
Copyright © 2010 Tech Science Press CMES, vol.58, no.3, pp.271-291, 2010

On the application of the Fast Multipole Method to
Helmholtz-like problems with complex wavenumber

A. Frangi1 and M. Bonnet2

Abstract: This paper presents an empirical study of the accuracy of multi-
pole expansions of Helmholtz-like kernels with complex wavenumbers of the form
k = (α + iβ )ϑ , with α = 0,±1 and β > 0, which, the paucity of available studies
notwithstanding, arise for a wealth of different physical problems. It is suggested
that a simple point-wise error indicator can provide an a-priori indication on the
number N of terms to be employed in the Gegenbauer addition formula in order
to achieve a prescribed accuracy when integrating single layer potentials over sur-
faces. For β ≥ 1 it is observed that the value of N is independent of β and of the
size of the octree cells employed while, for β < 1, simple empirical formulas are
proposed yielding the required N in terms of β .

Keywords: Fast Multipole Method, Helmholtz problem, complex wavenumber,
Gegenbauer addition theorem

1 Introduction

Many problems of physics and engineering can be formulated and numerically
solved by means of integral equations. Resorting to fast approaches is then manda-
tory for the large scale models often required by realistic simulations. Several
strategies are available for the fast solution of large-scale boundary element mod-
els. Among these, the Fast Multipole Method (FMM) appeared first and is now
well-developed.

The FMM is in particular applied to many physical problems governed by equa-
tions of Helmholtz type, which arise for e.g. linear acoustics, electromagnetic or
elastic waves upon using Fourier transform in time or applying excitations under
prescribed-frequency conditions (with the prescribed angular frequency hereafter
denoted by ω). All cases involve integral equations whose (scalar or tensorial) ker-
nels are defined, for three-dimensional formulations, in terms of the fundamental
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solution K(r) = exp(ikr)/4πr and its derivatives. The FMM crucially rests upon
expansions of K(r) that allow a separation of variables between the “field” point
y and the “source” point x (with r = y− x), which are available in several forms.
These include the multipole expansion, based on the Gegenbauer addition theorem,
and the plane-wave expansion of K(r) in diagonal form.

For real values of the wavenumber k, which correspond to wave propagation prob-
lems in lossless media, FMMs based on either type of expansion have been ex-
tensively studied and implemented. These studies have in particular established
that multipole expansions of K(r) are too costly except at low frequencies (because
the expansion truncation threshold increases with k, leading to O(N2) complex-
ity for high frequencies), while plane-wave expansions are well-suited to higher
frequencies but break down in the low-wavenumber limit. Both types of formula-
tions are surveyed in e.g. Nishimura (2002) and Gumerov and Duraiswami (2005).
It is also known that in the zero-wavenumber (i.e. static) limit an a-priori indi-
cation on the number N of multipoles to be employed in truncated expansions in
order to obtain a prescribed accuracy in K(r), unaffected by the dimensions of the
cells in the octree, is usually available. This nice feature (which ensures a O(ndof)
complexity per iteration for multi-level FMMs applied to static problems) is no
longer present in frequency-domain formulations (see e.g. Song, Lu and Chew,
1997; Darve, 2000a,b; Chaillat, Bonnet and Semblat, 2008), whose implementation
thus becomes substantially complicated by the need to adapt the truncation order
to the level of the octree (resulting in a O(ndof logndof) complexity per iteration).

In contrast, only scattered efforts have so far been devoted to FMMs for Helmholtz-
type problems involving complex wavenumbers k, see e.g. Geng, Sullivan and
Carin (2001) for electromagnetic waves in lossy media or Yasuda and Sakuma
(2008) for acoustic wave propagation in porous media. Such formulations involve
wavenumbers of the form k = (α + iβ )ϑ in terms of real constants α,β ,ϑ (with
β > 0, α = 0,±1, and ϑ > 0) chosen as explained in the ensuing discussion). The
paucity of available studies notwithstanding, complex-wavenumber FMMs arise
for a number of different physical problems.

First, such equations and kernels arise naturally upon considering wave propaga-
tion in lossy media (e.g. soils) in which mechanical or electromagnetic waves are
damped. Such (e.g. viscoelastic) materials may be described, within frequency-
domain approaches, in terms of linear constitutive relations involving complex
moduli. This leads to complex-valued wavenumbers wherein ϑ = ω , α =±1 and
0 < β < 1 (often with a small imaginary part, i.e. such that β � 1), and represents
the most direct generalization of Helmholtz-type equations with real wavenumbers.

Another class of such problems correspond to parabolic problems involving elliptic
partial differential operators in the space variables and first-order time derivatives,
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upon using Fourier transform in time or applying excitations at a prescribed fre-
quency. They include heat conduction, transient Stokes flows, and eddy currents,
and the associated Green’s functions or tensors involve K(r) with |α|= β = 1 and
ϑ =

√
ω/2. Transient Stokes flows arise e.g. in connection with the analysis of

dissipation in Micro-Systems (see e.g. Frangi, 2005; Frangi, Spinola and Vigna,
2006). Much of the past effort was on improving the efficiency and robustness of
quasi-static Stokes-based fast solvers, but now the focus has shifted to addressing
more challenging physics. Newer MEMS use higher operating frequencies and
finer dimensions, and therefore the effects of unsteady flow and rarefaction can no
longer be ignored (see e.g. Ye, Wang, Hemmert, Freeman and White, 2003). Eddy
currents arise in many electrical engineering problems and play an important role
e.g. in the design of electrical transformers, where one is especially interested in
the accurate calculation of losses. This entails solving the Maxwell equations (in
eddy-current approximation) in complex, three-dimensional domains with piece-
wise constant material parameters (i.e. the magnetic permeability, the dielectric
permittivity and the conductivity, respectively). For electrical devices operating
continuously under alternating current, time-harmonic states are of interest, leading
in effect to an elliptic transmission problem for the eddy-current Maxwell equations
(see Schmidlin, Fischer, Andjelic and Schwab, 2001 for a H,φ formulation).

Also amenable to the general framework of Helmholtz-type equations is the com-
putation of Casimir forces, which are attractive forces arising between uncharged
conductive surfaces in vacuum, a remarkable consequence of quantum electrody-
namics first realized by Casimir (1948). Casimir forces are caused by the energy
fluctuations of the electromagnetic field. This complex physical phenomenon is
now acquiring technological importance, as it has a major role in modern micro-
and nano-technologies when the separation gaps between parts enter the submi-
cron range. The precise evaluation of the Casimir force between surfaces involves
very difficult computations, based on quantum mechanics concepts. The simplest
case, considered in Casimir’s original paper, is represented by two infinite perfectly
conductive flat plates with zero thickness, parallel to each other. The computation
of Casimir forces for geometries different from flat slabs should be performed by
means of suitable numerical tools. A technique based on boundary integral equa-
tions, involving kernel K(r) in exponentially-decaying form (α = 0, β = 1), has
recently been proposed in Reid, Rodriguez, White and Johnson (2009).

Finally, one may mention that optical tomography (see e.g. Zacharopoulos, Ar-
ridge, Dorn, Kolehmainen and Sikora, 2006) also leads to a Helmholtz equation
with complex wavenumber (defined in terms of modulation frequency of light and
optical parameters of the medium) with α =−1, β > 1.

The above-summarized wealth of different applications justifies an investigation of
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the Fast Multipole Methods for this class of problems. Currently, little is known
about e.g. the appropriate non-dimensional frequency ranges of applicability of ei-
ther multipole-based or plane wave-based expansions, or the choice of truncation
order. In this article, an empirical study of multipole expansions of K(r), of the
kind known to be suitable for low real wavenumbers, is conducted for complex
wavenumbers of the form k = (α + iβ )ϑ with α = ±1, 0, β > 0 and ϑ > 0, so
as to estimate ranges of applicability in terms of ϑd (d denoting a characteristic
cell size) and suitable settings for the truncation order N according to the values
of α,β . This article is organised as follows. The multipole expansion of K(r) and
its implementation are summarized in Sec. 2. Then, the effect on accuracy of the
expansion truncation is studied in Sec. 3 in terms of the usual relative error and a
weighted relative error EM accounting for the exponential decay of K(r) for large
‖r‖, for values of α,β which are typical of the main applications of Helmholtz-
type equations with complex k. In Sec. 4, the actual truncation error observed on
two representative examples of single-layer potentials evaluated over BE meshes
featuring up to 20 000 elements is compared to the value of EM for the same trun-
cation parameter. Practical conclusions regarding truncation rules are finally drawn
from the results of these numerical experiments in Sec. 5.

2 Formulation

2.1 Multipole expansion

Let us consider the full-space Green’s function K(r) for the Helmholtz equation:

K(r) =
ei(α+iβ )ϑr

4πr
=

eikr

4πr
, k = (α + iβ )ϑ (1)

which solves:

∆K + k2K +δ (r) = 0

Here r = ‖r‖= ‖y−x‖ denotes the distance between a “source” (collocation) point
x and a “field” point y; ϑ is a parameter related to frequency; α,β are real param-
eters which are application-dependent, as discussed in the Introduction.

For a given pole O, let rx =x−O, ry =y−O and rx =‖rx‖, ry =‖ry‖. The Gegen-
bauer addition theorem (Abramowitz and Stegun, 1964) states that, for rx > ry

eikr

4πr
=

ik
4π

∞

∑
n=0

n

∑
m=−n

(2n+1)(−1)mI−m
n (k,ry)Om

n (k,rx) (2)
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where, setting r̂ = r/r,

Om
n (k,r) = hn(kr)Y m

n (r̂) (3)

Im
n (k,r) = jn(kr)Y m

n (r̂) (4)

In eqn. (4) jn is the spherical Bessel function of the first kind (Abramowitz and
Stegun, 1964), hn is the spherical Hankel function of the first kind:

hn(z) = h(1)
n (z) = jn(z)+ iyn(z)

while the spherical harmonics Y m
n (r̂) are given in terms of the angular spherical

coordinates θ ,φ of a unit vector r̂ by:

Y m
n (r̂) =

√
(n−m)!
(n+m)!

Pm
n (cosθ)eimφ

where Pm
n are the associated Legendre polynomials. Epton and Dembart (1995),

Nishimura, Yoshida and Kobayashi (2001), Yoshida (2001) propose an alternative
formulation where solid harmonics Rm

n , Sm
n , defined for a generic point r=rr̂ by

Rm
n (r) =

1
(n+m)!

Pm
n (cosθ)eimφ rn

Sm
n (r) = (n−m)!Pm

n (cosθ)eimφ 1
rn+1 ,

and satisfying

R−m
n = (−1)mRm

n S−m
n = (−1)mSm

n ,

are employed instead of spherical harmonics in eqns. (3) and (4), to obtain:

Om
n (k,r) = hn(kr)

1√
(n−m)!(n+m)!

Sm
n (r̂) (5)

Im
n (k,r) = jn(kr)

√
(n−m)!(n+m)!Rm

n (r̂) (6)

The main practical improvement brought by using (5), (6) rather than (3), (4) lies
with the fact that Rm

n (r), Sm
n (r) can be recursively evaluated using the Cartesian

coordinates of r, thus avoiding actual recourse to spherical coordinates.

2.2 Implementation details.

Two major numerical issues require specific attention in the FMM implementa-
tion: the evaluation of Bessel function with complex argument and the translation
operators.
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Evaluation of Bessel functions. Even though this result is not explicitly given
for a general complex argument in Abramowitz and Stegun (1964), the spherical
Bessel function of third kind hn(z) can be very efficiently evaluated starting from
h0 and h1

h0(kr) =
eikr

ikr
h1(kr) =− eikr

(kr)2 (i+ kr)

by resorting to the ascending three-term-recurrence-relation (TTRR) which is sta-
ble:

hn(z) =
2n−1

z
hn−1−hn−2

In contrast, jn cannot be evaluated using the ascending TTRR as it blows up for
large n (unless |z| is sufficiently large), while the descending TTRR applied to jn is
stable, as suggested in Abramowitz and Stegun (1964), Section 10.5.

Translation operators. Starting from identities provided in Epton and Dembart
(1995) and Yoshida (2001), the following results can be shown to hold for the case
at hand. First, the Multipole To Multipole (M2M) translation identity reads:

Im
n (k,O′y) =

∞

∑
n′=0

step=2

∑
`

∑
m′

W m,m′
n,n′,`I

−m′
n′ (k,Oy)Im+m′

` (k,O′O) (7)

where O and O′ denote the old and new pole, respectively, the lower and upper
bounds on ` and m′ are such that

`min = |n−n′|, `max = n+n′, (8)

m′min = max(−n′,−`−m), m′max = min(n′, `−m), (9)

and “step = 2” refers to the fact that the sum over ` is restricted to even values of
n′+n− `. Moreover, the W symbols in eqn. (7) are given by

W m,m′
n,n′,` = (2n′+1)(2`+1)(−1)m+n′+κ

(
n n′ `
0 0 0

)(
n n′ `
m m′ −m−m′

)
, (10)

where κ = (n′+n− `)/2 and
(

j1 j2 j3
k1 k2 k3

)
denotes the Wigner-3j symbol (Mes-

siah, 1968), which is non-zero only if:

|ki| ≤ ji and | j1− j2| ≤ j3 ≤ j1 + j2



Fast Multipole Methods for Helmholtz-like problems with complex wavenumber 277

Then, the Multipole To Local (M2L) translation identity reads:

Om
n (k,O′x) =

∞

∑
n′=0

step=2

∑
`

∑
m′

W m,m′
n,n′,`I

−m′
n′ (k,Ox)Om+m′

` (k,O′O) (11)

Finally the Local To Local (L2L) translation identity is:

Om
n (k,O′x) =

∞

∑
n′=0

step=2

∑
`

∑
m′

W m,m′
n,n′,`I

−m′
n′ (k,O′O)Om+m′

` (k,Ox) (12)

In eqns. (11) and (12) the bounds on ` and m′ are the same as in eqns. (8) and (9).

3 Numerical study of expansion accuracy

3.1 Relative truncation error

In any numerical implementation, the summation over n in expansion (2) is trun-
cated at level N, yielding an approximation KN(r) of kernel K(r):

KN(r) =
ik
4π

N

∑
n=0

n

∑
m=−n

(2n+1)(−1)mI−m
n (k,ry)Om

n (k,rx) (13)

The accuracy of (13) has been analysed e.g. by Song, Lu and Chew (1997) for the
specific case of real wavenumbers (α = 1,β = 0), rx� ry and r̂x · r̂y = 1. Empirical
formulas for the choice of N have been proposed in order to guarantee a chosen
level of accuracy on the evaluation of K(r). For instance, it is found that

N = ϑry +M log(π +ϑry) (14)

should guarantee a relative error E = |K−KN |/|K| of 10−3 with M = 3, and E =
10−6 with M = 5. Numerical evaluation of the truncation error E, displayed in
Fig. 1 as isovalues of log(E) in a (ϑry,N)-plane, leads to essentially the same
conclusions as (14). On the basis of such results it is generally concluded and
accepted that expansion (13) is not suited for efficient numerical implementations
in the presence of moderate to high frequencies, for which a plane-wave expansion
of K(r) in diagonal form is usually preferred (see e.g. Darve, 2000a,b for Maxwell
equations and Chaillat, Bonnet and Semblat, 2008 for elastodynamics).

In the case of complex wavenumbers of interest herein, the situation somewhat
improves, as the truncation level N needed to reach a given kernel accuracy E is
seen, on comparing Figs. 2 to 6, to decrease with increasing β . However, Figs. 2–6
also show that, for given β > 0, N still should be adjusted as a function of ϑd.
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Figure 1: Isovalues of log(E), case |α|= 1,β = 0 (purely-oscillatory kernel)

Figure 2: Isovalues of log(E), case |α|= 1,β = 0.1
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Figure 3: Isovalues of log(E), case |α|= 1,β = 0.2

Figure 4: Isovalues of log(E), case |α|= 1,β = 0.5
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Figure 5: Isovalues of log(E), case |α|= 1,β = 1

Figure 6: Isovalues of log(E), case |α|= 0,β = 1 (purely-decaying kernel).
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3.2 Weighted relative truncation error

The foregoing analysis, however, does not take into account that K(r) decays ex-
ponentially with ‖r‖ if β > 0. For this reason, the relative accuracy E achieved
on K(r) may not be the most useful indicator, as it does not take into account the
absolute relevance of the contribution of field points far from the collocation in the
presence of dissipative terms. For this reason, an alternative line of reasoning is
now proposed. Since for large values of βϑr the decaying term dominates in (1), it
is natural to investigate the relative kernel error in a way that takes into account the
absolute contribution of the kernel to the overall evaluation of integral operators.
This suggests to consider the pointwise weighted error

EM = E exp−βϑ2d (15)

instead of the standard relative error E. The chosen value 2d of the characteristic
length in (15) is motivated by the observation, commonly made about FMM im-
plementations, that the most severe errors in the application of (13) occur when the
collocation point lies in a cell Cx and the integration element lies in a cell Cy of the
interaction list of Cx closest to Cx (as in Fig. 7). Accordingly, this worst-case cell
and source/collocation point configuration (Fig. 7) is now considered. Placing the
expansion origin O at the origin of Cartesian coordinates, let x = (−3d,0,0) and
y = (−d,0,0), where 2d denotes the length of a cell side.

Figure 7: Choice of pole, source point, integration point

In what follows, the truncated series (1) is computed for different values of pa-
rameters d and N, and the weighted error EM is numerically evaluated. Several
specific values of α and β , chosen so as to be representative of the main physical
models employing kernel K(r) are considered. Ranges for (d,N) are adjusted so as
to expose the interesting features of EM(d,N) for each choice of α,β . Results are
collected in Figs. 8–13.

As can be appreciated from Figs. 12–13, for |α| ≤ β the largest weighted error oc-
curs at ϑd = 0 and, for instance, N = 12 guarantees log(EM)≤−6 while N = 8 is
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Figure 8: Isovalues of log(EM) for |α|= 1,β = 0.1.

Figure 9: Isovalues of log(EM) for |α|= 1,β = 0.2.
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Figure 10: Isovalues of log(EM) for |α|= 1,β = 0.3.

Figure 11: Isovalues of log(EM) for |α|= 1,β = 0.5.
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Figure 12: Isovalues of log(EM) for |α|= 1,β = 1.

Figure 13: Isovalues of log(EM) for α = 0,β = 1.
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sufficient for ensuring log(EM)≤−4. For β < 1 (Figs. 8–11), one can still identify
the truncation order N such that EM is controlled and less than a prescribed amount,
independently of ϑd, but this threshold now depends on β . Based on the results
plotted in Figs. 8–12, a law of the form N = c1 + c2β c3 is sought, with its coeffi-
cients ci identified by means of standard optimization routines. It is for instance
found using this procedure that log(EM) = −6, log(EM) = −4 and log(EM) = −3
can be achieved using N6, N4 and N3 terms, respectively, with:

N6 = 10.1+1.68β
−1.4 (16a)

N4 = 6.7+1.15β
−1.4 (16b)

N3 = 5.28+0.65β
−1.5 (16c)

The above empirical formulas are valid for 0.1 ≤ β ≤ 1. One sees that for small
values of β , high truncation orders are required to ensure a reasonable value of EM.
For instance, in the case α = 1,β = 0.1, which might be of interest in viscoelastic-
ity, ensuring EM ≤ 10−3 requires N = 26 In contrast, for the case α = −1,β = 1,
typical of oscillatory Stokes flow and eddy currents, N = 12 achieves EM ≤ 10−6.
Similar conclusions are reached for the purely decaying case α = 0,β = 1.

4 Full scale tests

In this section, we investigate whether the analysis carried out in Sec. 3.2 on the
pointwise weighted error EM allows to obtain practical guidelines for the choice
of the truncation order N in general analyses. To this aim, full-scale tests are per-
formed on a square plate of side L = 10 and a spherical surface of radius R = 10
both discretized employing 3-noded triangular plane boundary elements. For a se-
lected collocation point (located at the square centre for the plate) the following
integral, corresponding to a single-layer potential with constant density, is evalu-
ated over the surface S of the plate or sphere:

I =
∫

S
e−βϑr eiαϑr

4πr
dS (17)

The square plate is discretized with a fine mesh P1 of 20000 elements and a coarse
mesh P2 of 3200 elements. The typical element size (defined as the square root of
element area) is 0.07 for mesh P1 and 0.177 for mesh P2. Similarly, the sphere is
discretized with a fine mesh S1 of 18668 elements (with typical element size 0.26)
and a coarse mesh S2 of 3076 elements (with typical element size 0.5).

For each test case, integral (17) is evaluated using two methods, namely (a) a stan-
dard BEM approach whereby all element integrals are computed directly, and (b)
the standard FMM based on truncated expansion (1), as described in Greengard
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Figure 14: Square plate: meshes P1 and P2

Figure 15: Sphere: meshes S1 and S2

and Rokhlin (1987, 1997). In both methods, the direct singular or nearly-singular
integrals are evaluated by means of a classical semi-analytical procedure in which
the “static” kernel K0(r) (i.e. the limit for ϑ → 0 of K(r)) is subtracted from K(r)
and then added back. The difference K(r)−K0(r), being nonsingular for ‖r‖= 0,
is integrated by means of a 7-point Gauss-Hammer numerical quadrature, while
the singular static part K0(r) is integrated analytically as described in Milroy, Hin-
duja and Davey (1997). For all the non-singular, well-separated integrations, the
7-point Gauss-Hammer numerical quadrature is applied directly to K(r). In the
octree generation procedure used for the FMM evaluations, the maximum number
of elements in a leaf is set to 50 and an adaptive octree is produced. For the four
meshes of interest herein the number of levels in the octree structure, the minimum
half-width dmin and maximum half-width dmax of cells contributing to the FMM are
collected in Table 1.

The relative difference EF between the standard and FMM evaluations of I is com-
puted and plotted in Figs. 16–21 for the four meshes of interest and several choices
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Mesh levels dmin dmax

P1 6 5/(25) = 0.156 5/(22) = 1.25
P2 4 5/(23) = 0.625 5/(22) = 1.25
S1 5 10/(24) = 0.625 10/(22) = 2.5
S2 4 10/(23) = 1.25 10/(22) = 2.5

Table 1: Octree properties of the different surface meshes analysed

of β . It is of interest to determine whether the point-wise weighted error EM intro-
duced in Sec. 3.1 can be used to estimate a priori the actual relative error EF caused
by the FMM procedure relative to the direct computation of integrals (17). To this
end, the maximum point-wise weighted error EM induced by using a given trun-
cation level N in (13) can be extrapolated from Figs. 8–13, by simple inspection,
taking into account that the values of ϑd occurring during the FMM procedure are
bounded according to ϑdmin ≤ ϑd ≤ ϑdmax, and compared to EF .

Let us focus, e.g., on Fig. 19, which plots EF for mesh P2, N = 10 as a function of
ϑ for different combinations of α and β . For ϑ → 0 all the curves converge, which
is expected since all the kernels tend to the common static limit. The situation
is however different for increasing values of ϑ . For given mesh, ϑ , α and β ,
the segment {ϑdmin ≤ ϑd ≤ ϑdmax, N = 10} can be drawn in the relevant plot of
EM(ϑd,N) (Figs. 8-13). It can be reasonably argued that an upper bound for EF

could be estimated by picking the largest EM along that segment.

For instance, consider the case α = 1,β = 1 which corresponds to e.g. oscillatory
Stokes flows or eddy currents. The weighted point-wise error EM for this case is
plotted in Fig. 12 and a maximum value of log(EM) ≈ −3.5,−5.3,−7.1 is pre-
dicted for N =6,10,14, respectively. Moreover the maximum value of log(EM) for
given N occurs for ϑ = 0. This, according to the criterion introduced above, ex-
plains the behaviour of EF in Fig. 19 for α = 1,β = 1: the maximum of EF(ϑ ;N =
10) occurs for a small ϑ and is slightly overstimated by maxϑ EM(ϑd,N = 10), and
EF(ϑ ;N = 10) decreases as ϑ increases beyond the maximum point. Similar ob-
servations are made for the non-oscillatory exponential kernel (α = 0,β = 1). The
most important practical conclusion for the two cases α = 0 or 1, β = 1 is that the
classical FMM based on expansion (1) with a fixed truncation order N, say N = 10,
is expected to work satisfactorily and accuracy improves for large values of ϑ .

The situation is found to be different, as expected, for smaller values of β , but
can still be predicted with the help of EM. The relative error EF(ϑ ;N) initially
increases with ϑ until a plateau is reached, a behavior qualitatively similar to that
observed in the log(EM)(ϑ ,N) plots of Figs. 8–11. Once again, EM is found in
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all cases considered here to conservatively estimate the maximum error EF with
respect to ϑ for given N. For instance, let us consider the case α = 1,β = .5,
again for the test case of Fig. 19 for which N = 10, with the corresponding plot
of EM in Fig. 11. Starting from ϑ = 0, the function EM(ϑ ,N = 10) increases,
reaches a maximum of log(EM) = −4.6 and then decreases. This compares very
well with the situation depicted in Fig. 19, where the error EF(ϑ ;N = 10) increases,
reaches a maximum of log(EF) =−4.8 and decreases. Very similar remarks could
be presented for other combinations of parameters. It is however worth stressing
that unless very small frequencies (or characteristic lengths) are of interest, small
values of the dissipation coefficient β require high truncation orders N to keep EF

within acceptable limits, making the application of expansion (13) too expensive.

A very simple rule of thumb naturally stems from these remarks. Once α,β (i.e.
the physical problem of interest) and the desired accuracy EF = Ē are selected, the
truncation order can be estimated in a conservative way from the relevant contour
plot of EM(ϑ ,N) as the smallest truncation order NEF such that the entire level
curve EM = Ē lies below the line N = NEF .

Finally, a slightly modified test is performed by replacing the constant density by
the oscillatory density cos(5x1)cos(5x2) in the test surface integral I of Eq. (17),
x1 = x2 = 0 being the center of the plate:

I =
∫

S
e−βϑr eiαϑr

4πr
cos(5x1)cos(5x2)dx1dx2 (r2 = x2

1 + x2
2) (18)

The results for mesh P1, collected in Fig. 22, do not reveal major differences with
respect to the uniform density case (Fig. 17).

5 Conclusions

The numerical parametric studies reported in this article yield useful guidelines
for implementing and running FMM analyses based on the multipole expansion of
the Helmholtz kernel with complex wavenumber. The most important conclusions
drawn on that basis are:

1. When the dissipation parameter takes significant values (roughly β ≥ 0.5), a
range that covers the frequency-domain versions of parabolic equations gov-
erning e.g. Stokes flows, heat diffusion and eddy currents, a fixed truncation
level N ∼ 10 ensures both acceptable accuracy in the evaluation of single-
layer potentials based on the Helmholtz kernel and acceptable computational
costs. Conversely, N increases as β decreases, making this version of the
FMM potentially too-expensive for low dissipation levels.
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2. The weighted error EM is found to provide a conservative estimate of the
actual truncation error EF occurring in the evaluation of a single-layer po-
tential. This is useful e.g. for preliminary studies aiming at formulating
selection rules for computational parameters such as N, as EM is defined in
terms of the kernel at isolated points and is therefore easier to implement and
cheaper to evaluate than EF .

It is however suggested that one use these guidelines as a basis for ad-hoc refine-
ment according to the specific situation to be analysed, which may involve the
Helmholtz kernel in a complex way (through its derivatives, or a tensorial construct)
and integral operators more complex than single-layer potentials. The weighted er-
ror EM applied to more complex dissipative kernels of Helmholtz-type is expected
to prove a valuable tool for this purpose. Finally, it is hoped that future mathe-
matical studies will address the formal truncation error analysis in the complex-
wavenumber case.
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Figure 16: Plate, mesh P1, truncation order N = 6

Figure 17: Plate, mesh P1, truncation order N = 10
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Figure 18: Plate, mesh P1, truncation order N = 14

Figure 19: Plate, mesh P2, truncation order N = 10
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Figure 20: Sphere, mesh S1, truncation order N = 10

Figure 21: Sphere, mesh S2, truncation order N = 10
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Figure 22: Plate, mesh P1, truncation order N = 10, non-uniform density




