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BEM Solutions for 2D and 3D Dynamic Problems in
Mindlin’s Strain Gradient Theory of Elasticity1
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Abstract: A Boundary Element Method (BEM) for solving two (2D) and three
dimensional (3D) dynamic problems in materials with microstructural effects is
presented. The analysis is performed in the frequency domain and in the context of
Mindlin’s Form II gradient elastic theory. The fundamental solution of the differ-
ential equation of motion is explicitly derived for both 2D and 3D problems. The
integral representation of the problem, consisting of two boundary integral equa-
tions, one for displacements and the other for its normal derivative is exploited for
the proposed BEM formulation. The global boundary of the analyzed domain is
discretized into quadratic line and quadrilateral elements for 2D and 3D problems,
respectively. Representative 2D and 3D numerical examples are presented to illus-
trate the method, demonstrate its accuracy and efficiency and assess the gradient
effect on the response.
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mental Solution, Dispersion, BEM.

1 Introduction

When the dimensions of a structure become comparable to the size of the mi-
crostructure of the medium, size effects are observed. This means that specimens
with similar shape but different dimensions appear different response to the same
loading. The phenomenon is more complicated in dynamic problems where both
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stiffness and inertia are affected by the presence of the microstructure. It is well
known that due to the lack of internal length scale parameters classical theory elas-
ticity fails to describe such a behavior. However, this is possible with the use
of other enhanced elastic theories where intrinsic parameters correlating the mi-
crostructure with the macrostructure are involved in the constitutive equations as
well as in the equation of motion of the considered elastic continuum. Such theo-
ries and the most general are those known in the literature as Cosserat elastic the-
ory (Cosserat and Cosserat (1909)), Cosserat theory with constrained rotations or
couple stresses theory (Mindlin and Tiersten (1962), Koiter (1964)) strain gradient
theory (Toupin (1962)), multipolar elastic theory (Green(1964)), higher order strain
gradient elastic theory (Mindlin (1964, 1965)), micromorphic, microstretch and mi-
cropolar elastic theories (Eringen (1999)) and non-local elasticity (Eringen (1992)).
Among these theories, one can say that the most widely used are those of microp-
olar and gradient elasticity (Kadowaki and Liu (2005), Xie and Long (2006), Chen
and Lee (2004), Teneketzis and Aifantis (2002) and Karlis, Tsinopoulos, Polyzos
and Beskos (2008)).

The present work reports a boundary element formulation of Form II strain gra-
dient elastic theory, which is a special case of Mindlin’s general strain gradient
elasticity (Mindlin (1964, 1965)). The static version of this formulation is pre-
sented in the very recent paper of Karlis, Charalambopoulos and Polyzos (2010).
Mindlin in the middle of 60’s proposed an enhanced general elastic theory to de-
scribe linear elastic behavior of isotropic materials with microstructural effects. He
considered the potential energy density as a quadratic form not only of strains but
also of gradient of strains. Similarly, the kinetic energy density was a quadratic
form of both velocities and gradient of velocities. However, in order to balance
the dimensions of strains/velocities and higher order gradients of strains/velocities,
Mindlin utilized a plethora of new constants rendering thus his general theory very
complicated from physical and mathematical point of view. In order to make things
simpler Mindlin proposed three simplified versions of his theory, known as Form
I, II and III, utilizing in the final constitutive equations only two material and five
internal length scale constants instead of eighteen employed in his initial model.
The basic assumptions made were motion in low frequencies and the same defor-
mation for macro and micro structure. In Form-I, the strain energy density function
is assumed to be a quadratic form of the classical strains and the second gradient
of displacement; in Form-II the second gradient displacement is replaced by the
gradient of strains and in Form-III the strain energy function is written in terms of
the strain, the gradient of rotation, and the fully symmetric part of the gradient of
strain. Although the three forms are equivalent and conclude to the same equation
of motion, the Form-II leads to a total stress tensor, which is symmetric as in the
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case of classical elasticity thus avoiding problems associated with non-symmetric
stress tensors introduced by Cosserat and couple stress theories.

Due to the complexity of Mindlin’s theory, analytical solution even for regular
shaped materials is a very difficult task. Thus, resort should be made to numerical
methods such as the Finite Element Method (FEM), the Boundary Element Method
(BEM) or the Meshless Methods (MM). Although the FEM is the most widely used
numerical method for solving elastic problems, it appears the disadvantage of re-
quiring elements with C(1) continuity (Zervos (2000), Papanikolopoulos, Zervos
and Vardoulakis (2009)), since the presence of higher order gradients in the ex-
pression of potential energy leads to an equilibrium equation represented by a forth
order partial differential operator. To author’s best knowledge, in the framework of
dynamic problems there are not papers dealing with FEM solutions of Mindlin’s
Form II gradient elastic problems. There are however FEM solutions for simpler
gradient elastic models all special cases of Mindlin’s Form II gradient elastic the-
ory. More precisely, the dipolar gradient elastic theory, illustrated in Georgiadis
(2003), has been implemented through a mixed FEM formulation by Markolefas,
Tsouvalas, and Tsamasphyros(2007, 2009). However, as in the static case, mixed
formulations are associated with problems dealing with locking and increase of the
degrees of freedom of the problem due to many interpolated fields. Askes, Ben-
nett and Aifantis (2007), Askes, Wang and Bennett (2008) and Bennett and Askes
(2009) exploiting a gradient elastic model proposed by Aifantis, also a simple spe-
cial case of Mindlin’s Form II theory, solved dynamic gradient elastic problems
through a FEM displacement formulation. The main problem with those papers is
that due to the complete lack of a variational formulation, the considered bound-
ary conditions are not compatible with the corresponding correct ones provided by
Mindlin.

On the other hand, the BEM is a well-known and powerful numerical tool, success-
fully used in recent years to solve various types of engineering problems (Beskos
(1987, 1997)). A remarkable advantage it offers as compared to FEM is the reduc-
tion of the dimensionality of the problem by one. Thus, three dimensional problems
are accurately solved by discretizing only two-dimensional surfaces surrounding
the domain of interest. In the case where the problem is characterized by an ax-
isymmetric geometry, the BEM reduces further the dimensionality of the problem,
requiring just a discretization along a meridional line of the body. These advan-
tages in conjunction with the absence of C(1) continuity requirements, render the
BEM ideal for analyzing gradient elastic problems. Tsepoura, Papargyri-Beskou
and Polyzos (2002) were the first to use BEM for solving elastostatic problems in
the framework of gradient elastic theories. This work was followed by the publi-
cations Tsepoura and Polyzos (2002), Polyzos, Tsepoura, Tsinopoulos and Beskos
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(2003), Tsepoura, Polyzos, Tsinopoulos and Beskos (2003), Polyzos, Tsepoura,
Tsinopoulos and Beskos (2005), Polyzos (2005), Karlis, Tsinopoulos, Polyzos and
Beskos (2007, 2008), which are the only papers dealing with two and three dimen-
sional BEM solutions of static and dynamic gradient elastic and fracture mechanics
problems. All these papers implement two simple gradient elastic models, with the
first being the simplest possible special case of Mindlin’s Form II strain gradient
elastic theory and the second an enrichment of the simple gradient elastic model
with surface energy terms which affect only the boundary conditions of the problem
(Vardoulakis and Sulem (1995), Exadaktylos and Vardoulakis (2001)). Although
micropolar elastic theory is different to that of gradient elasticity, it should be men-
tioned here the works of Sladek and Sladek (1985 I, II, III), Liang and Huang (1996)
and Huang and Liang (1997) as BEM formulations for enhanced theories.

Recently, Atluri and co-workers proposed the Local Boundary Integral Equation
(LBIE) method (Zhu, Zhang, and Atluri (1998)) and the Meshless Local Petrov-
Galerkin (MLPG) method (Atluri and Zhu (1998)) as alternatives to the BEM and
FEM, respectively. Both methods are characterized as “truly meshless” since no
background cells are required for the numerical evaluation of the involved integrals.
Properly distributed nodal points, without any connectivity requirement, covering
the domain of interest as well as the surrounding global boundary are employed
instead of any boundary or finite element discretization. All nodal points belong
in regular sub-domains (e.g. circles for two-dimensional problems) centered at the
corresponding collocation points. The fields at the local and global boundaries as
well as in the interior of the subdomains are usually approximated by the Moving
Least Squares (MLS) approximation scheme. Owing to regular shapes of the sub-
domains, both surface and volume integrals are easily evaluated. The local nature
of the sub-domains leads to a final linear system of equations the coefficient matrix
of which is sparse and not fully populated. Both methods are ideal for treating
gradient elastic problems since they utilize MLS interpolation functions, which are
C(1) by definition. Recently, Tang, Shen and Atluri (2003) employing the MLPG
method solved 2D gradient elastostatic problems in the framework of Mindlin’s
general gradient elastic theory, while Sladek and Sladek (2003) proposed a LBIE
method for solving micropolar elastic problems. More details for MLPG and LBIE
methods one can find in Sladek, Sladek and Solek (2009), Atluri and Shen (2002),
Han and Atluri (2004) and Atluri (2004).

In the present paper the BEM in its direct form is employed for the solution of two-
dimensional (2D) and three-dimensional (3D) dynamic problems in the framework
of the Form-II strain-gradient theory of Mindlin. The paper consists of the follow-
ing six sections: Section 2 presents the Form II version of Mindlin’s general strain
gradient elastic theory. In Section 3, the 2D and 3D fundamental solutions of the
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problem are explicitly derived. Section 4 demonstrates the integral representation
of the gradient elastic boundary value problem as well as details of the proposed
BEM formulation, while Section 5 provides three numerical examples (2D and 3D)
to demonstrate the accuracy of the method and illustrate the microstructural effects.
Finally, Section 6 consists of the conclusions pertaining to this work.

2 The Form-II dynamic strain gradient elastic theory of Mindlin

In this section the higher order gradient elastic theory of Mindlin exploited in the
present work is explained.

Mindlin (1964) in the Form II version of his general strain gradient elastic theory
considered that the potential energy Wof an isotropic elastic body with microstruc-
ture of volume V is a quadratic form of the strains εi j and the gradient of strains,
κi jki.e.,

W =
∫
V

(
1
2

λ̃ εiiε j j + µ̃εi jεi j + α̂1κiikκk j j + α̂2κi j jκikk

+ α̂3κiikκ j jk + α̂4κi jkκi jk + α̂5κi jkκk ji)dV (1)

where

εi j =
1
2

(∂iu j +∂ jui) (2)

κi jk = ∂iε jk =
1
2

(∂i∂ juk +∂i∂ku j) = κik j (3)

µ̃ = µ− 2g2
2

b2 +b3
, λ̃ +2µ̃ = λ +2µ− 8g2

2
3(b2 +b3)

− (3g1 +2g2)2

3(3b1 +b2 +b3)
(4)

with ∂i denoting space differentiation, ui displacements, λ ,µ the Lamé constants
and α̂1÷ α̂5, g1,g2,b1÷ b3 intrinsic constants coming from the presence of mi-
crostructure, all explicitly defined in Mindlin (1964).

Strains εi j and gradient of strains κi jk are dual in energy with the Cauchy-like and
double stresses, respectively, defined as

τi j =
∂W
∂εi j

= τ ji (5)

µi jk =
∂W

∂κi jk
= µik j (6)
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which implies that

τi j = 2µ̃εi j + λ̃ εllδi j (7)

and

µi jk =
1
2

α̂1
[
κkllδi j +2κlliδ jk +κ jllδki

]
+2α̂2κillδ jk+

+ α̂3(κllkδi j +κll jδik)+2α̂4κi jk + α̂5
(
κki j +κ jki

) (8)

Extending the idea of non locality to the inertia of the continuum with microstruc-
ture, Mindlin proposed a new expression for the kinetic energy density function
where the gradients of the velocities are taken into account, i.e.

T =
∫
V

(
1
2

ρ u̇iu̇i +
1
6

ρ
′d̃2

pkmn∂mu̇n∂pu̇k)dV (9)

d̃2
pkmn = d̃2

mnpk

=
1
2

d2 [
δpmδkn−δpnδkm +2α(3α +2β )δpkδmn +β

2(δpmδkn +δpnδkm)
]
(10)

α =
1

b2 +b3

(
g1−

b1(3g1 +2g2)
3b1 +b2 +b3

)
, β = 1+

2g2

b2 +b3
(11)

where dots denote differentiation with respect to time, ρ ′ is the density of the mi-
crostructure, δi j stands for Kronecker delta and d is the characteristic dimension of
the representative cell of the microstructure.

The dynamic governing equation of the considered gradient elastic body as well
as the possible boundary conditions that establish a well-posed boundary value
problem can be determined with the aid of the Hamilton’s variational principle,
written as

t1∫
t0

δ (W −T )dt−
t1∫

t0

δW1dt = 0 (12)

where δ denotes variation and W1 represents the work done by external forces.

Inserting Eqs. (1) and (9) into Eq. (12) and taken into account body forces Fk one
obtains the following equation of motion:

∂ j(τ jk−∂iµi jk)+Fk = ρ ük−
1
3

∂p(ρ ′d̃2
pkmn∂mün) (13)
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accompanied by the classical essential and natural boundary conditions where the
displacement vector u and/or the traction vector p have to be defined on the global
boundary S of the analyzed domain, the non-classical essential and natural bound-
ary conditions where the normal displacement vector q = ∂u/∂n and/or the double
traction vector R are prescribed on S and the non-classical boundary condition sat-
isfied only when non-smooth boundaries are dealt with, where the jump traction
vector E has to be defined at corners and edges. Traction vectors p, R, E are de-
fined as

pk = n jτ jk−nin jDµi jk− (n jDi +niD j)µi jk +(nin jDlnl−D jni)µi jk+

+
1
3

ρ
′npd2

pkmn(Dmün +nmDün)
(14)

Rk = nin jµi jk (15)

Ek =
∥∥nim jµi jk

∥∥ (16)

where ni is the unit vector normal to the global boundary S, D = nl∂l and D j =
(δ jl−n jnl)∂l is the surface gradient operator. The non-classical boundary condition
(16) exists only when non-smooth boundaries are considered. Double brackets‖•‖
indicate that the enclosed quantity is the difference between its values taken on the
two sides of a corner while mi is a vector being tangential to the corner line.

Finally, taking into account relations (7) and (8), the equation of motion (13) in
terms of displacement vector is written as

(λ̃ +2µ̃)(1− `2
1∇

2)∇∇ ·u+ µ̃(1− `2
2∇

2)∇×∇×u+F

= ρ
(
ü−h2

1∇∇ · ü+h2
2∇×∇× ü

)
(17)

or in frequency domain for the frequency ω

(λ̃ +2µ̃)(1− `2
1∇

2)∇∇ ·u+ µ̃(1− `2
2∇

2)∇×∇×u+F

+ ρω
2 (u−h2

1∇∇ ·u+h2
2∇×∇×u

)
= 0 (18)

where

`2
1 = 2(â1 + â2 + â3 + â4 + â5)/(λ̃ +2µ̃) (19)

`2
2 = (â3 +2â4 + â5)/2µ̃ (20)

and

h2
1 =

ρ ′d2
[
2α2 +(α +β )2

]
3ρ

(21)
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h2
2 =

ρ ′d2
(
1+β 2

)
6ρ

(22)

The intrinsic parameters `2
1, `2

2, h2
1, h2

2 appearing in (17) and (18) have units of
length square (m2) and represent the effect of the stiffness (`2

1, `
2
2) and the inertia

(h2
1,h

2
2) of the microstructure on the macrostructural behavior of the gradient elastic

material. `2
1,h

2
1 are related to longitudinal deformations while `2

2,h
2
2 to shear ones.

Positive definiteness of the potential energy requires µ̃, λ̃ + 2µ̃ > 0, `2
i > 0 while

h2
i > 0 by inspection.

It should be mentioned here that considering the same density throughout the ana-
lyzed domain (ρ ′ = ρ) and α̂1 = α̂3 = α̂5 = 0, α̂2 = λ̃

2 g2, α̂4 = µ̃g2, g2
1 = g2

2 = 0,
relations (4), (10), (11), (19), (20), (21) and (22) imply that λ̃ ≡ λ , µ̃ ≡ µ, α =
0, β = 1, d̃2

pkmn = h2δpmδkn, `2
1 = `2

2 = g2, h2
1 = h2

2 = h2

which correspond to the simplest possible special case of Mindlin’s general the-
ory known as dipolar gradient elastic theory presented in Georgiadis (2003) and
implemented for the BEM in Polyzos (2005).

3 2D and 3D fundamental solutions

Adopting the methodology presented in Polyzos, Tsepoura, Tsinopoulos and Poly-
zos (2003), the 2D and 3D fundamental solutions of the differential equation of
motion (18) are explicitly derived in the present section.

For an infinitely extended gradient elastic space, the fundamental solutions are rep-
resented by a second order tensor ũ∗(x,y) satisfying the partial differential equation

(λ +2µ)
(
1− `2

1∆x
)

∇x∇x · ũ∗(x,y)−µ
(
1− `2

2∆x
)

∇x×∇x× ũ∗(x,y)+δ (x,y)Ĩ =

−ρω
2 (ũ∗(x,y)−h2

1∇∇ · ũ∗(x,y)+h2
2∇×∇× ũ∗(x,y)

)
(23)

where δ is the Dirac δ -function, x is the point where the displacement field ũ∗(x,y)
is obtained due to a unit force at point y and r = |x−y|.
The field u∗ can be decomposed into irrotational and solenoidal parts according to

ũ∗ = ∇∇φ +∇∇×A+∇×∇× G̃ (24)

where φ(r) is a scalar function, A(r) a vector function and G̃(r) a tensorial func-
tion. As it is explained in Polyzos, Tsepoura, Tsinopoulos and Polyzos (2003), due
to the radial nature of the fundamental solution, it is apparent that the vector A(r)
should be equal to zero. On the other hand the Dirac δ -function can be written as

−δ (r) = ∇
2g(r) = ∇∇g(r)−∇×∇×

[
g(r)Ĩ

]
(25)
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with g(r) being the fundamental solution of the Laplace operator, having the form

g(r) =

{
1

2π
ln 1

r f or 2D
1

4πr f or 3D
(26)

Inserting (24) and (25) into (23) one obtains

∇∇
{[

(λ +2µ)
(
1− `2

1∇
2)−ρω

2h2
1
]

∇
2
φ(r)+ρω

2
φ(r)

}
+

+∇×∇×
{[

µ
(
1− `2

2∇
2)−ρω

2h2
2
]

∇
2G̃(r)+ρω

2G̃(r)
}

=

=
1

2π
∇∇g(r)− 1

2π
∇×∇×

(
g(r) Ĩ

) (27)

The irrotational and solenoidal nature of φ(r) and G̃(r), respectively, impose that
(27) is satisfied if

∇
2
φ(r)− `2

1
λ +2µ

λ +2µ−ρω2h2
1

∇
4
φ(r)+

+
ρω2

λ +2µ−ρω2h2
1

φ(r) =
1

λ +2µ−ρω2h2
1

g(r)
(28)

∇
2G̃(r)− `2

1
µ

µ−ρω2h2
2

∇
4G̃(r)+

ρω2

µ−ρω2h2
2

G̃(r) =
1

µ−ρω2h2
2

g(r)Ĩ (29)

For ω2 6= (λ +2µ)/(ρh2
1) and ω2 6= µ/(ρh2

2) it is not difficult to find one that the
solutions of the above two partial differential equations are, respectively

φ(r) =
1

2πρω2

{
− lnr− 1+L2

1k2
1

1+2L2
1k2

1
K0 (ik1r)− L2

1k2
1

1+2L2
1k2

1
K0 (α1r)

}
(30)

G̃(r) =− 1
2πρω2

{
− lnr− 1+L2

2k2
2

1+2L2
2k2

2
K0 (ik2r)− L2

2k2
2

1+2L2
2k2

2
K0 (α2r)

}
Ĩ (31)

for two dimensions and

φ(r) =
1

4πρω2

(
1
r
− 1+L2

1k2
1

1+2L2
1k2

1

e−ik1r

r
− L2

1k2
1

1+2L2
1k2

1

e−α1r

r

)
(32)

G̃(r) =
1

4πρω2

{
1
r
− 1+L2

2k2
2

1+2L2
2k2

2

e−ik2r

r
− L2

2k2
2

1+2L2
2k2

2

e−α2r

r

}
Ĩ (33)

for three dimensions.
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Kn(•) represents the modified Bessel functions of second kind and nth order, k2
1,k

2
2

satisfy the dispersions relations k2
1
(
1+L2

1k2
1
)

= k2
P and k2

2
(
1+L2

2k2
2
)

= k2
S, respec-

tively, while

kP =

√
ρω2

λ +2µ−ρω2h2
1
, kS =

√
ρω2

µ−ρω2h2
2

(34)

L1 = `1

√
λ +2µ

λ +2µ−ρω2h2
1
, L2 = `2

√
µ

µ−ρω2h2
2

(35)

and

α1 =

√
1
L2

1
+ k2

1, α2 =

√
1
L2

2
+ k2

2 (36)

Inserting (30)-(33) in (24), the fundamental solution ũ∗(x,y) obtains the final form

ũ∗i j =
1

2α−1πρω2 [Ψ(r)δi j−X(r) r̂ir̂ j] (37)

Where α is the dimensionality of the problem (2 for 2D and 3 for 3D), r̂ = x−y
|x−y|

and

X(r) =− [
1+L2

1k2
1

1+2L2
1k2

1
k2

1K2 (ik1r)− 1+L2
2k2

2

1+2L2
2k2

2
k2

2K2 (ik2r)

− 1+L2
1k2

1

1+2L2
1k2

1
k2

1K2 (a1r)+
1+L2

2k2
2

1+2L2
2k2

2
k2

2K2 (a1r)]
(38)

Ψ(r) =− 1+L2
1k2

1

1+2L2
1k2

1

k2
1

2
[K2 (ik1r)−K0 (ik1r)] +

1+L2
2k2

2

1+2L2
2k2

2

k2
2

2
[K2 (ik2r)+K0 (ik2r)]

− 1+L2
1k2

1

1+2L2
1k2

1

k2
1

2
[K0 (a1r)−K2 (a1r)]− 1+L2

2k2
2

1+2L2
2k2

2

k2
2

2
[K0 (a2r)+K2 (a2r)]

(39)

for two dimensions and

X(r) =− [
1+L2

1k2
1

1+2L2
1k2

1
(k2

1−
3ik1

r
− 3

r2 )
e−ik1r

r
− 1+L2

2k2
2

1+2L2
2k2

2
(k2

2−
3ik2

r
− 3

r2 )
e−ik2r

r

− L2
1k2

1

1+2L2
1k2

1
(a2

1 +
3a1

r
+

3
r2 )

e−a1r

r
+

L2
2k2

2

1+2L2
2k2

2
(a2

2 +
3a2

r
+

3
r2 )

e−a2r

r
]
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(40)

Ψ(r) =
1+L2

1k2
1

1+2L2
1k2

1
(
ik1

r
+

1
r2 )

e−ik1r

r
− 1+L2

2k2
2

1+2L2
2k2

2
(−k2

2 +
ik2

r
+

1
r2 )

e−ik2r

r

+
L2

1k2
1

1+2L2
1k2

1
(
a1

r
+

1
r2 )

e−a1r

r
− L2

2k2
2

1+2L2
2k2

2
(a2

2 +
a2

r
+

1
r2 )

e−a2r

r

(41)

for three dimensions.

The cases where ω2 = (λ +2µ)/(ρh2
1) and ω2 = µ/(ρh2

2), are both beyond interest
since they correspond to wavelength being of the size of the microstructure.

4 Integral representation of the problem and BEM formulation

Consider a gradient elastic body of volume V , surrounded by a surface S, subjected
to an external harmonic loading and satisfying the equation of motion (18) as well
as certain classical and non-classical boundary conditions explained in section 2.

Symbolizing by u,p,R,E,F and u∗,p∗,R∗,E∗,F∗ two deformation states of the
same body, it has been proved [Tsepoura, Papargyri-Beskou and Polyzos (2002),
Giannakopoulos, Amanatidou and Aravas (2006)] that the following reciprocal
identity is valid

∫
V

{F∗ ·u−F ·u∗} dV +
∫
S

{p∗ ·u−p ·u∗} dS =
∫
S

{
R · ∂u∗

∂n
−R∗ · ∂u

∂n

}
dS (42)

for a smooth boundary S and∫
V

{F∗ ·u−F ·u∗} dV +
∫
S

{p∗ ·u−p ·u∗} dS =

=
∫
S

{
R · ∂u∗

∂n
−R∗ · ∂u

∂n

}
dS + ∑

Ca

∮
Ca

{E ·u∗−E∗ ·u} dC
(43)

for a non-smooth boundary S,

where vectors F,F∗ represent body forces and p,R,Estand for traction, double trac-
tion and jump traction vectors, respectively, defined in (14)-(16). Ca represents the
edge lines formed by the intersection of two surface portions when the boundary
S is non-smooth. For a two dimensional non-smooth boundary where parts of the
global boundary form Ca corners, it is easy to prove one that the reciprocal identity
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(43) obtains the form

∫
V

{F∗ ·u−F ·u∗} dV +
∫
S

{p∗ ·u−p ·u∗} dS =

=
∫
S

{
R · ∂u∗

∂n
−R∗ · ∂u

∂n

}
dS +∑

Ca

{E ·u∗−E∗ ·u}
(44)

where

Ek =
∥∥nit jµi jk

∥∥or E =
∥∥(t̂⊗ n̂) : µ

∥∥ (45)

with t̂ being the tantential vector to the curves forming the corner.

Assume that the displacement field u∗, appearing in the reciprocal identity (43), is
the result of a body force having the form

F∗ (y) = δ (x−y) ê

with δ being the Dirac δ -function and ê the direction of a unit force acting at point
y.

Recalling the definition of the fundamental solution derived in section 3, it is easy
to see that the displacement field u∗ due to F∗ can be represented by means of the
fundamental displacement tensor ũ∗ (x,y), given by the equation (37), according to
the relation

u∗ (y) = ũ∗ (x,y) · ê (45)

Inserting the above expression of u∗ in (46) and assuming zero body forces F=0,
one obtains

∫
V

{δ (x−y)ê ·u(y)}dVy +
∫
S

{[p̃∗(x,y) · ê] ·u(y)−p(y) · [ũ∗(x,y) · ê]}dSy =

∫
S

{
R(y) · [∂ ũ∗(x,y)

∂ny
· ê]− [R̃∗(x,y) · ê] · ∂u(y)

∂ny

}
dSy+

∑
Ca

∮
Ca

{
E(y) · [ũ∗(x,y) · ê]− [Ẽ∗(x,y) · ê] ·u(y)

}
dCy

(46)



BEM Solutions for 2D and 3D Dynamic Problems 57

or

(
∫
V

{δ (x−y)u(y)} dVy) · ê+(
∫
S

{
[p̃∗(x,y)]T ·u(y)−p(y) · ũ∗(x,y)

}
dSy) · ê =

(
∫
S

{(
∂ ũ∗(x,y)

∂ny

)T

·R(y)− [R̃∗(x,y)]T · ∂u(y)
∂ny

}
dSy) · ê+

(∑
Ca

∮
Ca

{
E(y) ·u∗(x,y)− [Ẽ∗(x,y)]T ·u(y)

}
dCy) · ê

(47)

with ÃT indicating transpose of Ã.

Considering that relation (48) is valid for any direction ê and taking into account the
symmetry of the fundamental displacementũ∗, one obtains the boundary integral
equation

c̃(x) ·u(x)+
∫
S

{
[p̃∗(x,y)]T ·u(y)− ũ∗(x,y) ·p(y)

}
dSy =

∫
S

{(
∂ ũ∗(x,y)

∂ny

)T

·R(y)− [R̃∗(x,y)]T · ∂u(y)
∂ny

}
dSy+

∑
Ca

∮
Ca

{
u∗(x,y) ·E(y)− [Ẽ∗(x,y)]T ·u(y)

}
dCy

(48)

where c̃(x) is the well known jump-tensor of classical boundary integral represen-
tations [Tsepoura, Papargyri-Beskou and Polyzos D (2002)].

Utilizing the symbols Ū∗, P̄∗, Q̄∗, R̄∗ and Ē∗ instead of ũ∗, (p̃∗)T ,
(

∂ ũ∗
∂n

)T
,
(
R̃∗
)T

and
(
Ẽ∗
)T , respectively, as well as q instead of ∂u

∂n Eq. (49) receives the form

c̃(x) ·u(x)+
∫
S

{
P̄∗(x,y) ·u(y)− Ū∗(x,y) ·p(y)

}
dSy =

∫
S

{
Q̄∗(x,y) ·R(y)− R̄∗(x,y) ·q(y)

}
dSy+

∑
Ca

∮
C

{
Ū∗(x,y) ·E(y)− Ē∗(x,y) ·u(y)

}
dCy

(49)

Recalling (44) and (45), the above integral equation in two dimensions obtains the
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form

c̃(x) ·u(x)+
∫
S

{
P̄∗(x,y) ·u(y)− Ū∗(x,y) ·p(y)

}
dSy =

∫
S

{
Q̄∗(x,y) ·R(y)− R̄∗(x,y) ·q(y)

}
dSy+

∑
Ca

{
Ū∗(x,y) ·E(y)− Ē∗(x,y) ·u(y)

}
(50)

In case the boundary S is smooth and the point x belongs to S, then the integral Eqs
(50) and (51) are simplified to

1
2

u(x)+
∫
S

{
P̄∗(x,y) ·u(y)− Ū∗(x,y) ·p(y)

}
dSy =

∫
S

{
Q̄∗(x,y) ·R(y)− R̄∗(x,y) ·q(y)

}
dSy

(51)

Observing Eq. (52), one easily realizes that this equation contains four unknown
vector fields, u(x), p(x), R(x) and q(x) while the boundary conditions are two (clas-
sical and non-classical). Thus, the evaluation of the unknown fields requires the
existence of one more integral equation. This integral equation is obtained by ap-
plying the operator ∂

/
∂nx on (50) and has the form

c̃(x) ·q(x)+
∫
S

{
∂ P̄∗(x,y)

∂nx
·u(y)− ∂ Ū∗(x,y)

∂nx
·p(y)

}
dSy =

∫
S

{
∂ Q̄∗(x,y)

∂nx
·R(y)− ∂ R̄∗(x,y)

∂nx
·q(y)

}
dSy+

∑
Ca

∮
Ca

{
∂ Ū∗(x,y)

∂nx
·E(y)− ∂ Ē∗(x,y)

∂nx
·u(y)

}
dCy

(52)

while for two dimensional and non-smooth boundary is written as

c̃(x) ·q(x)+
∫
S

{
∂ P̄∗(x,y)

∂nx
·u(y)− ∂ Ū∗(x,y)

∂nx
·p(y)

}
dSy =

∫
S

{
∂ Q̄∗(x,y)

∂nx
·R(y)− ∂ R̄∗(x,y)

∂nx
·q(y)

}
dSy+

∑
Ca

{
∂ Ū∗(x,y)

∂nx
·E(y)− ∂ Ē∗(x,y)

∂nx
·u(y)

}
(53)
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Finally, for smooth boundaries the above equations obtain the form

1
2

q(x)+
∫
S

{
∂ P̄∗(x,y)

∂nx
·u(y)− ∂ Ū∗(x,y)

∂nx
·p(y)

}
dSy =

∫
S

{
∂ Q̄∗(x,y)

∂nx
·R(y)− ∂ R̄∗(x,y)

∂nx
·q(y)

}
dSy

(54)

The pairs of integral equations (50) and (53), (51) and (54), (52) and (55) accom-
panied by the classical and non-classical boundary conditions form the integral
representation of any frequency domain Mindlin’s Form II strain gradient elastic
boundary value problem with 3D non-smooth boundary, 2D non-smooth boundary
and smooth boundary, respectively.

The goal of the boundary element method is to solve numerically the boundary
integral representation of the problem presented above. This is done in what fol-
lows. For the sake of simplicity only bodies with smooth boundaries are considered.
Thus, the smooth boundary S is discretized into e quadratic continuous isoparamet-
ric elements each of which has a(e) nodes, with a(e)=3, 8, 6 when line, quadrilat-
eral and triangular elements are employed. For a nodal point k, the discretized
integral Eqs (52) and (55) for the three dimensional case have the form

1
2

u
(

xk
)

+
E

∑
e=1

A(e)

∑
a=1

1∫
−1

1∫
−1

P̄∗
(

xk,ye (ξ1,ξ2)
)

Na (ξ1,ξ2)J (ξ1,ξ2)dξ1dξ2 ·ue
a

+
E

∑
e=1

A(e)

∑
a=1

1∫
−1

1∫
−1

R̄∗
(

xk,ye (ξ1,ξ2)
)

Na (ξ1,ξ2)J (ξ1,ξ2)dξ1dξ2 ·qe
a

=
E

∑
e=1

A(e)

∑
a=1

1∫
−1

1∫
−1

Ū∗
(

xk,ye (ξ1,ξ2)
)

Na (ξ1,ξ2)J (ξ1,ξ2)dξ1dξ2 ·Pe
a

+
E

∑
e=1

A(e)

∑
a=1

1∫
−1

1∫
−1

Q̄∗
(

xk,ye (ξ1,ξ2)
)

Na (ξ1,ξ2)J (ξ1,ξ2)dξ1dξ2 ·Re
a

(55)
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1
2

q
(

xk
)

+
E

∑
e=1

A(e)

∑
a=1

1∫
−1

1∫
−1

∂

∂nx
P̄∗
(

xk,ye (ξ1,ξ2)
)

Na (ξ1,ξ2)J (ξ1,ξ2)dξ1dξ2 ·ue
a

+
E

∑
e=1

A(e)

∑
a=1

1∫
−1

1∫
−1

∂

∂nx
R̄∗
(

xk,ye (ξ1,ξ2)
)

Na (ξ1,ξ2)J (ξ1,ξ2)dξ1dξ2 ·qe
a

=
E

∑
e=1

A(e)

∑
a=1

1∫
−1

1∫
−1

∂

∂nx
Ū∗
(

xk,ye (ξ1,ξ2)
)

Na (ξ1,ξ2)J (ξ1,ξ2)dξ1dξ2 ·Pe
a

+
E

∑
e=1

A(e)

∑
a=1

1∫
−1

1∫
−1

∂

∂nx
Q̄∗
(

xk,ye (ξ1,ξ2)
)

Na (ξ1,ξ2)J (ξ1,ξ2)dξ1dξ2 ·Re
a

(56)

with Na representing shape functions in local co-ordinate system ξ1,ξ2, the first
summation is over the elements, the second summation over the element nodes and
J is the Jacobian of the transformation from the global coordinate system to the
local coordinate system of the element. Finally, ue

a, qe
a, pe

a and Re
a are the values of

the unknown fields at the nodes of element e.

For the two dimensional case, the corresponding discretized equations are:

1
2

u
(

xk
)

+
E

∑
e=1

A(e)

∑
a=1

1∫
−1

P̄∗
(

xk,ye (ξ )
)

Na (ξ )J (ξ )dξ ·ue
a

+
E

∑
e=1

A(e)

∑
a=1

1∫
−1

R̄∗
(

xk,ye (ξ )
)

Na (ξ )J (ξ )dξ ·qe
a

=
E

∑
e=1

A(e)

∑
a=1

1∫
−1

Ū∗
(

xk,ye (ξ )
)

Na (ξ )J (ξ )dξ ·Pe
a

+
E

∑
e=1

A(e)

∑
a=1

1∫
−1

Q̄∗
(

xk,ye (ξ )
)

Na (ξ )J (ξ )dξ ·Re
a

(57)
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1
2

u
(

xk
)

+
E

∑
e=1

A(e)

∑
a=1

1∫
−1

∂

∂nx
P̄∗
(

xk,ye (ξ )
)

Na (ξ )J (ξ )dξ ·ue
a

+
E

∑
e=1

A(e)

∑
a=1

1∫
−1

∂

∂nx
R̄∗
(

xk,ye (ξ )
)

Na (ξ )J (ξ )dξ ·qe
a

=
E

∑
e=1

A(e)

∑
a=1

1∫
−1

∂

∂nx
Ū∗
(

xk,ye (ξ )
)

Na (ξ )J (ξ )dξ ·Pe
a

+
E

∑
e=1

A(e)

∑
a=1

1∫
−1

∂

∂nx
Q̄∗
(

xk,ye (ξ )
)

Na (ξ )J (ξ )dξ ·Re
a

(58)

with the same notation used for equations (56) and (57).

Next, a global numbering scheme is adopted by assigning a number β to each point
(e,a). Then the above equations become

1
2

uk +
L

∑
β=1

H̃k
β
·uβ +

L

∑
β=1

K̃k
β
·qβ =

L

∑
β=1

G̃k
β
·Pβ +

L

∑
β=1

L̃k
β
·Rβ (59)

1
2

qk +
L

∑
β=1

S̃k
β
·uβ +

L

∑
β=1

T̃k
β
·qβ =

L

∑
β=1

Ṽk
β
·Pβ +

L

∑
β=1

W̃k
β
·Rβ (60)

where L is the total number of nodes. Note that Eqs (60) and (61) are valid for
both the 2D and the 3D case. However, the integrals H̃, K̃, G̃, L̃, S̃, T̃, Ṽ, W̃ are
different in each case.

Namely, for the 3D case

H̃k
β

=
1∫
−1

1∫
−1

P̃∗
(

xk,ye (ξ1,ξ2)
)

Na (ξ1,ξ2)J (ξ1,ξ2)dξ1dξ2

∣∣∣∣∣∣
(e,a)→β

K̃k
β

=
1∫
−1

1∫
−1

R̃∗
(

xk,ye (ξ1,ξ2)
)

Na (ξ1,ξ2)J (ξ1,ξ2)dξ1dξ2

∣∣∣∣∣∣
(e,a)→β

G̃k
β

=
1∫
−1

1∫
−1

Ũ∗
(

xk,ye (ξ1,ξ2)
)

Na (ξ1,ξ2)J (ξ1,ξ2)dξ1dξ2

∣∣∣∣∣∣
(e,a)→β
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L̃k
β

=
1∫
−1

1∫
−1

Q̃∗
(

xk,ye (ξ1,ξ2)
)

Na (ξ1,ξ2)J (ξ1,ξ2)dξ1dξ2

∣∣∣∣∣∣
(e,a)→β

S̃k
β

=
1∫
−1

1∫
−1

∂

∂nx
P̃∗
(

xk,ye (ξ1,ξ2)
)

Na (ξ1,ξ2)J (ξ1,ξ2)dξ1dξ2

∣∣∣∣∣∣
(e,a)→β

(61)

T̃k
β

=
1∫
−1

1∫
−1

∂

∂nx
R̃∗
(

xk,ye (ξ1,ξ2)
)

Na (ξ1,ξ2)J (ξ1,ξ2)dξ1dξ2

∣∣∣∣∣∣
(e,a)→β

Ṽk
β

=
1∫
−1

1∫
−1

∂

∂nx
Ũ∗
(

xk,ye (ξ1,ξ2)
)

Na (ξ1,ξ2)J (ξ1,ξ2)dξ1dξ2

∣∣∣∣∣∣
(e,a)→β

W̃k
β

=
1∫
−1

1∫
−1

∂

∂nx
Q̃∗
(

xk,ye (ξ1,ξ2)
)

Na (ξ1,ξ2)J (ξ1,ξ2)dξ1dξ2

∣∣∣∣∣∣
(e,a)→β

and for the 2D case

H̃k
β

=
1∫
−1

P̃∗
(

xk,ye (ξ )
)

Na (ξ )J (ξ )dξ

∣∣∣∣∣∣
(e,a)→β

K̃k
β

=
1∫
−1

R̃∗
(

xk,ye (ξ )
)

Na (ξ )J (ξ )dξ

∣∣∣∣∣∣
(e,a)→β

G̃k
β

=
1∫
−1

Ũ∗
(

xk,ye (ξ )
)

Na (ξ )J (ξ )dξ

∣∣∣∣∣∣
(e,a)→β

L̃k
β

=
1∫
−1

Q̃∗
(

xk,ye (ξ )
)

Na (ξ )J (ξ )dξ

∣∣∣∣∣∣
(e,a)→β

S̃k
β

=
1∫
−1

∂

∂nx
P̃∗
(

xk,ye (ξ )
)

Na (ξ )J (ξ )dξ

∣∣∣∣∣∣
(e,a)→β

(62)
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T̃k
β

=
1∫
−1

∂

∂nx
R̃∗
(

xk,ye (ξ )
)

Na (ξ )J (ξ )dξ

∣∣∣∣∣∣
(e,a)→β

Ṽk
β

=
1∫
−1

∂

∂nx
Ũ∗
(

xk,ye (ξ )
)

Na (ξ )J (ξ )dξ

∣∣∣∣∣∣
(e,a)→β

W̃k
β

=
1∫
−1

∂

∂nx
Q̃∗
(

xk,ye (ξ )
)

Na (ξ )J (ξ )dξ

∣∣∣∣∣∣
(e,a)→β

When β 6= k the above integrals are non-singular and can be easily computed
through Gauss quadrature. In the case of β = k the integrals become singular and
special treatment is required. This is accomplished by applying the methodology
proposed by Guiggiani (1998) for singular integrations. Perhaps it would be more
convenient here to use a regularization technique for converting all hypersingular
integrals appearing in the integral equations (51)-(55) into weakly singular ones
before any numerical solution (Okada, Rajiyah and Atluri (1988,1990), Han and
Atluri (2002), Han, Yao and Atluri (2005), Liu (2007,2009)). Actually, this could
be the subject if a future paper.

Systems (60) and (61) form the following linear system of algebraic equations[1
2 Ĩ+H K

S 1
2 Ĩ+T

]
·
{

u
q

}
=
[

G L
V W

]
·
{

p
R

}
(63)

which after the application of the classical and non-classical boundary conditions
and rearranging, the following final linear system is obtained

[A] · {X}= {B} (64)

where the vectors X and B contain all the unknown and known nodal components
of the boundary fields respectively.

Finally, the linear system (65) is solved via a typical LU-decomposition algorithm
and the vector X, comprising all the unknown nodal values of u, q, R and P, is
evaluated.

5 Numerical Examples

In this section 2D and 3D harmonic numerical examples that demonstrate the ac-
curacy of the proposed BEM are presented.
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The first benchmark deals with an infinitely extended hollow cylinder clumped in-
ternally and subjected to an external radial harmonic displacement u0 with fre-
quency ω . Considering plane strain conditions with radial symmetry, this problem
under the classical boundary conditions u(a) = 0, u(b) = u0 and the non-classical
ones q(a) = q(b) = 0 admits an analytical solution of the form

u(r) = AcJ1(ζ1r)+BcH(1)
1 (ζ1r)+CcJ1(ζ2r)+DcH(1)

1 (ζ2r)

ζ1,2 =

√√√√k2
ph2

1−1±
√(

k2
ph2

1−1
)2 +4k2

p`
2
1

2`2
1

k2
p =

ρω2

λ +2µ

(65)

where a,b represent the inner and outer radii of the cylinder and J1(•) are Bessel
functions of first kind and first order and H(1)

1 (•) are Hankel functions of fist kind
and first order.

Also, the case with the non-classical boundary conditions R(a) = R(b) = 0 has
been considered. The constants ac,Bc,Cc,Dc are easily calculated via the algebraic
system the four boundary conditions form. As it is expected, due to the radial sym-
metry of the problem only the longitudinal intrinsic parameters `2

1, h2
1 are involved

in the expression of the analytical solution (67).

In the sequel, the same plain strain problem is numerically solved with the BEM
demonstrated in the previous section. Due to the symmetry only the one quad-
rant of the cross-section is considered. The material constants assumed are E =
1.4 GPa,ν = 0.37,ρ = 1500 kg/m3while the internal and external radii of the cylin-
der are taken equal to a = 1 cm,b = 8 cm.

Figure 1 depicts the calculated radial displacements and radial strains through thick-
ness for the frequency of ω = 105rad/sec and for different combinations of the in-
trinsic parameters`2

1,h
2
1. Numerical results corresponding to double tractions non-

classical boundary conditions are indicated in Figure 1 by the letter “R”. The nu-
merical results are compared to the corresponding analytical ones and as it is ap-
parent the agreement is excellent.

The second numerical example concerns a spherical cavity of radius a = 5 cm em-
bedded into the gradient elastic medium of the previous benchmark and subjected
to an internal uniform harmonic displacement u0 = 1 mm.Considering the classical
boundary condition u(a) = u0 and the non-classical one q(a) = 0; it is easy to find
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Figure 1: Radial displacements (a) and strains (b) through thickness for an infinitely
extended gradient elastic hollow cylinder clamped internally and subjected exter-
nally to a harmonic radial displacement u0 = 1 mm of frequency ω = 105rad/sec.

one that its analytical solution is of the form

u(r) = Ach(1)
1 (ζ1r)+Bch(1)

1 (ζ2r)

ζ
2
1,2 =

√√√√k2
ph2

1−1±
√(

k2
ph2

1−1
)2 +4k2

p`
2
1

2`2
1

k2
p =

ρω2

λ +2µ

(66)

where h(1)
1 (•) represents spherical Hankel functions of first order and first kind.

The constants Ac,Bc are easily calculated via the algebraic system the two boundary
conditions form.

The corresponding BEM solution is accomplished by discretizing one octant of the
sphere with quadratic quadrilateral elements. A set of internal points have been
considered, so that both radial displacement and radial strains are evaluated.

Figure 2 depicts the calculated radial displacements and radial strains on the con-
sidered internal points for the frequency of ω = 105rad/sec and for different com-
binations of the intrinsic parameters `2

1,h
2
1. The numerical results are compared to

the corresponding analytical ones of Eq. (67) and as it is apparent the agreement is
excellent.

The third example is illustrated in Figure 3. Consider a gradient elastic half-space
with material constants E = 14 GPa,ν = 0.37,ρ = 1500 kg/m3 and two different
internal length scale parameters provided in Table 1.
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Figure 2: Radial displacements (a) and strains (b) for a spherical cavity embedded
in a gradient elastic material and subjected to a harmonic radial displacement u0 =
1 mm of frequency ω = 105rad/sec
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Figure 2: Radial displacements (a) and strains (b) for a spherical cavity embedded in a 
gradient elastic material and subjected to a harmonic radial displacement 0 1 u mm=  of 

frequency 510 / secradω =  
 
The third example is illustrated in Figure 3. Consider a gradient elastic half-space with 
material constants 314 , 0.37, 1500 /E GPa kg mν ρ= = =  and two different internal 
length scale parameters provided in Table 1.   
 

 
Figure 3: Gradient elastic half space subjected to an impulsive traction excitation at A 

with time history (a) and FFT frequency spectrum (b). 
 

Table 1: Intrinsic gradient elastic parameters for the problem depicted in Fig. 3 
 Case 1 Case 2 
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Figure 3: Gradient elastic half space subjected to an impulsive traction excitation
at A with time history (a) and FFT frequency spectrum (b).

An impulsive traction excitation is imposed at point A and the generalized Rayleigh
wave propagates across the free surface of the half-space. For the sake of simplicity
symmetry at point A has been considered. Discretizing the free surface of the
half-space and taking the BEM solutions for each frequency of the Fast Fourier
Transform (FFT) spectrum shown in Figure 3(b), the time history of point B is
calculated. Four quadratic line elements per wavelength corresponding to central
frequency have been used for the discretization of the free space. The transient
solution is obtained after inversion of frequency domain results via the inverse FFT.
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Table 1: Intrinsic gradient elastic parameters for the problem depicted in Fig. 3

Case 1 Case 2
â1 0.0 0.0
â2 72.71 78.645
â3 0.0 0.0
â4 51.095 55.264
â5 0.0 0.0
`2

1 10−8 (1.04)210−8

`2
2 10−8 (1.04)210−8

h2
1 10−10 (1.04)210−8

h2
2 10−10 (0.74)210−8

The signal at point B is converted to time-frequency domain through the Reassigned
Smoothed Pseudo Wigner- Ville transform illustrated in Vavourakis, Protopappas,
Fotiadis and Polyzos (2009). The results are shown in Figures 4 and 5 in the form
of pseudo-color images, where the color of a point represents the amplitude (in dB)
of the energy distribution. In both figures the time-frequency representation of the
first symmetric (solid line) and antisymmetric (dash line) mode corresponding to
the propagation of a pulse in a free of traction gradient elastic plate, obtained analyt-
ically by Vavva, Protopappas, Gergidis, Charalambopoulos, Fotiadis and Polyzos
(2009) for the case 1 of Table 1, are also depicted.

Observing Figs 4 and 5 one can say that (i) BEM solutions justify the dispersion
nature of Rayleigh waves in gradient elastic media (Georgiadis, Vardoulakis and
Lykotrafitis (2000), Georgiadis and Velgaki (2003)) (ii) the dispersion line of the
Rayleigh wave is obtained asymptotically by the plate first symmetric and antisym-
metric mode as in the case of the classical elasticity and (iii) the dispersion only
depends on the values of the internal stiffness and inertia microstructural parame-
ters.

6 Conclusions

A boundary element method for solving two and three-dimensional dynamic strain
gradient elastic problems in the context of Mindlin’s Form II strain gradient elastic
theory has been developed. The equation of motion, all the possible boundary con-
ditions (classical and non-classical), the fundamental solution and the reciprocity
identity of the gradient elastic problem are explicitly presented. Both, fundamental
solution and reciprocity identity have been used to establish the boundary inte-
gral representation of the problem consisting of one equation for the displacement
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Figure 4: Time–frequency representation of vertical displacement at point B of
Figure 3 for the case 1 of Table 1. Solid and dash lines represent symmetric and
antisymmetric modes, respectively, corresponding to the propagation of a pulse in a
free of traction gradient elastic plate, obtained analytically by Vavva, Protopappas,
Gergidis, Charalambopoulos, Fotiadis and Polyzos (2009).

and another one for its normal derivative. The numerical implementation of the
problem is accomplished by discretizing the external boundary into quadratic line
or quadrilateral/triangular elements, while the numerical evaluation of all integrals
with any order of singularity is accomplished directly with the aid of advanced inte-
gration algorithms. Three representative numerical examples have been presented
to illustrate the method, demonstrate its high accuracy and confirm the effect of the
microstructure to macrostructure.
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