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A new incompressible Navier-Stokes solver combining
Fourier pseudo-spectral and immersed boundary methods
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Abstract: A new numerical methodology combining Fourier pseudo-spectral
and immersed boundary methods - IMERSPEC - is developed for fluid flow prob-
lems governed by the incompressible Navier-Stokes equations. The numerical al-
gorithm consists in a classical Fourier pseudo-spectral methodology using the col-
location method where wall boundary conditions are modelled by using an im-
mersed boundary method (IBM). The performance of that new methodology is
exemplified in two-dimensional numerical simulations of Green-Taylor decaying
vortex, lid-driven cavity and flow over a square cylinder. The convergence rate, the
accuracy, the influence of the Reynolds number and the external domain size are
analyzed. This new method combines some advantages of high accuracy and low
computational cost provided by Fourier pseudo-spectral methods (FPSM) with the
possibility of tackling complex geometries given by immersed boundary method.
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1 Introduction

The last two decades a lot of effort has been spent by the fluid dynamic scientific
community to address two crucial but conflicting key issues in the science of com-
putational fluid dynamics (CFD). These are associated with a needind to model
increasingly complex boundary conditions in one hand, and requiring high accu-
racy on the other [Ferziger and Peric (1996)].

The great majority of engineering and geophysical fluid flow problems are char-
acterized by highly complex geometries that arising mainly from the geometry of
boundary conditions, which are often associated with the presence of solid, moving
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or flexible walls. The flow inside combustion chambers, around moving vehicles,
inside deformable, or elastic, biological bodies are just a few common examples of
fluid flow problems where geometrical complex wall boundaries normally compli-
cate the numerical algorithm.

In order to be able to cope with complex boundary conditions, whole families of
numerical techniques and methods have been developed. A method widely used
consists in representing the geometry with body-fitted coordinates. Curvilinear
grids [Marchioli, Armenio, and Soldati (2007)], non-orthogonal grids [Xu and
Zhang (1999); Sousa (2005)], and non-structured grids [Mavriplis (1997); Barton,
Markham-Smith, and Bressloff (2002)] that represent three different approaches
within this strategy.

However, increasing topological and geometrical complexity of the computational
grids tend to be associated with a decreasing of the overall accuracy of numeri-
cal methods. For instance, most non-structured Navier-Stokes solvers display less
than two order of accuracy. Indeed, to produce a non-structured fluid flow code
with second order accuracy remains a formidable challenge [Kobayashi, Pereira,
and Pereira (1999)]. Another greater problem related to these approaches is their
extremely high computational cost, both in terms of CPU time and memory stor-
age. This fact alone, probably, stands for the reason preventing a wider use of
large-eddy simulations (LES) of turbulent flows in complex geometries which are
usually associated with engineering applications.

The quest for high order accuracy has also been the subject of some numerical
development [Lele (1992); Karniadakis and Sherwin (1999)]. A highly accurate
Navier-Stokes solver allows to obtain a better solution of a given flow problem in a
given grid, or a smaller grid size, than as compared with a less accurate code.

In terms of high order accuracy, the family of the so called spectral methods [Canuto,
Hussaini, Quarteroni, and Zang (1987)] has been virtually unsurpassed. Spectral
methods are characterized by exponential convergence to the exact solution with
increasing grid size. Within the family of spectral methods, the classical pseudo-
spectral collocation method is probably the most impressive due to its extremely
high accuracy and its low computational cost in terms of memory storage. More-
over, since the pressure terms in the Navier-Stokes equations can be lumped to-
gether with the non-linear term (see section 2), the pseudo-spectral collocation
method does not require the solution of a Poisson equation for the pressure field,
which results in an unusually fast time stepping procedure. These classical meth-
ods, however, are in general not applicable to complex flow geometries. The col-
location method in particular, can be only used in flows with periodic boundary
conditions directions, which excludes its use in most general engineering configu-
rations.
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Recently, new numerical methodologies have appeared allowing the inclusion of
geometrically complex boundary conditions without increasing considerably the
computational cost and complexity of the computational grids, namely, virtual
and immersed boundary methods [Peskin (1972, 1977); Unverdi and Tryggvason
(1992); Goldstein, Adachi, and Sakata (1993); Mittal and Iaccarino (2005); Choi,
Oberoi, Edwards, and Rosati (2007)] which make possible by adding a source term
to the Navier-Stokes equations, to include relatively complex shapes of wall bound-
aries in what are essentially algorithms designed for Cartesian meshes.

These methods have been used successfully in a variety of flow configurations
within finite-difference [Silva, Silveira-Neto, and Damasceno (2003)] and finite-
volume methods [Johansen and Collela (1998); Silvestrini and Lamballais (2002)],
to more complex applications involving the simulation of the flow field past a pick-
up truck [Kalitzin and Iccarino (2003)]. These methods have produced good results
with smaller computational costs than other more conventional methods using non-
orthogonal or non-structured grids (see [Iaccarino and Verzicco (2003); Kim, Kim,
and Choi (2001)]). Despite the continuous improvement in the immersed boundary
methods, the main drawback of these methods are their relatively small accuracy
near the walls, which is caused by the relatively small number of grid points used to
define them (e.g. see [Silva, Silveira-Neto, and Damasceno (2003); Lai and Peskin
(2000); Peskin (2002)]).

The goal of the present work is to develop a new method for simulating incom-
pressible flows with wall boundary conditions, which combines the accuracy and
low computational cost of the classical Fourier pseudo-spectral method with flex-
ibility in handling complex geometries allowed by the immersed boundary meth-
ods. We introduce, specifically, the IMERSPEC method, which combines a classi-
cal pseudo-spectral (collocation) method [Canuto, Hussaini, Quarteroni, and Zang
(1987)], where any spatial derivative is computed with spectral accuracy, with an
immersed boundary method, which, in order to model the effects arising from
the presence of complex shape wall boundaries we use the technique proposed
by [Silva, Silveira-Neto, and Damasceno (2003)] named Virtual Physical Model -
VPM.

The first tests of IMERSPEC methodology, simulations of classical CFD problems
are carried out with cartesian geometries and coincidence between Eulerian col-
location points and Lagrangian interface (for more details see section 2). Despite
flow simulations over simple geometry this strategy allowed to validate the method-
ology. Furthermore, several problems can be solved with cartesian geometries, for
example, free shear flows (jets, mixing layers), flat plate boundary layer and impo-
sition of boundary conditions. In this paper, simulations of lid driven cavity flow
and flow over square cylinder are performed. It is interesting to observe the compu-
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tational efficiency of Fourier pseudo-spectral method even it requires extra buffer
domain.

The present paper is organized as follows. Sec. 2 focuses on the philosophy of the
present methodology and describes the mathematical formulation of the pseudo-
spectral and immersed boundary methods. Sec. 3 describes the numerical methods
and computational details of the presented simulations. The results are discussed
in Sec. 4, first beginning with a verification of the pseudo-spectral schemes in
the Taylor-Green flow [Taylor and Green (1937)] and before presenting the results
obtained in the lid-driven cavity [Ghia, Ghia, and Shin (1982)]. For this flow con-
figuration, the effects of resolution, Reynolds number, and external domain size are
analyzed in detail through comparisons obtained from the literature [Ghia, Ghia,
and Shin (1982); Hou, Zou, Chen, Doolen, and Cogley (1995); Botella and Peyret
(1998); Erturk, Corke, and Göcçöl (2005)]. In addition, the IMERSPEC method-
ology is also applied to the flow over a square cylinder [Sohankar (2006); Chen,
Chang, and Sun (2007)]. Finally, in Sec. 5, an overview of the main results and
conclusions are presented.

2 Mathematical formulation

The main idea of the present methodology consists in merging the immersed bound-
ary concept into a classical Fourier pseudo-spectral method. We start writing the
governing equations in physical and in Fourier space. Then, follows the description
of the pseudo-spectral and immersed boundary methods. Finally, the philosophy of
the coupling of both methods is described.

2.1 Governing Equations

This work is restricted to Newtonian fluids and incompressible flows, which are
governed by Navier-Stokes and continuity equations. In the physical space and for
an inertial reference frame these equations are:

∂ui

∂ t
+

∂ (uiu j)
∂x j

=− 1
ρ

∂ p
∂xi

+ν
∂ 2ui

∂x j∂x j
+ fi, (1)

∂ui

∂xi
= 0, (2)

where ui(~x, t) and p(~x, t) are the velocity and pressure fields, respectively; ρ is the
fluid density and ν is the fluid kinematic viscosity. The term fi(~x, t) represents a
given source term.
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Defining the two-dimensional (2D) direct Fourier transforms of the velocity and
pressure fields,

ûi(~k, t) =
(

1
2π

)2 ∫ +∞

−∞

ui(~x, t)e−ı~k.~xd~x, (3)

p̂(~k, t) =
(

1
2π

)2 ∫ +∞

−∞

p(~x, t)e−ı~k.~xd~x, (4)

and the inverse (2D) Fourier transforms,

ui(~x, t) =
∫ +∞

−∞

ûi(~k, t)eı~k.~xd~k, (5)

p(~x, t) =
∫ +∞

−∞

p̂(~k, t)eı~k.~xd~k. (6)

And applying direct Fourier transforms to Eqs. (1) and (2) the Navier-Stokes and
continuity equations can be obtained in the Fourier space [Mariano (2007)]:(

∂

∂ t
+νk2

)
ûi(~k, t) =−ıki p̂(~k, t)+ ık j

∫
~k=~r+~s

ûi(~r, t)û j(~k−~r, t)d~r

+ f̂i(~k, t), (7)

ıkiûi(~k, t) = 0, (8)

where~k,~r and ~s are wave number vectors, k = |~k| is the wave number norm and ı
is the imaginary unit. In Eq. (7) the two terms on the left-hand side represent the
local acceleration and viscous terms, while the three terms on the right-hand side
represent the pressure, the non-linear and the forcing terms, respectively.

Fig. 1 illustrates the geometrical relationships among all terms from Eq. (7) in the
Fourier space. Defining a Π plane to which the wave number vector~k is perpen-
dicular. Eq. (8) shows that the incompressibility condition implies that any given
Fourier coefficient ûi(~k, t) is perpendicular to the local wave number~k and thus it
belongs to this plane.

Consequently, we can see that the left hand side of Eq. (7) is also in Π plane.
Therefore, the sum of the whole right-hand side of this equation consisting in the
sum of the pressure, the non-linear and the forcing terms that there is also in Π

plane. Moreover, since the pressure term is perpendicular to Π plane this sum will
be also equal to the sum of the non-linear and forcing terms projected into Π plane.
It follows that the Navier-Stokes equations in the Fourier space can be re-written
as:
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Figure 1: Representation of terms from Eq. 7 in Fourier space and their relation to
the plane Π, defined as being orthogonal to the wave number vector.

(
∂

∂ t
+νk2

)
ûi(~k, t) = Pil

(
ık j

∫
~k=~r+~s

ûl(~r, t)û j(~k−~r, t)d~r + f̂l(~k, t)
)

, (9)

where Pil(~k) is the projection operator defined by

Pil(~k) = δil−
kikl

k2 , (10)

which projects any given vector into Π plane (δi j is the Kronecker tensor). An
equation for the pressure field can be obtained by multiplying both sides of Eq. (7)
by iki, giving,

p̂(~k, t) =
kik j

k2

∫
~k=~r+~s

ûi(~r, t)û j(~k−~r, t)d~r− ıki f̂i(~k, t)
k2 . (11)

It should be useful to stress that Eq. 11 is used only if the calculation of the pressure
field is aimed.

2.2 Fourier pseudo-spectral method

The main idea of the pseudo-spectral method consists in not evaluating directly the
convolution integral defining the non-linear terms in Eq. (9). The spatial veloc-
ity derivatives involved in the non-linear term are computed in the Fourier space
according to

∂ (uiu j)
∂x j

(~x, t) =
∫ +∞

−∞

−ık jûiu j(~k, t)eı~k.~xd~k (12)
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while all the products are performed in the physical space, by make using of the in-
verse Fourier transform defined by Eq. (5). In the present work we used the equiv-
alent skew-symmetric formulation of the non-linear terms proposed by [Canuto,
Hussaini, Quarteroni, and Zang (1987)].

2.3 Immersed boundary method

The immersed boundary method used in this work is based on the method described
in [Silva, Silveira-Neto, and Damasceno (2003)]. It uses the concept of Eulerian
and Lagrangian domains (in the physical space). The two domains are exemplified
in Fig. 2, where ~x represents a given point in the Eulerian domain Ω while ~xk
represents a point in the Lagrangian surface Γ. The Eulerian domain Ω consists

Ω

Γ

xr

x

y
kx
r

Figure 2: Sketch of Eulerian and Lagrangian domains.

in the whole region of space containing the fluid flow problem at study, including
the region in the interior of any given solid body immersed in the flow. Within this
domain we define the Lagrangian domain Γ as the line or surface representing the
wall boundaries.

As explained in [Silva, Silveira-Neto, and Damasceno (2003)], the immersed bound-
ary method allows the specification of a particular boundary condition in the flow
through the addition of a source term fi(~x, t) to the Navier-Stokes equations. This
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source term fi(~x, t) is defined by

fi(~x, t) =
{

Fi(~xk, t) if~x =~xk
0 if~x 6=~xk

(13)

where Fi(~xk, t) is modelled by applying the second law of the Newtonian dynamics
to a fluid particle located at the interface, Γ.

Considering a fluid particle placed at the Lagrangian point~xk and at a time t, a bal-
ance of linear momentum applied to this fluid particle yields the following equation
for the resulting force acting upon it,

Fi(~xk, t) = ρ
∂ui

∂ t
(~xk, t)+ρ

∂ (uiu j)
∂x j

(~xk, t)+
∂ p
∂xi

(~xk, t)−µ
∂ 2ui

∂x j∂x j
(~xk, t). (14)

We can see that the computation of Fi(~xk, t) requires spatial and temporal deriva-
tives of velocity and pressure fields at the interface~xk. Fi(~xk, t) is defined only over
the fluid-solid interface, i.e. over the Lagrangian surface Γ. The computation of the
temporal and the spatial derivative appeared in Eq. (14) is detailed next section.

2.4 Merging the pseudo-spectral and immersed boundary methods

The originality of the present work lies in one key idea: the use of Fourier pseudo-
spectral methods to simulate non-periodic problems. This is achieved by the IMERSPEC
methodology proposed in this work, allowing the merged of the pseudo-spectral
and the immersed boundary methods.

With the IMERSPEC methodology we define two domains as illustrated in Fig. 3
for the general case of a flow around several complex shaped bodies. The region
of space under study defines the interior domain ΩI , while outside this region it
is defined a buffer domain ΩB. The whole Eulerian domain consists, then, in the
union between the interior and the buffer domains Ω = ΩI

⋃
ΩB. We denote by

ΓBC the Lagrangian surface representing the surface surrounding ΩI , and by Γi the
Lagrangian surface representing the surface surrounding the body i (i = 1, ...,Nb),
where Nb is the number of bodies inside ΩI . Then the full Lagrangian set is the
union of ΓBC with all Γi i.e. Γ = ΓBC

⋃Nb
i=1 Γi. The immersed boundary method

is applied on ΓBC, in order to prescribe the boundary conditions surrounding the
domain of the flow at study in ΩI , and also in each Γi, in order to describe any
given complex shaped bodies within ΩI . Notice that the buffer domain ΩB serves
as a region of space where the flow is given room to adjust “naturally” from the
periodic boundary conditions imposed at its external limits, and to the boundary
conditions prescribed by the immersed method at ΓBC.
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In order to close the coupling between the pseudo-spectral and the immersed bound-
ary methods the term fi(~xk, t) in Eq. (1) has to be evaluated. This requires the com-
putation of several spatial and temporal derivatives at each point ~xk and time t in
the definition of Fi(~xk, t) given by Eq. (14). To achieve this we define the following
velocity fields, considering an inertial reference frame, ui(~x, t) as the fluid velocity
at the Eulerian point~x, where~x ∈Ω, and Vi(~xk, t) is the velocity of the Lagrangian
surface point~xk, where~xk ∈ Γ.

It is important to notice that ui(~x, t) is a solution of the Navier-Stokes Eqs. (1) and
(2), whereas Vi(~xk, t) is imposed by the particular flow problem at study. We also
define an auxiliary velocity field va

i (~x, t), by

va
i (~x, t) =

{
ui(~x, t) if~x 6=~xk
Vi(~xk, t) if~x =~xk.

(15)

With these definitions the computation of all terms involving spatial derivatives of
the velocity field in Eq. (14), it can be carried out in a straightforward way, by using
the auxiliary velocity field va

i (~x, t) and the pseudo-spectral methods. The spatial
derivative involving the pressure field is computed with the spectral pressure p̂(~x, t)
obtained through Eq. (11). Finally, the temporal derivative (first term in the right-
hand side of Eq. 14) is computed using the velocity difference between Vi(~xk, t)
and ui(~x =~xk, t).

ΩB

ΩI

ΓBC

Γ1

Γ3

Γ2

xr

kxr

( ),x tu rr

( ),kx tV r
r

x

y

Figure 3: Sketch of Eulerian and Lagrangian domains with boundary conditions
and multiples bodies.
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Notice that for non-accelerated immersed boundaries i.e. whenever ∂Vi(~xk,t)
∂ t = 0 this

last term is zero at any point~xk where the enforced boundary condition is rigorously
verified. In general, however, this term is non-zero and acts as an additional forcing
term directing the immersed boundary method into a consistent physical solution.

3 Computational Details

Several aspects of numerical implementation used in all the simulations of the
present paper are discussed in this section. Eq. (7) is discretized using Nx col-
location points equally spaced with ∆x = Lx/Nx, where Lx is the domain length
in the x− direction (the same procedure is adopted in the y− direction). In or-
der to compute the FFTs (section 3.1) the FFT E algortim, [Takahashi (2001)], is
used. The Convolution integral is replaced by a pseudo-spectral method discussed
in section 3.2. Other aspects like the temporal evolution and filtering are treated in
sections 3.3 and 3.4, respectively.

3.1 DFT and FFT

Discret Fourier Transform (DFT) is the proper numerical way of evaluate the Eqs.
(3) and (4), and its inverse form (DFTI) for Eqs. (5) and (6). DFT of a f function
is define by [Briggs and Henson (1995)] as:

f̂ (~k) =
N/2

∑
n=−N/2+1

fn(~x)e
−ı.2.π.~k.n

N (16)

where ~k is a wave number vector, N is the number of collocation points in dis-
cretized domain and n get the position of collocation points i.e. xn = n∆x.

The DFT is restricted by periodics boundary conditions problems by limiting the
use of numerical Fourier transform for CFD problems. Fourier spectral method is
only used in simulations of temporal jets and homogeneous and isotropic turbu-
lence.

[Cooley and Tukey (1965)] proposed the Fast Fourier Transform (FFT) algorithm,
that solves the Eq. 16 very efficiently. In terms of float points operations the
FFT given O(Nlog2N), whereas the DFT is of order O(N2) float points opera-
tions, where N is the number of collocation points. In the present paper we used
FFT E subroutine, and it is implemented by [Takahashi (2001)].

3.2 Treatment of the non-linear term

The non-linear terms in Eq. (9) can be handled through different methods: advec-
tive, divergent, skew-symmetric, or rotational [Canuto, Hussaini, Quarteroni, and
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Zang (1987)]. The several discretization methods present distinct properties e.g.
the skew-symmetric form is more stable and presents the best results, but it is twice
more expensive than the rotational form. However this inconvenience can be solved
using the alternate skew-symmetric form. This consists in alternating the advective
and divergent forms at each time step [Miksad, Akylas, and Hebert (1987)] and
this is the procedure adopted in the present work. The non-linear terms require
the computation of a convolution integral which is known to be computationally
expensive. To overcome this problem the pseudo-spectral method is used. It con-
sists in calculating the velocity product in the physical space and transforming this
product into the spectral space.

3.3 Filtering

It is well known that when near discontinuities the Fourier spectral method may
lead to spurious oscillations affecting the high wave numbers, which consist in the
so called Gibbs phenomenon [Canuto, Hussaini, Quarteroni, and Zang (1987)]. In
particular Gibbs oscillations can arise when we solve the Eqs. (13) and (15), which
are discontinuos. In order to prevent these errors we use the following filter:

f̂ (~k) f iltered = σ(θ) f̂ (~k) (17)

where σ(θ) is the filter function. The sharpened raised cosine filter, proposed by
[Kopriva (1986)], is used:

σ(θ) = σ
4
0 (35−84σ0 +70σ

2
0 −20σ

3
0 ), (18)

where σ0 is given by:

σ0 = 1/2(1+ cosθ), (19)

and θ = L~k/N, where L is the length of domain,~k is the wave number and N is the
number of collocation points.

3.4 Temporal evolution

For time evolution, the low-dissipation and the low-dispersion forth-order Runge-
Kutta algorithm proposed by [Berland, Bogey, and Bailly (2006)] was chosen in or-
der to maintain the accuracy. The time step, ∆t, is based in CFL criterion [Ferziger
and Peric (1996)], which gives the stability of temporal advancement:

∆t = CFL.min

[
min

[
∆x

max[|u|]
;

∆y
max[|v|]

]
;

2
ν

(
1

∆x
+

1
∆y

)−1
]

, (20)

where CFL is a number between 0 and 1.
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4 Results and Discussion

The main results concern with well known 2D lid-driven cavity flow - LDC [Ghia,
Ghia, and Shin (1982); Hou, Zou, Chen, Doolen, and Cogley (1995); Botella and
Peyret (1998); Erturk, Corke, and Göcçöl (2005)], which has been used extensively
in order to test, to analyse and to validate new numerical algorithms. The LDC
flow for different Reynolds numbers and the influence of the inner domain size on
the accuracy of the method is presented. The simulations of the flow over a square
cylinder are also presented and several comparisons are carried out.

The two-dimensional pseudo-spectral algorithm used here was developed by mod-
ifying a classical three-dimensional pseudo-spectral code (using the collocation
method) has already used by the authors in direct numerical simulations of isotropic
turbulence and turbulent plane jets [da Silva and Pereira (2004, 2005)]. Before
analysing the LDC flow it is important to demonstrate that this 2D pseudo-spectral
algorithm used as a basis in the present methodology is indeed well implemented.
This is the subject of the next section.

4.1 The Taylor-Green flow

The two-dimensional Taylor-Green flow consists in an array of periodic and decay
counter-rotating cells, where the velocity and the pressure fields are described by
simple analytical solutions to the 2D Navier-Stokes equations [Uhlmann (2005);
Kim, Kim, and Choi (2001)]. The main goal is to validate the numerical imple-
mentation of the classical Fourier pseudo-spectral algorithm which is the core of
the new methodology proposed in this work.

The u and v velocity components for the Taylor-Green flow are given by the fol-
lowing analytical expressions,

ua(x,y, t) =−U cos
(

2πx
L

)
sin
(

2πy
L

)
e
−2νt

L2 , (21)

va(x,y, t) = U sin
(

2πx
L

)
cos
(

2πy
L

)
e
−2νt

L2 , (22)

where U is the amplitude of the velocity field and ν is the kinematic viscosity.
Using Eqs. (21) and (22) an analytical expression for the pressure field can be
obtained by solving a Poisson equation. The result writes,

pa(x,y, t) =−ρU2

4

[
sin
(

4πx
L

)
+ cos

(
4πy

L

)]
e
−4νt

L2 . (23)
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4.1.1 The Taylor-Green flow without immersed boundary

The simulation domain consists in a square of sides Lx = Ly = 2π [m] discretized
with (16× 16) collocations nodes. The Reynolds number is defined as in [Kim,
Kim, and Choi (2001)]:

Re =
UD
ν

, (24)

where D = π [m] is the size of a vortex, U = 1.0 [m/s] and Re = 10.0. Therefore,
kinematic viscosity is calculated using Eq. (24), giving ν = π/10 [m2/s]. We use
CFL = 10−2, in order to leave the error only at spatial discretization. Fig. 4 shows

Figure 4: Pressure field superposed by velocity vectors.

contours of pressure and velocity vectors, note that the dimensions of the domain
on Fig. 4 are non-dimensionalized by D. The flow exhibits of the well known
Taylor-Green cells arranged in their periodic behavior, where the center of each
cell corresponds to a minimum in the pressure field - Fig. 4. The number of cells
along each spatial direction is imposed by the size of the computational domain.
Here, we have two cells in each direction and these cells are rotating in opposite
directions. In order to know the accuracy of methodology implemented the L2 norm
is evaluated:

L2φ =

√√√√ 1
Nx

1
Ny

Nx

∑
η=1

Ny

∑
µ=1
‖ φ(xη ,yµ , t)−φa(xη ,yµ , t) ‖2, (25)
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where φ is a given flow quantity, φa is the analytical solution done by Eqs. (21) -
(23) Nx and Ny is the number of collocation nodes in each domain direction.

The temporal evolution for L2 norm of the u-velocity component and pressure is
shown in Fig. 5. Despite coarse mesh the errors are around zero machine (round-

Figure 5: Temporal evolution of L2 norm for simulations without IB.

off errors), as expected from a Fourier pseudo-spectral code. Similar results were
obtained for the v-velocity. The results described above using the Taylor-Green
flow show that the pseudo-spectral algorithm, used as a basis for the IMERSPEC
method is indeed well implemented. The next subsection describes the results from
the full IMERSPEC procedure.

4.1.2 The Taylor-Green flow with immersed boundary

The next example is used to assess the implementation of the IB methodology. The
same idea used in [Kim, Kim, and Choi (2001)] and [Uhlmann (2005)] is used here
and it consists in an embedded square geometry (Lagrangian domain Γ) inside an
Eulerian domain (Ω) as shown in Fig. 6.

The Eq. (15) is available with Vi(~xk, t + ∆t) = uai(~xk, t + ∆t), where ua is defined
by Eqs. (21) and (22) for each velocity components. Dimensionless mesh size
(h∗ = ∆x/D) and different CFL numbers are simulated. L2 norm is present for
t = 0.3 [s] as shows in Fig. 7.

The results of Fig. 7 show that IB methodology using VPM provide second order
convergence rate, when coupled with Fourier pseudo-spectral methodology. How-
ever accuracy order is very dependent of CFL number. This is maybe due to the
temporal derivative, first term in the right-hand side of Eq. (14).
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Figure 6: The Eulerian Ω and Lagrangian Γ domains used in Taylor-Green flow
including an immersed boundary.

The comparison between previous simulations of the Taylor-Green flow problem
with and without IB is provided in Fig. 8. It shows the absolute vorticity error

Figure 7: Order of convergence rate of L2 norm for u-velocity component. Slope(2)
is the theoretical line of second order convergence rate.
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without (a) and with (b) IB. It is possible to see that the effect of force field produces
the largest errors (order 10−4), On the orther hand, without IB the errors is of the
order 10−16.

(a) (b)
Figure 8: Absolute error of vorticity (a) whitout IB (b) with IB.

4.2 The two-dimensional lid-driven cavity

As explained before, the main interest of the IMERSPEC methodology is to sim-
ulate flows with general (non-periodic) external boundary conditions by using a
classical Fourier pseudo-spectral method developed for periodic flows associated
with all advantages from these methods, i.e. high accuracy and low computational
cost. Moreover, IMERSPEC allows the inclusion of other boundary conditions
within the flow at study, for instance resulting from the presence of complex shaped
bodies.

In the present work it was decided to consider only no-slip boundary conditions.
An interesting test case with which the present approach can be tested is the 2D lid-
driven cavity (LDC) flow [Ghia, Ghia, and Shin (1982); Hou, Zou, Chen, Doolen,
and Cogley (1995); Botella and Peyret (1998); Erturk, Corke, and Göcçöl (2005)].

This flow has been extensively studied and has been used very often in order to
assess numerical codes and algorithms. It consists in a squared two-dimensional
cavity of width lx and height ly, with lx = ly = l, where the upper wall moves from
left to right with a given velocity U which drives the flow, as shown in Fig. 9.
The characteristics and topology of the LDC flow depend on the Reynolds number
Re = Ul/ν . For Re = 100 the flow structure is characterized by a primary eddy
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(PE) centred slightly to the upper right side of the cavity. In addition to this eddy,
there are two smaller eddies at the bottom left (BLE) and at the bottom right (BRE)
corners of the cavity. As the Reynolds number increases from Re = 100 up to
Re = 1000, the center of the PE approaches to the center of the cavity while the size
of the BLE and BRE increase. At Re = 10000 there is also a third eddy structure at
the top left corner of the cavity. The flow solution has been shown to be stationary
for Reynolds numbers of up to Re = 10000, and at least for Re ≈ 13000 the flow
has been shown non-stationary solutions.

The LDC flow can be simulated using the IMERSPEC methodology if we con-
sider that the walls from the lid driven cavity coincide precisely with the external
Lagrangian surface and delimit the interior domain ΩI i.e. Γ = ΓBC as sketched in
Fig. 9. We consider also that there are no immersed bodies in this problem. The
size of the Eulerian domain Ω = ΩB∪ΩI , along the horizontal (x) and vertical (y)
directions are equal to Lx = Ly = L = 2π . The ratio of Eulerian domain (Ω) in
interior domain (ΩI) sizes is represented by the parameter η = L/l which can be
varied in order to analyse the influence of the buffer domain size over the results.

4.2.1 Results for different Reynolds numbers

We start analysing the simulation of the LDC flow at different Reynolds numbers
Re = 100, Re = 400 and Re = 1000, before exploring the effects of some parameters
on the accuracy of the results. A simulation for these Reynolds numbers was carried
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Figure 9: Sketch of domain for LDC.
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out using the IMERSPEC methodology with η = 2.0 and using a grid with Nx =
Ny = 256 collocation points along the x and y directions. Thus, the number of points
used to describe the cavity along each direction was Ncav = Nx/η = Ny/η = 128,
while the buffer domain uses NB×NB = (Nx−Ncav)×(Ny−Ncav) = 128×128 grid
points. The Courant number was CFL = 0.01.

A global idea of the results obtained for these simulations can be gained by looking
into Fig. 10, which shows contours of the u-velocity and the streamlines for the
entire Eulerian domain, including the interior domain of cavity, ΩI , and the buffer
domain ΩB, outside the cavity. Fig. 10 (a) shows the well known pattern for this
flow at Re = 100 [Ghia, Ghia, and Shin (1982); Hou, Zou, Chen, Doolen, and
Cogley (1995)], with a large recirculating region near the center of the cavity -
the primary eddy (PE) - and with two smaller (secondary) recirculation regions at
each corner of the bottom wall. The biggest of these secondary bubbles lies near
the bottom right wall of the cavity - bottom right eddy (BRE) - while the smaller
bubble rest at the bottom left wall - bottom left eddy (BLE). In the buffer domain
the streamlines show how the flow adjusts itself to the imposed conditions on ΓBC.
The top wall of the cavity drives the flow inside the cavity as the flow outside
it. This creates a strong left-right current in the upper part of the buffer domain
(−0.5 < x∗ < 1.5 and 1.0 < y∗ < 1.5) that dominates the flow in the upper buffer
domain region.

At Fig. 10, a big recirculation region in the right side of the cavity dominates
flow in the buffer domain in 1.0 < x∗ < 1.5 and 0.0 < y∗ < 1.0. This big eddy is
centred at (x∗,y∗) = (1.4,0.7), due to the periodic boundary conditions imposed in
the external domain, this same recirculation appears at the left side of the external
domain in−0.5 < x∗ < 0.0 and 0.0 < y∗ < 1.0 and also drives a left-right current in
the lower part of the buffer domain (−0.5 < x∗ < 1.5 and −0.5 < y∗ < 0.0), which
is consistent with the existence of periodic boundary conditions in all the external
(Eulerian) boundaries. Here, we notice the existence of a stagnation point about
x∗ ≈ 1.25 and y∗ ≈ 0.0, and of a small recirculation bubble in the buffer domain
near x∗ ≈ 1.0 and y∗ ≈ 0.0.

In order to analyse the influence of the Reynolds number in the present IMERSPEC
methodology Fig. 10 (b) and (c) show contours of u-velocity and streamlines at
Re = 400 and Re = 1000, respectively. These two simulations are very similar to
the ones found in the literature [Ghia, Ghia, and Shin (1982); Hou, Zou, Chen,
Doolen, and Cogley (1995)]. Comparing the LDC flow at Re = 100 and Re = 400,
we see that the center of the PE has shifted towards the center of the cavity for
higher Reynolds numbers. Furthermore, the size of the two secondary eddies at the
bottom wall of the cavity has also slightly increased. Tabs. 1 and 2 show that the
vorticity intensity of the PE and the coordinates of the center of the PE, BLE and
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(a) (b)

(c)
Figure 10: Simulation of LDC u-velocity field and stream-lines (a) Re = 100, (b)
Re = 400 and (c) Re = 1000.

BRE agree well with the reference values found on the literature.

It is interesting to understand the dynamics of the flow in the buffer region by
considering the effects of the source term prescribed at the immersed boundaries.
Indeed the nature of the immersed boundary technique used in this work implies
that at interior wall boundary we have

Uwall ≈
Uext +Uint

2
, (26)

where Uwall is the velocity at the wall, and Uext and Uint are the velocities inside
and external of the cavity (see [Silva, Silveira-Neto, and Damasceno (2003)]). This
explains the behavior of the streamlines near each one of the four walls delimiting
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the ΓBC boundary. Indeed, near the top wall boundary which drives the flow (0.0 <
x∗ < 1.0 and y∗ = 1.0), the streamlines at both sides i.e. for y∗ > 1.0 and y∗ < 1.0
have the same direction. On the other hand, near the other cavity walls that at each
side the streamlines pattern indicates that the internal/external cavity flows are in
opposite directions, which is also consistent with the no-slip boundary condition
over a wall with velocity equal to zero.

The global flow pattern observed near the four walls can be explained by the mov-
ing wall at the cavity top and by the periodicity of the external boundary conditions,
as well as the nature of the no-slip boundaries in the cavity walls, as described by
Eq. (26).

Tab. 1 displays the vorticity intensity of the primary eddy (PE) for the present
simulations compared to the results of [Ghia, Ghia, and Shin (1982); Hou, Zou,
Chen, Doolen, and Cogley (1995)]. As can be seen, for Re = 100, Re = 400 and
Re = 1000, the vorticity intensity agrees well with the values from the literature.
Tab. 2 shows the coordinates of the center of the primary (PE), bottom left (BLE)
and bottom right (BRE) eddies in the present work and in the simulations of [Ghia,
Ghia, and Shin (1982); Hou, Zou, Chen, Doolen, and Cogley (1995)]. The present
results agree very well with the values from literature, except for the location of
smaller secondary BLE, for Re = 100, where the present results show some dis-
crepancy. Figs. 11 (a), (b) and (c) show contours of u-velocity and pressure with
the streamlines for the LDC flow. Notice that only the interior domain of the flow
(ΩI) is shown here. Compared to the same figures in [Ghia, Ghia, and Shin (1982)]
and [Hou, Zou, Chen, Doolen, and Cogley (1995)] at the same Reynolds number
we can see that excellent agreement is found for all these variables. Finally, in order
to make a quantitative comparison of the results from the present simulation with
the results from the literature, Figs. 12 (a) and (b) show mean u and v velocities
profiles for the LDC flow at Re = 100 taken at x∗ = 0.5 and y∗ = 0.5 respectively.

Table 1: Vorticity intensity of the primary eddy (PE) for several Reynolds numbers
Reh = 100 , 400 and 1000 compared to the simulations of references [Ghia, Ghia,
and Shin (1982); Hou, Zou, Chen, Doolen, and Cogley (1995); Botella and Peyret
(1998); Erturk, Corke, and Göcçöl (2005)].

Reference Re = 100 Re = 400 Re = 1000
Ghia, Ghia, and Shin (1982) 3.17 2.29 2.05

Hou, Zou, Chen, Doolen, and Cogley (1995) 3.13 2.29 2.08
Botella and Peyret (1998) — — 2.07

Erturk, Corke, and Göcçöl (2005) — — 2.06
Present work 3.11 2.19 2.02
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As can be seen, the present results display a very good agreement with the classical
results by [Ghia, Ghia, and Shin (1982)], for both velocity components. we also

(a)

(b)

(c)
Figure 11: Simulation of LDC u-velocity in column left and pressure in column
right (a) Re = 100, (b) Re = 400 and (c) Re = 1000.
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Table 2: Coordinates of the center of the primary eddy (PE), bottom left eddy
(BLE) and bottom right eddy (BRE) for several Reynolds numbers Reh = 100, 400
and 1000 compared to the simulations of references [Ghia, Ghia, and Shin (1982)]
and [Hou, Zou, Chen, Doolen, and Cogley (1995)].

[Ghia, Ghia [Hou, Zou,Chen
Re Eddy and Shin Doolen and Present work

Position (1982)] Cogley (1995)]
PE (0.617;0.734) (0.620;0.737) (0.618;0.735)

100 BLE (0.031;0.039) (0.039;0.035) (0.022,0.017)
BRE (0.945;0.063) (0.945;0.063) (0.946;0.054)
PE (0.555;0.606) (0.561;0.608) (0.558;0.603)

400 BLE (0.051;0.047) (0.055;0.051) (0.067;0.036)
BRE (0.891;0.125) (0.890;0.126) (0.885;0.112)
PE (0.531;0.563) (0.533;0.565) (0.533;0.563)

1000 BLE (0.086;0.078) (0.090;0.078) (0.062;0.088)
BRE (0.859;0.109) (0.867;0.114) (0.870;0.116)

notice that the degree of agreement for two velocity profiles seems to be equally
good for all the points in the velocity profiles.

Figures 12 (c) and (d) display u and v velocities profiles for the simulation with
Re = 400. Although, the agreement observed is not as good as with smaller Reynolds
number, the present results show an overall good agreement with the reference re-
sults from [Ghia, Ghia, and Shin (1982)]. The Figs. 12 (e) and (f) show the u and v
velocities profiles for the simulation with Re = 1000. We see again, that the present
results display a good agreement with the reference results for this flow.

The above results have shown that the IMERSPEC method is capable of repro-
ducing accurately the most important features of the 2D LDC flow, which gives
us confidence in the method. The present results are indeed encouraging as they
clearly show the potential of the present method. Even if a more detailed analy-
sis of the errors is desirable, for instance near the solid boundaries, L2 norm, Eq.
(25), is calculate over cavity boundaries (ΓBC domain), where φa are velocities at
the walls and φ is the solutions of simulations. Theoretically L2 norm should be
zero, however, an error over the boundaries, as shows in Fig. 13 presents order of
3.4×10−2. In summary, we see that the Reynolds number has a small influence on
the accuracy of the results obtained with the IMERSPEC methodology. In order to
do further test with this methodology next sections describe the effects of the size
of the buffer domain in the accuracy of the results for the LDC flow.
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(a) (b)

(c) (d)

(e) (f)
Figure 12: Profiles of LDC Re = 100 (a) u-velocity (b) v-velocity; Re = 400 (c)
u-velocity (d) v-velocity and Re = 1000 (e) u-velocity (f) v-velocity.

4.2.2 Influence of the external domain size

Since the present IMERSPEC methodology uses a buffer domain to connect the
flow of interest and the total computational domain, it is important to analyse the
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Figure 13: Temporal evolution of L2 norm.

effect of the size of this buffer domain zone in the accuracy and characteristics
of the results obtained. For this purpose additional simulations of the LDC flow
for Re = 1000 are carried out by using more four different buffer domain sizes,
η = 1.17, η = 1.26, η = 1.5 and 3.0, and by using always the same number of
collocation points within cavity Ncav×Ncav = 64×64. Thus a different spatial res-
olution was used outside the cavity zone for the simulations, with Nx×Ny = (Ncav×
η)×(Ncav×η) = 75×75, 81×81, 96×96 and 192×192, for η = 1.17, η = 1.26,
η = 1.5 and 3.0, respectively. Consequently the total number of points used to de-
scribed the buffer domain was equal to NB×NB = (Nx−Ncav)×(Ny−Ncav) = 11×
11, 17× 17, 32× 32 and 128× 128. The reference simulation with η = 2.0 used
(Nx×η)×(Ny×η) = 128×128 and NB×NB = (Nx−Ncav)×(Ny−Ncav) = 64×64
grid points, for the cavity and buffer domains, respectively. Fig. 14 displays the
entire computational domain and the interest domain for the simulations showing
streamlines and vorticity contours. The figures 14 (a)-(f) show that the streamlines
pattern in the buffer domain is very different for three simulations, as expected. In
particular, the size, the number and the location of the large recirculation regions in
the buffer region ΩB changes with η . Notice, however, that the periodicity of the
external boundaries is maintained in all three situations.

For η = 1.17 has only Nx×Ny = 75×75 collocation points, however it is possible
to see periodicity influence in the secondary recirculation inside the cavity. For η =
1.26, η = 1.5 and η = 2.0 no differences are observed. For η = 3.0 a secondary
recirculation arises at the left top conner. In the other hand, Fig. 15 shows the
temporal evolution of L2 norm at cavity boundaries conditions. For η = 2.0 and
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(a) (b)

(c) (d)

(e) (f)
Figure 14: Vorticity field of LDC Re = 1000 for (a) whole domain η = 1.17, (b)
interest domain η = 1.17, (c) whole domain η = 1.26, (d) interest domain η =
1.26, (e) whole domain η = 3.0 and (f) interest domain η = 3.0.
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η = 3.0 there are strong oscillations in time. As η decreases these oscillations
disappear and the results become smooth and roughly independent of η parameter.

Comparing the flow topology for the five simulations and the temporal evolutions
of L2 norm we have a compromise between external and internal domain. If, the η

is too small, the external boundary conditions (periodicity) influences the interior
of LDC. When η is too big, flow of external domain becomes instable and also
influences the internal domain. In the present analysis, η = 1.26 is the most viable.

It is well known that an exact prescription of the wall boundary conditions cannot
be achieved with any immersed boundary method (e.g. see [Peskin (1972); Choi,
Oberoi, Edwards, and Rosati (2007); Silva, Silveira-Neto, and Damasceno (2003)],
since the majority of the immersed boundary methods, currently in use, consist of
adding a forcing function to the Navier-Stokes equations to impose an approximate
boundary conditions at the walls. Thus, it is well known that a non-zero (though
small) error is always involved in these methods. In the case of the LDC, the L2
norm for the velocity at the boundaries presents high values (∼ 10−2) due to the
discontinuities over the corners at the upper wall. At these corners the u-velocity
changes from zero (over the side walls) to u 6= 0 (over the upper wall).

The fact that different values of η lead to differences in the flow solution means

Figure 15: Temporal evolution of L2 norm at Re = 1000 for different η ratios.
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that more work may be needed in order to improve the near wall treatment of the
IMERSPEC method. However, the results from this first test are indeed encourag-
ing.

4.2.3 Influence of the grid size

In this section the influence of grid size is analyzed by using η = 1.26 and CFL=0.1
simulations at Re=1000 are performed changing the grid size, i.e. Ncav×Ncav =
64×64, Ncav×Ncav = 128×128 and Ncav×Ncav = 256×256.

The Fig. 16 shows the horizontal u∗ and vertical v∗ velocities profiles. These
figures show that the results become independent of the grid as the refinement is
increased. Fig. 17 presents the L2 norm (Eq. (25)) of velocity on the walls of

(a) (b)
Figure 16: Profiles of LDC Re = 1000 (a) u-velocity (b) v-velocity.

cavity. With this result it is possible to estimate the convergence rate of method.
[Ferziger and Peric (1996)] show in his book the equation for calculate the order
convergence rate:

q =
log(φ2h−φexact

φh−φexact
)

log2
, (27)

where q is the convergence rate; φ is the variable analyzed (in the present case, φ

is the velocity). L2 is the norm of the velocity at the cavity walls; h is the grid size
and φexact is the exact solution of interest variable, i.e. φexact = 0, over the botton
and side walls, and φexact = Ulid , over the upper wall.



208 Copyright © 2010 Tech Science Press CMES, vol.59, no.2, pp.181-216, 2010

Figure 17: Temporal evolution of L2 norm of boundary u-velocity over the bound-
ary Γ.

According to Fig. 17 the convergence rate of these simulations is, approximately,
q = 1.45. The low order is due to the singularity points on the conners of the cavity
at the superior conners, as explained by [Botella and Peyret (1998)].

4.3 Flow over a square cylinder

Results for the flow over a square cylinder are shown as another example of a
non-periodic flow that can be handled using the IMERSPEC methodology i.e. the
Navier-Stokes equations are solved using the Fourier pseudo-spectral method, and
the boundary conditions have been imposed through a force field of the immersed
boundary. The simulations consist of an inlet uniform profile with velocity U∞

[m/s], which flows over a square cylinder (Fig. 18).

Quantities such as drag (Eq. (28)) and lift coefficients (Eq. (29)) are analyzed.
These parameters depend on the force acting on the bodies immersed in the flow.
The drag coefficient determines the resistance force on the fluid caused by the im-
mersed body, while the lift coefficient determines the force that acts on the normal
direction of the incoming flow:

Cd =
2Fx

ρAxU2
∞

, (28)

Cl =
2Fy

ρAyU2
∞

, (29)



A new incompressible Navier-Stokes solver 209

where Ax and Ay are the projected frontal area in perpendicular direction x and y,
respectively, given in [m2]. Fx and Fy are the force components in each direction
and are given by:

Fx =
Nl

∑
k=1

~F(~xk).~nx, (30)

Fy =
Nl

∑
k=1

~F(~xk).~ny, (31)

where ~F(~xk) is given by Eq. (14) and~nx and~ny are:

~nx =
(xk,0)
||(xk,0)||

, (32)

~ny =
(0,yk)
||(0,yk)||

. (33)

Another important parameter is the Strouhal number, Eq. (34), which represents
the non-dimensional frequency of vortex shedding. The Strouhal number is given
by:

St =
frD
U∞

, (34)

where fr is the frequency [1/s] of vortex shedding downstream of the cylinder,
wich is obtained from the analysis of the frequency spectrum of lift coefficient, and
D is diameter of the cylinder. The domain simulated is equal to 64D×32D, where

Figure 18: Sketch of domain for flow over square cylinder.

D = π/16 [m], and it is discretized with 1024×512 collocation points. The cylinder
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Figure 19: Sketch of wind tunnel of closed-circuit.

has 64 lagrangean points, (16 for each face) and the cylinder center position in
domain is x∗ = 36.5D and y∗ = 15.5D, where x∗ = x/D and y∗ = y/D. The sketch
of the domain is shown in Fig. 18.

Periodic boundary conditions have been imposed, but a uniform profile of velocity
(U∞ = 1.0 [m/s]) is set through the force field of the immersed boundary method,
at x∗ = 20D.

The vortex street caused by the cylinder is transported toward the domain outlet,
and it is injected at the domain inlet by the periodic boundary condition. A buffer
zone (BZ) is used in order to damp these vortices and to prevent disturbing the inter-
nal velocity profile imposed inside the domain (upstream of the cylinder), through
the immersed boundary method. This BZ is similar to one use by [Uzun (2003)]:

BZ = φ (Qi−Qti) , (35)

where Qi is the solution of problem, i.e., u and v. Qti is the target solution, which
represents the solution required in the final buffer zone. The target solution is,
for example, the uniform profile U∞ and φ is the parameter of damping vortex
calculated by Eq. (36):

φη = β

(
xη − xBZ

x f − xBZ

)α

, (36)

where α = 3.0 and β = 1.0, xBZ and x f are the beginning and the ending of BZ,
respectively, and xη is the generic position. Notice that the location of the BZ
i.e. if it is placed downstream or upstream of the cylinder, it does not modify
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the results. In addition to the BZ a porous zone (PZ) is also imposed after the
BZ consisting in a uniform velocity field. The authors have tried to simulate a

Figure 20: Flow over square cylinder at Re=100, vorticity field, ω = −1.0, solid
line, and ω = 1.0, dashed line.

wind tunnel that works in closed circuit, Fig. 19 illustrate this idea. The system
fan is simulated by the velocity profile imposed inside the domain by immersed
boundary method. The vortex damping system of the wind tunnel (expansions,
grids, contraction and honeycomb) is modeled using the buffer zone and the porous
zone. The closed circuit is modeled by periodic boundary conditions. We carried

(a) (b)
Figure 21: Flow over square cylinder, vorticity field, ω = −1.0, solid line, and
ω = 1.0, dashed line. (a) Re=150, (b) Re=200.

out three simulations with different Reynolds number (100, 150 and 200) based on
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the cylinder side (D) and using CFL = 0.1. Fig. 20 shows the vorticity field for
the flow at Re=100 at t*= 500. The figure displays the vortex shedding, the inlet
velocity profile position and buffer zone influence. Fig. 21 shows the vorticity field
for Re=150 and Re=200. The karman vortex street is very well captured. Moreover,
the vortices are well aligned with the x-direction as expected in two dimensional
simulations. The non-periodic boundary conditions are well represented by the
proposed methodology.

The Tab. 3, shows a comparison with other authors. For instance [Silva, Silveira-
Neto, and Damasceno (2003)] has used the same immersed boundary method used
in the present work (Virtual Physical Model), but discretized by second order finite
differences. The results from [Fuka and Brechler (2007)] are also shown. In this
case a variant of the immersed boundary method with direct forcing method was
used. The results are very similar which, again, validates the present IMERSPEC
methodology.

Table 3: Comparison of drag coefficient and Strouhal number.

Authors Re Cd St
Silva, Silveira-Neto, and Damasceno (2003) 100 1.730 0.140

Fuka and Brechler (2007) 100 1.620 0.140
Present work 100 1.644 0.145

Silva, Silveira-Neto, and Damasceno (2003) 150 1.720 0.150
Fuka and Brechler (2007) 150 1.630 0.150

Present work 150 1.676 0.156
Silva, Silveira-Neto, and Damasceno (2003) 200 1.730 0.160

Fuka and Brechler (2007) 200 1.650 0.145
Present work 200 1.748 0.165

5 Conclusions

In the present paper a new methodology for mathematical modeling of non peri-
odic flows, using Fourier pseudo-spectral method coupled with immersed bound-
ary method - IMERSPEC - has been proposed. This methodology use the advan-
tages of Fourier pseudo-spectral methods with the ability to handle non-periodic
domains and bodies with arbitrary shape. The main idea consists in the defini-
tion of a buffer domain where any boundary condition can be imposed through the
immersed boundary methods. In addition, any given immersed body can be also
included in the computational domain. The method is applied to the lid-driven cav-
ity flow, and to the flow over a rectangular cylinder. We have been obtained good
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results in our study.
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