to x and z by a solid line, and at the
point z = 0.8 the error is plotted with respect to x and y by a dotted line. The latter
one is smaller than the former two because the point z = 0.8 is near the boundary.
This example is a hard BHCP problem to test the numerical performance of novel
numerical approaches. Nevertheless, to the authors’ best knowledge, there has been
no report that numerical approaches can calculate this ill-posed multi-dimensional
nonhomogeneous BHCP very well as our method.

5 Conclusions

The multi-dimensional nonlinear and nonhomogeneous BHCPs have been calcu-
lated by the formulation with a semi-discretization of the spatial coordinate of back-
ward heat conduction equations in conjunction with the backward group preserving
numerical integration scheme. In this paper, we are interested in this numerical in-
tegration problem, where the pivotal point is the establishment of a past cone and a
BGPS. In addition, we can erect a past cone, Lie algebra and Lie group delineation
of the backward problems governed by differential equations. Eight numerical ex-
amples of the multi-dimensional nonlinear and nonhomogeneous BHCP work, and
we display, on the basis of those numerical instances, that the BGPS is applica-
ble to the multi-dimensional nonlinear and nonhomogeneous BHCP, even for the
very strongly ill-posed ones. The numerical errors of our approach are in the order
of O(10−3)–O(10−7). Under specific time stepsizes and grid spacing lengths, the
BGPS can produce an accurate result, and the implementation is simple. More-
over, the efficiency of one-step BGPS is rooted in the closure property of the Lie
group that we use it to construct the numerical method for the multi-dimensional
nonlinear and nonhomogeneous BHCP.
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