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Convergence of Electromagnetic Problems Modelled by
Discrete Geometric Approach
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Abstract: This paper starts from the spatial discretization of an electromagnetic
problem over pairs of oriented grids, one dual of the other, according to the so
called Discrete Geometric Approach (DGA) to computational electromagnetism;
the Cell Method or the Finite Integration Technique are examples of such an ap-
proach. The core of the work is providing for the first time a convergence analysis
when the discrete counter-parts of constitutive relations are computed by means of
an energetic framework.
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1 Introduction

The geometric structure behind Maxwell’s equations allows to formulate them in
a discrete way on a pair of oriented grids, one dual of the other, yielding to the so
called Discrete Geometric Approach to computational electromagnetism, as shown
by E. Tonti with its Cell Method [Tonti (2002); Tonti (1998); Tonti (2001); Hesh-
matzadeh and Bridges (2007); Cosmi (2001); Tonti and Zarantoello (2009); Code-
casa, Specogna, and Trevisan (2008); Ferretti (2003); Ferretti (2004b); Ferretti
(2004a); Ferretti (2005); Ferretti, Casadio, and Leo (2008)], by T. Weiland with its
Finite Integration Technique [Weiland (1977); Weiland (1985)].

Integrals of the electromagnetic field over spatial geometric elements – nodes,
edges, faces and volumes – of such a pair of oriented dual grids, are referred to
as Degrees of Freedom (DoFs). Exact balance equations are written in terms of
DoFs, discretizing in the space domain the physical laws of electromagnetism.
Conversely, constitutive relations are discretized as approximate relations trans-
forming the DoFs associated with geometric elements of one grid into the corre-
sponding DoFs associated with geometric elements of the other grid.
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The spatially discretized physical laws and the constitutive relations, yield a final
system of equations whose properties of consistency and stability depend solely on
the way the constitutive relations are discretized [Schuhmann and Weiland (1998);
Marrone (2004)]. Besides the natural use of pairs of oriented Cartesian orthog-
onal dual grids, the use of more general pairs of oriented dual grids have been
proposed [Marrone (2001); Tonti (2002); Trevisan and Kettunen (2004)] without
ensuring, however, consistency and stability simultaneously for the spatially dis-
cretized equations. It was only with the energetic framework proposed by the Au-
thors in [Codecasa, Minerva, and Politi (2004);Codecasa and Trevisan (2006);Code-
casa, Specogna, and Trevisan (2007);Codecasa and Trevisan (2007)] that consis-
tency and stability were guaranteed. However, no theoretical results concerning
the convergence of the discretized system towards the exact solution of the electro-
magnetic problem have been provided yet. Such a result would lead to a theoretical
validation of the Discrete Geometric Approach which, as far as the Authors know,
at this time is still lacking in literature.

This paper aims at providing for the first time a convergence analysis for electro-
magnetic problems spatially discretized by the Discrete Geometric Approach when
constitutive relations are discretized within a the energetic framework. A numerical
analysis confirms these theoretical predictions.

The remaining of this paper is organized as follows. In Sections 2, 3 the spatial
discretization of an electromagnetic problem by the DGA is briefly recalled. The
energetic framework, for discretizing constitutive relations is analysized in Section
4 and is propedeutic to the following Sections 5, 6, 7 which form the core of the
paper. Mild regularity conditions on the electromagnetic problem and on the pair
of dual grids are introduced in Section 5. Convergence analysis is performed in
Sections 6, 7. Numerical results are given in Section 8. Definitions and ancillary
results are derived in the Appendices.

2 Formulation of the electromagnetic problem

Hereafter a time-domain electromagnetic boundary value problem is considered in
a bounded spatial region Ω and in a time interval [0,T ]. The electromagnetic field is
described by the electric field e(r, t), the electric displacement d(r, t), the magnetic
induction b(r, t) and the magnetic field h(r, t). These quantities are functions of the
position vector r and of time instant t and are ruled by:

1. Faraday equation for r ∈Ω and 0≤ t ≤ T

∇× e(r, t) =−∂b
∂ t

(r, t).
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2. Ampére-Maxwell equation for r ∈Ω and 0≤ t ≤ T

∇×h(r, t) =
∂d
∂ t

(r, t)+ js(r, t),

in which js(r, t) is the source current density.

3. Boundary conditions for r ∈ ∂Ω and 0≤ t ≤ T , in which ∂Ω is the boundary
of Ω. As motivated in Section 3, for the sake of simplicity, magnetic walls
boundary conditions are considered, so that

n(r)×h(r, t) = 0

being n(r) the unit vector outward normal to ∂Ω at r.

4. Constitutive equations for r∈Ω. Linear, non-dispersive, in general anisotropic
electromagnetic media are considered. Thus the electric constitutive relation
is

d(r, t) = ε(r)e(r, t) (1)

in which ε(r) is the permittivity double tensor, assumed to be symmetric,
positive-definite or equivalently

e(r, t) = η(r)d(r, t)

in which η(r) is the inverse of ε(r). The magnetic constitutive relation is

h(r, t) = ν(r)b(r, t), (2)

in which ν(r) is the reluctivity double tensor, assumed to be symmetric,
positive-definite, or equivalently

b(r, t) = µ(r)h(r, t),

in which µ(r) is the inverse of ν(r).

5. Initial conditions for d(r, t) and b(r, t) for r ∈Ω at t = 0.

b(r,0) = b0(r),
d(r,0) = d0(r).

Regularity conditions on material properties and electromagnetic field, assumed in
this analysis, will be detailed in Section 5.



18 Copyright © 2010 Tech Science Press CMES, vol.58, no.1, pp.15-44, 2010

3 Spatial discretization of the electromagnetic problem by DGA

The electromagnetic problem in Section 2 is spatially discretized by DGA as fol-
lows. Firstly the Ω spatial region is covered by a pair of oriented dual grids G , G̃
[Weiland (1996); Tonti (2002), Bossavit (1998)]. The primal grid G has n nodes,
l edges, f faces and v volumes. Each of these geometrical elements is given an
orientation. The dual grid G̃ has ñ = v nodes, l̃ = f edges, f̃ = l faces and ṽ = n
volumes. Each of these geometrical elements has the orientation induced by the
corresponding geometrical element of the primal grid G [Tonti (2002)]. Let C be
the f × l face-edge incidence matrix for the primal grid G and let C̃ = CT be the
f̃ × l̃ face-edge incidence matrix for the dual grid G̃ .

Secondly, the electromagnetic field quantities in Section 2 are discretized into in-
tegral quantities associated with geometric elements of the pair of dual grids G , G̃
yielding the following arrays: the l×1 array v(t), of voltages vi(t), with i = 1 . . . l,
along the edges of G ; the f ×1 array ϕ(t), of induction fluxes ϕi(t) with i = 1 . . . f ,
associated with the faces of G ; the f̃ × 1 array ψ̃(t), of electric fluxes ψ̃i(t) with
i = 1 . . . f̃ , associated with the faces of G̃ ; the l̃× 1 array f̃(t), of electro motive
forces f̃i(t) with i = 1 . . . l̃, associated with the edges of G̃ .

Thirdly, such arrays of integral quantities are related by the following balance equa-
tions for the electromagnetic problem [Tonti (1998)]:

1. Faraday law is discretized into the matrix equation, for 0≤ t ≤ T ,

Cv(t) =−dϕ(t)
dt

. (3)

2, 3. Ampére-Maxwell law and magnetic wall boundary conditions are discretized
together into the matrix equation, for 0≤ t ≤ T ,

C̃f̃(t) =
dψ̃(t)

dt
+ρ f̃ js(r, t). (4)

in which1 ρ f̃ js(r, t) is the known f̃ × 1 array of fluxes of the source current
density js(r, t) through the faces of G̃ .

4. Constitutive equations are then discretized. The electric constitutive relation
(1) is discretized into a matrix equation

ψ̃(t) = Ev(t), (5)

1 Symbol ρ f̃ acts on a vector field yielding an array of fluxes through the faces of G̃ .



Convergence of Electromagnetic Problems 19

in which the l× l matrix E is a discrete counterpart of the ε(r) tensor. This
equation could be rewritten as

v(t) = Hψ̃(t)

in which the l× l matrix H is the inverse of E and is the discrete counterpart
of the η(r) tensor.

The magnetic constitutive relation (2) is discretized into a matrix equation

f̃(t) = Nϕ(t), (6)

in which the f × f matrix N is a discrete counterpart of the ν(r) tensor. This
equation could be rewritten as

ϕ(t) = Mf̃(t),

in which the f × f matrix M is the inverse of N and is the discrete counterpart
of the µ(r) tensor.
The problem of discretizing constitutive relations is crucial in DGA. It will
be faced in Section 4.

5. Initial conditions are discretized as2

ϕ(0) = ρ f b(r,0), (7)

ψ̃(0) = ρ f̃ d(r,0), (8)

Magnetic wall boundary conditions are considered, which are naturally represented
in the proposed discretization (4). Nevertheless the convergence analysis hereafter
proposed could be derived in a similar way also for different boundary conditions,
such as mixed electric and magnetic boundary conditions.

With respect to the same pair of grids G , G̃ , let us introduce the l×1 array3 ρee(r, t)
of the circulations of the electric field e(r, t) along the edges of G , the f ×1 array
ρ f b(r, t) of the fluxes of the magnetic induction b(r, t) across the faces of G , the
l×1 array ρ f̃ d(r, t) of the fluxes of the electric displacement d(r, t) across the faces
of G̃ and the f × 1 array4 ρẽh(r, t) of the circulations of the magnetic field h(r, t)
along the edges of G̃ . It is noted that (3), (4) are exactly satisfied by ρee(r, t),

2 Symbol ρ f acts on a vector field yielding an array of fluxes through the faces of G .
3 Symbol ρe acts on a vector field yielding an array of circulations along the edges of G .
4 Symbol ρẽ acts on the vector field yielding an array of circulations along the edges of G̃ .
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ρ f b(r, t) and by ρ f̃ d(r, t), ρẽh(r, t) respectively

Cρee(r, t) =− d
dt

ρ f b(r, t), (9)

C̃ρẽh(r, t) =
d
dt

ρ f̃ d(r, t)+ρ f̃ js(r, t). (10)

On the contrary, the equation obtained from (5) by substituting ρee(r, t) for v(t)
and ρ f̃ d(r, t) for ψ̃(t), is only approximate. In a similar way, the equation obtained
from (6) by substituting ρ f b(r, t) for ϕ(t) and ρẽh(r, t) is only approximate. Thus,
the discretized constitutive equations (5) and (6) cause v(t), ϕ(t), ψ̃(t) and f̃(t) to
be approximations of ρee(r, t), ρ f b(r, t), ρ f̃ d(r, t) and ρẽh(r, t) respectively.

Regularity conditions on the pair of dual grids, assumed in this analysis, will be
introduced in Section 5.

4 Energetic framework for constructing discrete constitutive relations

In [Codecasa, Minerva, and Politi (2004)] the authors have proposed an energetic
method for constructing discrete counter-parts of constitutive relations for electro-
magnetic problems spatially discretized by DGA.

Such discrete constitutive relations are here rederived in a novel way, useful for the
convergence analysis here performed, by combining discrete constitutive relations
separately constructed for the pairs of dual grids G k, G̃ k obtained by restricting
the pair of dual grids G , G̃ to the single volumes Ωk of G with k = 1, . . . ,v. Let
Γk

i , Σ̃k
i with i = 1, . . . , lk be respectively the edges of G k and the faces of G̃ k, with

k = 1, . . . ,v. Let Σk
i , Γ̃k

i with i = 1, . . . , f k be respectively the faces of G k and the
edges of G̃ k, with k = 1, . . . ,v. Let

lk
i =

∫
Γk

i

t(r)dΓ,

be the edge vector of the edge Γk
i , t(r) being the unit vector tangent to and oriented

as Γk
i with i = 1, . . . , lk. Let

sk
i =

∫
Σk

i

n(r)dΣ,

be the face vector of the face Σk
i , n(r) being the unit vector normal to and oriented

as Σk
i with i = 1, . . . , f k. Similarly let l̃k

i be edge vector of edge Γ̃k
i with i = 1, . . . , f k

and let s̃k
i be face vector of face Σ̃k

i with i = 1, . . . , lk. Let rk be the node of G̃ k, with
k = 1, . . . ,v.

For the sake of clarity, in Fig. 1 the pair of restricted grids G k, G̃ k is shown assum-
ing, as an example, an hexahedron as primal volume Ωk.
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Figure 1: Visualization of the restriction of the pair of dual grids G , G̃ to a single

volume when the primal volume Ωk is an hexahedron. The geometric elements of

the primal and dual grids G k, G̃ k are shown in addition.

Figure 1: Visualization of the restriction of the pair of dual grids G , G̃ to a single
volume when the primal volume Ωk is an hexahedron. The geometric elements of
the primal and dual grids G k, G̃ k are shown in addition.

4.1 Discrete counterpart of the permittivity tensor ε(r)

Let εk(r) be the restriction of the ε(r) permittivity tensor to the region Ωk. Let vk(t)
and ρk

e e(r, t) be the lk× 1 arrays respectively of the approximate and of the exact
circulations5 of the electric field along the edges of G k. Let ψ̃k(t) and ρk

f̃ d(r, t)

be the lk×1 arrays respectively of the approximate and of the exact6 fluxes of the
electric displacement through the faces of G̃ k.

Let wek
i (r), with i = 1, . . . , lk, be bounded vector functions satisfying the following

geometric properties∫
Γk

j

wek
i (r) · t(r)dΓ = δi j, i, j = 1, . . . , lk, (11)

lk

∑i
1

wek
i (r)⊗ lk

i = I, (12)

s̃k
i =

∫
Ωk

wek
i (r)dΩ, i = 1, . . . , lk, (13)

5 Symbol ρk
e acts on a vector field yielding an array of circulations along the edges of G k.

6 Symbol ρk
f̃

acts on a vector field yielding an array of fluxes through the faces of G̃ k.
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in which δi j is the Kronecker’s delta symbol and I is the identity double tensor.
Vector functions satisfying such geometric properties have indeed been introduced
by the Authors for various kinds of oriented dual grids [Codecasa and Trevisan
(2006)]. From (11), (12) it follows

Lemma 1 Functions wek
i (r), with i = 1, . . . , lk, are linearly independent. For the

field7

π
k
e(r)v

k(t) =
lk

∑i
1

vk
i (t)w

ek
i (r),

the degrees of freedom vk
i (t), with i = 1, . . . , lk, are the circulations of πk

e(r)vk(t)
along the edges of G k.

Proof. By computing the circulation of πk
e(r)vk(t) along the edges Γk

j, with j = 1, . . . , lk,
and by using (11) it results in∫

Γk
j

π
k
e(r)v

k(t) · t(r)dΓ =
lk

∑i
1

vk
i (t)

∫
Γk

j

wek
i (r) · t(r)dΓ

=
lk

∑i
1

vk
i (t)δi j = vk

j(t), j = 1, . . . , lk. (14)

Thus the degrees of freedom vk
j(t) are the circulations of πk

e(r)vk(t) along Γk
j, with j =

1, . . . , lk. Besides, if πk
e(r)vk(t) = 0 then from (14) it follows vk

j(t) = 0, with j = 1, . . . , lk.
Thus vector functions wek

i (r), with i = 1, . . . , lk, are linearly independent.

Lemma 2 Fields πk
e(r)vk(t) encompass all fields spatially uniform in Ωk.

Proof. By applying both members of (12) to a spatially uniform vector e(r, t) it results in

e(r, t) =

(
lk

∑i
1

wek
i (r)⊗ lk

i

)
e(r, t) =

lk

∑i
1

(e(r, t) · lk
i )w

ek
i (r) =

lk

∑i
1

vk
i wek

i (r)

and the thesis follows.

Thus, the wek
i (r) vector functions, with i = 1, . . . , lk, can be used as a basis for

representing vector fields within Ωk in particular uniform. They can also be used
for constructing discrete constitutive matrices as follows.

Let matrix Ek be introduced, whose elements are

Ek
i j =

∫
Ωk

wek
i (r) · εk(rk)wek

j (r)dΩ, i, j = 1, . . . , lk. (15)

7 Symbol πk
e(r) acts on the circulations along the edges of G k yielding a vector field.
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in which the permeability tensor εk(r) is evaluated at the node rk of G̃ k. The fact
that elements (15) can be computed is ensured by the properties of vector functions
wek

i (r), with i = 1, . . . , lk.

From (13) and from Lemmas 1, 2 it follows

Theorem 1 Matrix Ek is symmetric, positive-definite.

Proof. Since the permittivity tensor εk(rk) is symmetric, it follows

Ek
i j =

∫
Ωk

wek
i (r) · εk(rk)wek

j (r)dΩ =
∫

Ωk
wek

j (r) · εk(rk)wek
i (r)dΩ = Ek

ji i, j = 1, . . . , lk.

and Ek is symmetric. Since the permittivity tensor εk(r) is positive-definite, it follows

vk(t)T Ekvk(t) =
lk

∑i j
1

vk
i (t)

(∫
Ωk

wek
i (r) · εk(rk)wek

j (r)dΩ

)
vk

j(t)

=
∫

Ωk

(
lk

∑i
1

vk
i (t)w

ek
i (r)

)
· εk(rk)

(
l

∑ j
1

vk
j(t)w

ek
j (r)

)
dΩ

=
∫

Ω

π
k
e(r)v

k(t) · εk(rk)πk
e(r)v

k(t)dΩ≥ 0

and Ek is positive semi-definite. Besides vk(t)T Ekvk(t) = 0 implies πk
e(r)vk(t) = 0 and,

from Lemma 1, also vk(t) = 0. Thus Ek is positive definite.

Theorem 2 Let εk(r) be uniform and let e(r, t), d(r, t) be spatially uniform in Ωk.
Then it results in

ρ
k
f̃ d(r, t) = Ek

ρ
k
e e(r, t)

Proof. It results in

ψ̃
k
i =

∫
Ωk

wek
i (r)dΩ ·d(r, t) (16)

=
∫

Ωk
wek

i (r) · εk(r)e(r, t)dΩ

=
∫

Ωk
wek

i (r) · εk(r)

(
lk

∑ j
1

vk
jw

ek
j (r)

)
dΩ (17)

=
lk

∑ j
1

(∫
Ωk

wek
i (r) · εk(r)wek

j (r)dΩ

)
vk

j =
lk

∑ j
1

Ek
i jv

k
j.

Eq. (16) descends from (13), Eq. (17) descends from Lemma 2.
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It is noted that Theorem 1 expresses in formal terms the consistency property of
the discrete counter-part of the electric constitutive equation.

Matrix E in (5) is now generated from matrices Ek, with k = 1, . . . ,v, as follows.
Let Tk be the lk× l matrix whose element tk

i j is 1 if the i-th edge of G k is the j-th
edge of G and is 0 otherwise. Then matrix E is constructed as

E =
v

∑k
1

TkT EkTk

or equivalently

E = T̂T ÊT̂, Ê =

 E1 0
. . .

0 Ev

 , T̂ =

 T1

...
Tv

 . (18)

It is noted from (18) that since T̂ is a full-rank matrix and since Ê is a symmetric,
positive-definite matrix, also matrix E is symmetric, positive-definite.

4.2 Discrete counterpart of the reluctivity tensor ν(r)

Let νk(r) be the restriction of the ν(r) reluctivity tensor to the region Ωk. Let ϕk(t)
and ρk

f b(r, t) be the f k×1 arrays respectively of the approximate and of the exact
fluxes8 of the magnetic induction through the faces of G k. Let f̃k(t) and ρk

ẽ h(r, t)
be the f k×1 arrays respectively of the approximate and of the exact circulations9

of the magnetic field along the edges of G̃ k.

Let w f k
i (r), with i = 1, . . . , f k, be bounded vector functions satisfying the following

geometric properties∫
Σk

j

w f k
i (r) ·n(r)dΣ = δi j, i, j = 1, . . . , f k, (19)

f k

∑i
1

w f k
i (r)⊗ sk

i = I, (20)

l̃k
i =

∫
Ω

w f k
i (r)dΩ, i = 1, . . . , f k. (21)

Vector functions satisfying such geometric properties have indeed been introduced
by the Authors for various kinds of oriented dual grids [Codecasa and Trevisan
(2006)]. From (19), (20) it follows

8 Symbol ρk
f acts on a vector field yielding an array of fluxes through the faces of G k.

9 Symbol ρk
ẽ acts on a vector field yielding an array of circulations along the edges of G̃ k.



Convergence of Electromagnetic Problems 25

Lemma 3 The functions w f k
i (r) with i = 1, . . . , f k are linearly independent. For

the field

π
k
f (r)ϕ

k(t) =
f k

∑i
1

ϕ
k
i (t)w f k

i (r).

the degrees of freedom ϕk
i (t) with i = 1, . . . , f k are the fluxes of πk

f (r)ϕ
k(t) through

the faces of G k.

Proof. By computing the fluxes of πk
f (r)ϕ

k(t) through the faces Σk
j, with j = 1, . . . , f k, and

by using (19) it results in

∫
Σk

j

π
k
f (r)ϕ

k(t) ·n(r)dΣ =
f k

∑i
1

ϕ
k
i (t)

∫
Σk

j

w f k
i (r) ·n(r)dΣ

=
f k

∑i
1

ϕ
k
i (t)δi j = ϕ

k
j (t), j = 1, . . . , f k. (22)

Thus the degrees of freedom ϕk
j (t) are the fluxes of πk

f (r)ϕ
k(t) through Σk

j, with j =
1, . . . , f k. Besides if πk

f (r)ϕ
k(t) = 0 then from (22) it follows ϕk

j (t) = 0, with j = 1, . . . , f k.

Thus vector functions w f k
i (r), with i = 1, . . . , f k, are linearly independents.

Lemma 4 Fields πk
f (r)ϕ

k(t) encompass all fields spatially uniform in Ωk.

Proof. By applying both members of (20) to a spatially uniform vector b(r, t), it results in

b(r, t) =

 f k

∑i
1

w f k
i (r)⊗ sk

i

b(r, t) =
f k

∑i
1

(b(r, t) · sk
i )w

f k
i (r) =

f k

∑i
1

ϕ
k
i w f k

i (r),

and the thesis follows.

Thus the w f k
i (r) vector functions, with i = 1, . . . , f k, can be used as a basis for rep-

resenting vector fields within Ωk in particular uniform. They can also be used for
constructing discrete constitutive matrices as follows. Let matrix Nk have elements

Nk
i j =

∫
Ωk

w f k
i (r) ·νk(rk)w f k

j (r)dΩ, i, j = 1, . . . , f k. (23)

in which the reluctivity tensor νk(r) is evaluated at the node rk of G̃ k. The fact
that elements (23) can be computed is ensured by the properties of vector functions
w f k

i (r), with i = 1, . . . , f k. From (21) and from Lemmas 3, 4 it follows

Theorem 3 Matrix Nk is symmetric, positive-definite.
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Proof. Since the reluctivity tensor νk(rk) is symmetric, it follows

Nk
i j =

∫
Ωk

w f k
i (r) ·νk(rk)w f k

j (r)dΩ =
∫

Ωk
w f k

j (r) ·νk(rk)w f k
i (r)dΩ = Nk

ji i, j = 1, . . . , f k.

and Nk is symmetric. Since the reluctivity tensor νk(rk) is positive-definite, it follows

ϕ
k(t)T Nk

ϕ
k(t) =

f k

∑i j
1

ϕ
k
i (t)

(∫
Ωk

w f k
i (r) ·νk(rk)w f k

j (r)dΩ

)
ϕ

k
j (t)

=
∫

Ωk

 f k

∑i
1

ϕ
k
i (t)w f k

i (r)

 ·νk(rk)

 f k

∑ j
1

ϕ
k
j (t)w

f k
j (r)

 dΩ

=
∫

Ωk
π

k
f (r)ϕ

k(t) ·νk(rk)πk
f (r)ϕ

k(t)dΩ≥ 0

and Nk is positive semi-definite. Besides ϕk(t)T Nkϕk(t) = 0 implies πk
f (r)ϕ

k(t) = 0 and,
from Lemma 3, also ϕk(t) = 0. Thus Nk is positive definite.

Theorem 4 Let νk(r) be uniform and let b(r, t), h(r, t) be spatially uniform in Ωk.
Then it results in

ρ
k
ẽ h(r, t) = Nk

ρ
k
f b(r, t).

Proof. It results in

f̃ k
i =

∫
Ωk

w f k
i (r)dΩ ·h(r, t) (24)

=
∫

Ωk
w f k

i (r) ·ν(r)b(r, t)dΩ

=
∫

Ωk
w f k

i (r) ·ν(r)

 f k

∑ j
1

ϕ
k
j w f k

j (r)

 dΩ (25)

=
f k

∑ j
1

(∫
Ωk

w f k
i (r) ·ν(r)w f k

j (r)dΩ

)
ϕ

k
j =

f k

∑ j
1

Nk
i jϕ

k
j .

Eq. (24) descends from (21), Eq. (25) descends from Lemma 4. Thus by taking b(r, t) = a,
νk(rk) = q and h(r, t) = b the thesis follows.

It is noted that Theorem 4 expresses in formal terms the consistency property of
the discrete counter-part of the magnetic constitutive equation.

The matrix N is now generated from matrices Nk, with k = 1, . . . ,v, as follows. Let
Pk be the f k× f matrix whose element pk

i j is 1 if the i-th face of G k is the j-th face
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of G and is 0 otherwise. Matrix N is constructed as

N =
v

∑k
1

PkT NkPk

or equivalently

N = P̂T N̂P̂, N̂ =

 N1 0
. . .

0 Nv

 , P̂ =

 P1

...
Pv

 . (26)

It is noted from (26) that since P̂ is a full-rank matrix and since N̂ is a symmetric,
positive-definite matrix, also matrix N is symmetric, positive-definite.

5 Regularity conditions on the electromagnetic problem and on the pair of
dual grids

Consistency and stability analyses for a time domain electromagnetic boundary
value problem spatially discretized by DGA, was substantially provided in [Schuh-
mann and Weiland (1998)] and is not repeated here. Instead here a convergence
analysis is provided for DGA for the first time, assuming that constitutive relations
are discretized by the energetic framework, under conditions of mild regularity for
the electromagnetic problem and for the pair of oriented dual grids.

Firstly assumptions are made on the regularity of the material properties and of the
solution to the electromagnetic problem. Precisely it is assumed that the spatial
domain Ω can be partitioned in a finite set of subdomains Ωi, with i = 1, . . . ,s in
each of which both the tensors ε(r), ν(r) and their inverses η(r), µ(r) are bounded
and Lipschitz continuous. That is, if A(r) is any of such tensors, constants MA and
LA exist such that

||A(r)||2 ≤MA,

||A(r1)−A(r2)||2 ≤ LA|r1− r2|, r1,r2 ∈Ωi, i = 1, . . . ,s,

hold, in which || · ||2 is the spectral norm, recalled in Appendix A. Similarly, it
is assumed that for all time instants 0 ≤ t ≤ T , the fields e(r, t), h(r, t), b(r, t),
d(r, t), together with their time derivatives are bounded and Lipschitz continuous
within each subdomain Ωi, with i = 1, . . . ,s. That is, if a(r, t) is any of such fields,
constants Ma and La exist such that

|a(r, t)| ≤Ma, (27)

|a(r1, t)−a(r2, t)| ≤ La|r1− r2|, r1,r2 ∈Ωi, i = 1, . . . ,s, (28)
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hold. It is noted that these assumptions exclude the case of unbounded electromag-
netic field solutions. It is also noted that these assumptions ensure that quantities
ρk

e e(r, t), ρk
f̃ d(r, t), ρk

f b(r, t) and ρk
ẽ h(r, t) can be computed with respect to a pair

of oriented dual grids.

Secondly assumptions are made on the pair of dual grids G , G̃ . Any chosen pair of
dual grids G , G̃ is such that the following disequalities

||ρk
e e(r, t)||Ek ≤ RE

√
|Ωk|max

r∈Ωk

√
||εk(r)||2 max

r∈Ωk
|e(r, t)|, k = 1, . . . ,v, (29)

||ρk
f̃ d(r, t)||Hk ≤ RH

√
|Ωk|max

r∈Ωk

√
||ηk(r)||2 max

r∈Ωk
|d(r, t)|, k = 1, . . . ,v, (30)

||ρk
f b(r, t)||Nk ≤ RN

√
|Ωk|max

r∈Ωk

√
||νk(r)||2 max

r∈Ωk
|b(r, t)|, k = 1, . . . ,v, (31)

||ρk
ẽ h(r, t)||Mk ≤ RM

√
|Ωk|max

r∈Ωk

√
||µk(r)||2 max

r∈Ωk
|h(r, t)|, k = 1, . . . ,v, (32)

hold, in which the notation in Appendix A is used and the constants RE, RH, RN
and RM are independent of the pair of dual grids G , G̃ . Further, as it is common in
Finite Elements convergence analysis, it is assumed that the Ωi subdomains, with
i = 1, . . . ,s, are exactly obtained as unions of volumes of the primal grid G .

It is noted that a general condition for which (29)-(32) are satisfied is to choose the
pairs of dual grids in such a way that each primal volume is geometrically similar
to a volume in a finite set S . This is proved by Lemmas 5, 6 in Appendix B.

The maximum diameter [Quarteroni and Valli (1994)] of the volumes of G is here
denoted as hM.

6 Error bounds for the approximation error of integral quantities

Hereafter error bounds are derived for the v(t) approximation of ρee(r, t), the ϕ(t)
approximation of ρ f b(r, t), the ψ̃(t) approximation of ρ f̃ d(r, t) and the f̃(t) approx-
imation of h(r, t).
Subtracting, member by member, (9) from (3) it results in

C(v(t)−ρee(r, t)) =− d
dt

(ϕ(t)−ρ f b(r, t)), (33)

Similarly from (4) and (10), it results in

C̃(f̃(t)−ρẽh(r, t)) =
d
dt

(ψ̃(t)−ρ f̃ d(r, t)). (34)
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By multiplying both members of (33) by (f̃(t)−ρẽh(r, t))T , both members of (34)
by (v(t)−ρee(r, t))T and by subtracting the two equations, member by member, it
results in

(f̃(t)−ρẽh(r, t))T d
dt

(ϕ(t)−ρ f b(r, t))+

+(v(t)−ρee(r, t))T d
dt

(ψ̃(t)−ρ f̃ d(r, t)) = 0. (35)

The following two identities are now introduced

(ϕ(t)−ρ f b(r, t)) = M(f̃(t)−ρẽh(r, t))+(Mρẽ−ρ f µ)h(r, t) (36)

(ψ̃(t)−ρ f̃ d(r, t)) = E(v(t)−ρee(r, t))+(Eρe−ρ f̃ ε)e(r, t) (37)

By substituting such identities into (35), it follows

d
dt

(
1
2
(f̃(t)−ρẽh(r, t))T M(f̃(t)−ρẽh(r, t))+

1
2
(v(t)−ρee(r, t))T E(v(t)−ρee(r, t))

)
= (f̃(t)−ρẽh(r, t))T (Mρẽ−ρ f µ(r))

∂h
∂ t

(r, t)

+(v(t)−ρee(r, t))T (Eρe−ρ f̃ ε(r))
∂e
∂ t

(r, t). (38)

Since matrices E, N and hence also their inverse matrices H, M are symmetric,
positive-definite as from Section 4, this equation can be rewritten as follows. Let
the following scalar product and its corresponding norm be introduced

(x1,x2) = (v1,v2)E +(f̃1, f̃2)M

||x1||=
√

(x1,x1) =
√
||v1||2E + ||f̃1||2M

in which the notation in Appendix A has been used and

x1 =
[

v1
f̃1

]
, x2 =

[
v2
f̃2

]
.

Then (38) can be rewritten as

d
dt
||x(t)||2 = 2(x(t),ω(t)) (39)

in which

x(t) =
[

v(t)−ρee(r, t)
f̃(t)−ρẽh(r, t)

]
, ω(t) =

 (Hρ f̃ −ρeη(r))
∂d
∂ t

(r, t)

(Nρ f −ρẽν(r))
∂b
∂ t

(r, t)

 .
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By integrating Eq. (39) with respect to time from 0 to t it results in

||x(t)||2 = ||x(0)||2 +2
∫ t

0
(x(τ),ω(τ))dτ

from which, by using the properties of the scalar product,

||x(t)||2 ≤ ||x(0)||2 +2
∫ t

0
||x(t)|| ||ω(t)||dτ.

Then, as it can be easily proven [Quarteroni and Valli (1994)],

||x(t)|| ≤ ||x(0)||+2
∫ t

0
||ω(τ)||dτ.

Equivalently it is√
||v(t)−ρee(r, t)||2E + ||f̃(t)−ρẽh(r, t)||2M

≤
√
||v(0)−ρee(r,0)||2E + ||f̃(0)−ρẽh(r,0)||2M

+
∫ t

0

√∣∣∣∣∣∣∣∣(Hρ f̃ −ρeη(r))
∂d
∂τ

(r,τ)
∣∣∣∣∣∣∣∣2

E
+
∣∣∣∣∣∣∣∣(Nρ f −ρẽν(r))

∂b
∂τ

(r,τ)
∣∣∣∣∣∣∣∣2

M
dτ.

from which√
||v(t)−ρee(r, t)||2E + ||f̃(t)−ρẽh(r, t)||2M

≤
√∣∣∣∣∣∣(Eρe−ρ f̃ ε(r))e(r,0)

∣∣∣∣∣∣2
H

+
∣∣∣∣(Mρẽ−ρ f µ(r))h(r,0)

∣∣∣∣2
N

+
∫ t

0

√∣∣∣∣∣∣∣∣(Hρ f̃ −ρeη(r))
∂d
∂τ

(r,τ)
∣∣∣∣∣∣∣∣2

E
+
∣∣∣∣∣∣∣∣(Nρ f −ρẽν(r))

∂b
∂τ

(r,τ))
∣∣∣∣∣∣∣∣2

M
dτ. (40)

By analyzing the single terms in the right hand side of (40) it results in

Theorem 5 For 0≤ t ≤ T , it is√
||v(t)−ρee(r, t)||2E + ||f̃(t)−ρẽh(r, t)||2M ≤ (

√
S2

e +S2
h +T

√
S2

ḋ
+S2

ḃ
)hM. (41)

in which

Se = RH

√
Mη |Ω|(LεMe +MεLe)+RE

√
Mε |Ω|Le, (42)

Sh = RN
√

Mν |Ω|(LµMh +MµLh)+RM

√
Mµ |Ω|Lh, (43)

Sḋ = RE
√

Mε |Ω|(LηMḋ +MηLḋ)+RH

√
Mη |Ω|Lḋ , (44)

Sḃ = RM

√
Mµ |Ω|(LνMḃ +MνLḃ)+RN

√
Mν |Ω|Lḃ. (45)
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Proof. Since, from Theorem 2

(Ek
ρ

k
e −ρ

k
f̃ ε(rk))e(rk,τ) = 0,

and since, by hypothesis, for each r ∈Ωk it is

|e(r,τ)− e(rk,τ)| ≤Me|r− rk| ≤MehM,

it results in∣∣∣∣∣∣(Ek
ρ

k
e −ρ

k
f̃ ε(r))e(r,τ)

∣∣∣∣∣∣
Hk

=
∣∣∣∣∣∣ρk

f̃ (ε(rk)− ε(r))e(r,τ)+(Ek
ρ

k
e −ρ

k
f̃ ε(rk))e(r,τ)

∣∣∣∣∣∣
Hk

≤
∣∣∣∣∣∣ρk

f̃ (ε(rk)− ε(r))e(r,τ)
∣∣∣∣∣∣

Hk
+
∣∣∣∣∣∣(Ek

ρ
k
e −ρ

k
f̃ ε(rk))e(r,τ)

∣∣∣∣∣∣
Hk

≤
∣∣∣∣∣∣ρk

f̃ (ε(rk)− ε(r))e(r,τ)
∣∣∣∣∣∣

Hk
+
∣∣∣∣∣∣(Ek

ρ
k
e −ρ

k
f̃ ε(rk))(e(r,τ)− e(rk,τ))

∣∣∣∣∣∣
Hk

≤
∣∣∣∣∣∣ρk

f̃ (ε(rk)− ε(r))e(r,τ)
∣∣∣∣∣∣

Hk
+
∣∣∣∣∣∣ρk

f̃ ε(rk)(e(r,τ)− e(rk,τ))
∣∣∣∣∣∣

Hk

+
∣∣∣∣∣∣ρk

e (e(r,τ)− e(rk,τ))
∣∣∣∣∣∣

Ek
≤
(

RH

√
Mη |Ωk|(Lε Me +Mε Le)+RE

√
Mε |Ωk|Le

)
hM,

in which (29), (30) have been used. Thus by recalling (18) and by applying Theorem 9 in
Appendix A, with Â = Ê and Q̂ = T̂, it is∣∣∣∣∣∣(Eρe−ρ f̃ ε(r))e(r,τ)

∣∣∣∣∣∣2
H
≤

v

∑k
1

∣∣∣∣∣∣(Ek
ρ

k
e −ρ

k
f̃ ε(r))e(r,τ)

∣∣∣∣∣∣2
Hk

≤
(

RH
√

Mη(Lε Me +Mε Le)+RE
√

Mε Le

)2
h2

M

v

∑k
1
|Ωk|= S2

eh2
M. (46)

Similarly, since from Theorem 4 it is

(Mk
ρ

k
ẽ −ρ

k
f µ(rk))h(rk,τ) = 0,

and since, by hypothesis, for each r ∈Ωk it is∣∣∣h(r,τ)−h(rk,τ)
∣∣∣≤Mh|r− rk| ≤MhhM,

it results in∣∣∣∣∣∣(Mk
ρ

k
ẽ −ρ

k
f µ(r))h(r,τ)

∣∣∣∣∣∣
Nk

=
∣∣∣∣∣∣ρk

f (µ(rk)−µ(r))h(r,τ)+(Mk
ρ

k
ẽ −ρ

k
f µ(rk))h(r,τ)

∣∣∣∣∣∣
Nk

≤
∣∣∣∣∣∣ρk

f (µ(rk)−µ(r))h(r,τ)
∣∣∣∣∣∣

Nk
+
∣∣∣∣∣∣(Mk

ρ
k
ẽ −ρ

k
f µ(rk))h(r,τ)

∣∣∣∣∣∣
Nk

≤
∣∣∣∣∣∣ρk

f (µ(rk)−µ(r))h(r,τ)
∣∣∣∣∣∣

Nk
+
∣∣∣∣∣∣(Mk

ρ
k
ẽ −ρ

k
f µ(rk))(h(r,τ)−h(rk,τ))

∣∣∣∣∣∣
Nk

≤
∣∣∣∣∣∣ρk

f (µ(rk)−µ(r))h(r,τ)
∣∣∣∣∣∣

Nk
+
∣∣∣∣∣∣ρk

f µ(rk)(h(r,τ)−h(rk,τ))
∣∣∣∣∣∣

Nk

+
∣∣∣∣∣∣ρk

ẽ (h(r,τ)−h(rk,τ))
∣∣∣∣∣∣

Hk
≤
(

RN

√
Mν |Ωk|(Lµ Mh +Mµ Lh)+RM

√
Mµ |Ωk|Lh

)
hM,
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in which (31), (32) have been used. Thus by recalling (26) and by applying Theorem 9 in
Appendix A, with Â = N̂ and Q̂ = P̂, it is∣∣∣∣(Mρẽ−ρ f µ(r))h(r,τ)

∣∣∣∣2
N =

∣∣∣∣(Nρ f −ρẽν(r))b(r,τ)
∣∣∣∣2

M

≤
v

∑k
1

∣∣∣∣∣∣(Nk
ρ

k
f −ρ

k
ẽ ν(r))b(r,τ)

∣∣∣∣∣∣2
Mk

=
v

∑k
1

∣∣∣∣∣∣(Mk
ρ

k
ẽ −ρ

k
f µ(r))h(r,τ)

∣∣∣∣∣∣2
Nk

≤
(

RN
√

Mν(Lµ Mh +Mµ Lh)+RM
√

Mµ Lh

)2
h2

M

v

∑k
1
|Ωk|= S2

hh2
M. (47)

Besides since from Theorem 2 it is

(Hk
ρ

k
f̃ −ρ

k
e η(rk))

∂d
∂τ

(rk,τ) = 0

and since, by hypothesis, for each r ∈Ωk it is∣∣∣∣∂d
∂τ

(r,τ)− ∂d
∂τ

(rk,τ)
∣∣∣∣≤Mḋ |r− rk| ≤MḋhM,

it results in∣∣∣∣∣∣∣∣(Hk
ρ

k
f̃ −ρ

k
e η(r))

∂d
∂τ

(r,τ)
∣∣∣∣∣∣∣∣

Ek
=
∣∣∣∣∣∣∣∣ρk

e (η(rk)−η(r))
∂d
∂τ

+(Hk
ρ

k
f̃ −ρ

k
e η(rk))

∂d
∂τ

(r,τ)
∣∣∣∣∣∣∣∣

Ek

≤
∣∣∣∣∣∣∣∣ρk

e (η(rk)−η(r))
∂d
∂τ

(r,τ)
∣∣∣∣∣∣∣∣

Ek
+
∣∣∣∣∣∣∣∣(Hk

ρ
k
f̃ −ρ

k
e η(rk))

∂d
∂τ

(r,τ)
∣∣∣∣∣∣∣∣

Ek

≤
∣∣∣∣∣∣∣∣ρk

e (η(rk)−η(r))
∂d
∂τ

(r,τ)
∣∣∣∣∣∣∣∣

Ek
+
∣∣∣∣∣∣∣∣(Hk

ρ
k
f̃ −ρ

k
e η(rk))

(
∂d
∂τ

(r,τ)− ∂d
∂τ

(rk,τ)
)∣∣∣∣∣∣∣∣

Ek

≤
∣∣∣∣∣∣∣∣ρk

e (η(rk)−η(r))
∂d
∂τ

(r,τ)
∣∣∣∣∣∣∣∣

Ek
+
∣∣∣∣∣∣∣∣ρk

e η(rk)
(

∂d
∂τ

(r,τ)− ∂d
∂τ

(rk,τ)
)∣∣∣∣∣∣∣∣

Ek

+
∣∣∣∣∣∣∣∣ρk

f̃

(
∂d
∂τ

(r,τ)− ∂d
∂τ

(rk,τ)
)∣∣∣∣∣∣∣∣

Hk
=
(

RE

√
Mε |Ωk|(Lη Mḋ +Mη Ld)+RH

√
Mη |Ωk|Ld

)
hM,

in which (29), (30) have been used. Thus by recalling (18) and by applying Theorem 9 in
Appendix A, with Â = Ê and Q̂ = T̂, it is∣∣∣∣∣∣∣∣(Hρ f̃ −ρeη(r))

∂d
∂τ

(r,τ)
∣∣∣∣∣∣∣∣2

E
=
∣∣∣∣∣∣∣∣(Eρe−ρ f̃ ε(r))

∂e
∂τ

(r,τ)
∣∣∣∣∣∣∣∣2

H

≤
v

∑k
1

∣∣∣∣∣∣∣∣(Ek
ρ

k
e −ρ

k
f̃ ε(r))

∂e
∂τ

(r,τ)
∣∣∣∣∣∣∣∣2

Hk
=

v

∑k
1

∣∣∣∣∣∣∣∣(Hk
ρ

k
f̃ −ρ

k
e η(r))

∂d
∂τ

(r,τ)
∣∣∣∣∣∣∣∣2

Ek

=
(

RE
√

Mε(Lη Mḋ +Mη Ld)+RH
√

Mη Ld

)2
h2

M

v

∑k
1
|Ωk|= S2

ḋh2
M. (48)

Similarly, since from Theorem 4 it is

(Nk
ρ

k
f −ρ

k
ẽ ν(rk))

∂b
∂τ

(rk,τ) = 0,
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and since, by hypothesis, it is∣∣∣∣∂b
∂τ

(r,τ)− ∂b
∂τ

(rk,τ)
∣∣∣∣≤Mḃ|r− rk| ≤MḃhM,

it results in∣∣∣∣∣∣∣∣(Nk
ρ

k
f −ρ

k
ẽ ν(r))

∂b
∂τ

(r,τ)
∣∣∣∣∣∣∣∣

Mk
=
∣∣∣∣∣∣∣∣ρk

ẽ (ν(rk)−ν(r))
∂b
∂τ

+(Nk
ρ

k
f −ρ

k
ẽ ν(rk))

∂b
∂τ

(r,τ)
∣∣∣∣∣∣∣∣

Mk

≤
∣∣∣∣∣∣∣∣ρk

ẽ (ν(rk)−ν(r))
∂b
∂τ

(r,τ)
∣∣∣∣∣∣∣∣

Mk
+
∣∣∣∣∣∣∣∣(Nk

ρ
k
f −ρ

k
ẽ ν(rk))

∂b
∂τ

(r,τ)
∣∣∣∣∣∣∣∣

Mk

≤
∣∣∣∣∣∣∣∣ρk

ẽ (ν(rk)−ν(r))
∂b
∂τ

(r,τ)
∣∣∣∣∣∣∣∣

Mk
+
∣∣∣∣∣∣∣∣(Nk

ρ
k
f −ρ

k
ẽ ν(rk))

(
∂b
∂τ

(r,τ)− ∂b
∂τ

(rk,τ)
)∣∣∣∣∣∣∣∣

Mk

≤
∣∣∣∣∣∣∣∣ρk

ẽ (ν(rk)−ν(r))
∂b
∂τ

(r,τ)
∣∣∣∣∣∣∣∣

Mk
+
∣∣∣∣∣∣∣∣ρk

ẽ ν(rk)
(

∂b
∂τ

(r,τ)− ∂b
∂τ

(rk,τ)
)∣∣∣∣∣∣∣∣

Mk

+
∣∣∣∣∣∣∣∣ρk

f

(
∂b
∂τ

(r,τ)− ∂b
∂τ

(rk,τ)
)∣∣∣∣∣∣∣∣

Nk
=
(

RM

√
Mµ |Ωk|(Lν Mḃ +Mν Lb)+RN

√
Mν |Ωk|Lb

)
hM,

in which (31), (32) have been used. Thus by recalling (26) and by applying Theorem 9 in
Appendix A, with Â = N̂ and Q̂ = P̂, it is∣∣∣∣∣∣∣∣(Nρ f −ρẽν(r))

∂b
∂τ

(r,τ)
∣∣∣∣∣∣∣∣2

M
≤

v

∑k
1

∣∣∣∣∣∣∣∣(Nk
ρ

k
f −ρ

k
ẽ ν(r))

∂b
∂τ

(r,τ)
∣∣∣∣∣∣∣∣2

Mk

=
(

RM
√

Mµ(Lν Mḃ +Mν Lḃ)+RN
√

Mν Lḃ

)2
h2

M

v

∑k
1
|Ωk|= S2

ḃh2
M. (49)

By combining (40) with (46), (47), (48) and (49) the thesis follows.

Theorem 6 For 0≤ t ≤ T it is√
||ψ̃(t)−ρ f̃ d(r, t)||2H +

∣∣∣∣ϕ(t)−ρ f b(r, t)
∣∣∣∣2

N ≤
(

2
√

S2
e +S2

h +T
√

S2
ḋ
+S2

ḃ

)
hM.

(50)

Proof. From (36), (37), it straightforwardly results in√
||ψ̃(t)−ρ f̃ d(r, t)||2H +

∣∣∣∣ϕ(t)−ρ f b(r, t)
∣∣∣∣2

N ≤
√
||v(t)−ρee(r, t)||2E + ||f̃(t)−ρẽh(r, t)||2M

+
√
||(Eρe−ρ f̃ ε)e(r, t)||2E + ||(Mρẽ−ρ f µ)h(r, t)||2N (51)

The first term in the right hand side of (51), is bounded by (41). The second term in the
right hand side is bounded by (46) and (47) and the thesis follows.

Eqs. (41) and (50) establish bounds for the approximation error of the integral
quantities in DGA. These relations are now exploited for deriving bounds for the
approximation error of the electromagnetic field.
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7 Error estimations for the electromagnetic field

The fields πk
e(r)vk(t) introduced in each Ωk with k = 1, . . . ,v can be used to con-

struct the field πe(r)v(t) over the whole Ω as

πe(r)v(t) = π
k
e(r)v

k(t), r ∈Ω
k, k = 1, . . . ,v.

Hereafter it is shown that the field πe(r)v(t) is an approximation of e(r, t). To this
aim the approximation error ||πe(r)v(t)− e(r, t)||ε is estimated, in which the nota-
tion of Appendix A is used. As a result it is also shown that the field ε(r)πe(r)v(t)
is an approximation of the electric displacement d(r, t) and the approximation error
||ε(r)πe(r)v(t)− d(r, t)||η is estimated. It is noted that such norms can be com-
puted because of the assumed properties of both e(r, t), d(r, t), ε(r) and πe(r)v(t).

Theorem 7 For 0≤ t ≤ T , it results in

||πe(r)v(t)− e(r, t)||ε = ||ε(r)πe(r)v(t)−d(r, t)||η

≤
(

Ie +
√

S2
e +S2

h +T
√

S2
ḋ
+S2

ḃ

)
hM

in which

Ie = (RE +1)
√

Mε |Ω|Le.

Proof. It results in

||πe(r)v(t)− e(r, t)||ε = ||πe(r)(v(t)−ρee(r, t))+(πe(r)ρe−1)e(r, t)||ε
≤ ||πe(r)(v(t)−ρee(r, t))||ε + ||(πe(r)ρe−1)e(r, t)||ε .

From (41), it results in

||πe(r)(v(t)−ρee(r, t))||ε = ||v(t)−ρee(r, t)||E ≤
(√

S2
e +S2

h +T
√

S2
ḋ
+S2

ḃ

)
hM. (52)

Besides it is

||(πe(r)ρe−1)e(r, t)||2ε =
v

∑k
1
||(πk

e(r)ρ
k
e −1)e(r, t)||2

εk . (53)

Since

e(rk, t) = π
k
e(r)ρ

k
e e(rk, t), r ∈Ω

k, k = 1, . . . ,v,

it follows

||(πk
e(r)ρ

k
e −1)e(r, t)||

εk = ||(πk
e(r)ρ

k
e −1)(e(r, t)− e(rk, t))||

εk

≤ ||e(r, t)− e(rk, t)||
εk + ||πk

e(r)ρ
k
e (e(r, t)− e(rk, t))||

εk

= ||e(r, t)− e(rk, t)||
εk + ||ρk

e (e(r, t)− e(rk, t))||Ek .
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From (27) and (29) respectively, it results in

||e(r, t)− e(rk, t)||
εk ≤

√
Mε |Ωk|LehM, ||ρk

e (e(r, t)− e(rk, t))||Ek ≤ RE

√
Mε |Ωk|LehM.

Thus it is

||(πk
e(r)ρ

k
e −1)e(r, t)||

εk ≤ (RE +1)
√

Mε |Ωk|LehM, k = 1, . . . ,v

and, from (53),

||(πe(r)ρe−1)e(r, t)||ε ≤ (RE +1)
√

Mε |Ω|LehM. (54)

From (52), (54) the thesis follows.

In a similar way the fields πk
f (r)ϕ

k(t) introduced in each Ωk with k = 1, . . . ,v can
be used to construct the field π f (r)ϕ(t) over the whole Ω as

π f (r)ϕ(t) = π
k
f (r)ϕ

k(t), r ∈Ω
k, k = 1, . . . ,v.

It is now shown that the field π f (r)ϕ(t) is an approximation of b(r, t). To this
aim the approximation error ||π f (r)ϕ(t)− b(r, t)||ν is estimated. As a result it
is also shown that the field ν(r)π f (r)ϕ(t) is an approximation of h(r, t) and the
approximation error ||ν(r)π f (r)ϕ(t)−h(r, t)||µ is estimated. It is noted that such
norms can be computed because of the assumed properties of both b(r, t), h(r, t),
ν(r) and π f (r)ϕ(t).

Theorem 8 For 0≤ t ≤ T it results in

||π f (r)ϕ(t)−b(r, t)||ν = ||ν(r)π f (r)ϕ(t)−h(r, t)||µ

≤
(

Ib +2
√

S2
e +S2

h +T
√

S2
ḋ
+S2

ḃ

)
hM

in which

Ib = (RN +1)
√

Mν |Ω|Lb.

Proof. It results in

||π f (r)ϕ(t)−b(r, t)||ν = ||π f (r)(ϕ−ρ f b(r, t))+(π f (r)ρ f −1)b(r, t)||ν
≤ ||π f (r)(ϕ(t)−ρ f b(r, t))||ν + ||(π f (r)ρ f −1)b(r, t)||ν .

From (50), it results in

||π f (r)(ϕ(t)−ρ f b(r, t))||ν = ||ϕ(t)−ρ f b(r, t)||N ≤
(

2
√

S2
e +S2

h +T
√

S2
ḋ
+S2

ḃ

)
hM.

(55)
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Besides it is

||(π f (r)ρ f −1)b(r, t)||2ν =
v

∑k
1
||(πk

f (r)ρ
k
f −1)b(r, t)||2

νk (56)

Since

b(rk, t) = π
k
f (r)ρ

k
f b(rk, t), r ∈Ω

k, k = 1, . . . ,v,

it follows

||(πk
f (r)ρ

k
f −1)b(r, t)||

νk = ||(πk
f (r)ρ

k
f −1)(b(r, t)−b(rk, t))||

νk

≤ ||b(r, t)−b(rk, t)||
νk + ||πk

f (r)ρ
k
f (b(r, t)−b(rk, t))||

νk

= ||b(r, t)−b(rk, t)||
νk + ||ρk

f (b(r, t)−b(rk, t))||Nk .

From (28) and (31) respectively it results in

||b(r, t)−b(rk, t)||
νk ≤

√
Mν |Ωk|LbhM, ||ρk

f (b(r, t)−b(rk, t))||Nk ≤ RN

√
Mν |Ωk|LbhM.

Thus it is

||(πk
f (r)ρ

k
f −1)b(r, t)||

νk ≤ (RN +1)
√

Mν |Ωk|LbhM,k = 1, . . . ,v

and, from (56),

||(π f (r)ρ f −1)b(r, t)||ν ≤ (RN +1)
√

Mµ |Ω|LhhM. (57)

From (55), (57) the thesis follows.

It is thus proved that the approximate electromagnetic field provided by DGA with
constitutive relations discretized by the proposed energetic framework converges
almost everywhere to the exact electromagnetic field with at least a first order of
convergence.

It is noted that such convergence results regard the semi-discrete equations obtained
by spatially discretizing the time domain electromagnetic boundary value problem
by DGA. Convergence results for the discrete equations obtained by discretizing
such semi-discrete equations also with respect to time are not reported here but
can be derived from the convergence results of the semi-discrete equations with
standard approach [Quarteroni and Valli (1994)].

8 Numerical results

A rectangular waveguide of section 5cm× 2.5cm and length 10cm is considered.
At one end a TE10 electric field is applied. At the other end a PEC termination is
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Figure 2: Percent error of the electric and magnetic fields in the energy norm versus

maximum grid diameter.

has been evaluated at t = 0:95ns for different grids. The evaluated percent errors,

for the electric and magnetic induction fields, are reported in Fig. 2, and exhibit a

first order convergence, in accordance with the theoretical predictions.

9 Conclusions

In this paper a convergence analysis has been provided for the first time, for elec-

tromagnetic problems spatially discretized by the Discrete Geometric Approach

when constitutive relations are discretized by an energetic framework. Bounds for

the approximation error of the electromagnetic field have been given under mild

regularity conditions on the electromagnetic field and on the pairs of dual grids.
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applied. The corresponding time domain electromagnetic boundary value problem
has been spatially discretized by means of DGA, the oriented primal grid being
tetrahedral, the oriented dual grid being its barycentric subdivision and constitutive
relations being discretized as in [Codecasa, Minerva, and Politi (2004)]. The result-
ing semi-discrete equations have been discretized with respect to time by means of
the FD-TD scheme, in the time interval 0ns ≤ t ≤ 0.95ns. The time step has been
chosen in such a way that its effect on the approximate electromagnetic field is neg-
ligible. The approximation error in the energy norm for the electromagnetic field
has been evaluated at t = 0.95ns for different grids. The evaluated percent errors,
for the electric and magnetic induction fields, are reported in Fig. 2, and exhibit a
first order convergence, in accordance with the theoretical predictions.

9 Conclusions

In this paper a convergence analysis has been provided for the first time, for elec-
tromagnetic problems spatially discretized by the Discrete Geometric Approach
when constitutive relations are discretized by an energetic framework. Bounds for
the approximation error of the electromagnetic field have been given under mild
regularity conditions on the electromagnetic field and on the pairs of dual grids.
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Appendix A

We recall that the spectral norm ||A||2 of a square matrix A of order n is the maxi-
mum modulus of the eigenvalues of A.
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If A is a symmetric, positive definite matrix of order n and x1, x2 are a pair of
column arrays of n rows, then a scalar product and its corresponding norm in the
space of column arrays of n rows are defined by

(x1,x2)A = xT
1 Ax2

||x1||A =
√

(x1,x1)A =
√

xT
1 Ax1.

Theorem 9 Let Â be a symmetric, positive definite matrix of order m and let Q̂ be
a real, full rank, m×n matrix with m≥ n. Let it be A = Q̂T ÂQ̂. Then for each real
column vector x̂ of m rows

||x||A−1 ≤ ||x̂||Â−1 (58)

holds, being x = Q̂T x̂.

Proof. For each real column vector c of n rows it results in

H = (Â−
1
2 x̂− Â

1
2 Q̂c)T (Â−

1
2 x̂− Â

1
2 Q̂c)≥ 0. (59)

By expanding the terms in (59) it results in

H = x̂T Â−1x̂−2x̂T Q̂c+ cT Q̂T ÂQc≥ 0.

In particular, by choosing

c = A−1Q̂T x̂.

it results in

H = x̂T Â−1x̂−xT A−1x≥ 0

from which (58) descends.

We recall that the spectral norm ||A||2 of a double tensor A is the spectral norm
of the corresponding square matrix.

Let now A(r) be a symmetric, positive definite double tensor defined in a spatial
region Ω. If both ||A(r)||2 and ||A−1(r)||2 are bounded in Ω, then in the space
of vector functions square integrable in Ω, a scalar product and its corresponding
norm are defined as

(x1(r),x2(r))A(r) =
∫

Ω

x1(r) ·A(r)x2(r)dΩ

||x1||A(r) =
√

(x1,x1)A(r) =
√∫

Ω

x1(r) ·A(r)x1(r)dΩ.
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Appendix B

Let S be a finite set of volumes.

Lemma 5 If the pair of dual grids G , G̃ is such that each volume of G is geomet-
rically similar to a volume in the finite set S then constants RE, RH independent of
the pair of dual grids G , G̃ , exist, such that (29), (30) hold.

Proof. For each Ωk, it is

||ρk
e e(r, t)||Ek ≤

√
||Ek||2||ρk

e e(r, t)||2.

Thus, since

||ρk
e e(r, t)||2 ≤

√√√√ lk

∑i
1
|lk

i |2 max
r∈Ωk
|e(r, t)|.

and since, from (15),

||Ek||2 ≤max
r∈Ωk
||εk(r)||2||Ek

1||2,

in which || · ||2 is the spectral norm, the elements of Ek
1 being defined by (15) with εk(r) = I,

it follows

||ρk
e e(r, t)||Ek ≤ Rk

E

√
|Ωk|max

r∈Ωk

√
||εk(r)||2 max

r∈Ωk
|e(r, t)|,

with

Rk
E =

√√√√√√
lk

∑i
1
|lk

i |2

|Ωk|
||Ek

1||2.

Since it can be assumed that the basis functions scale with Ωk so that Rk
E does not change

if the Ωk is scaled, and since each Ωk is geometrically similar to a volume in the finite set
S , then (29) holds with

RE = max
Ωk∈S

Rk
E.

For each Ωk, it is

||ρk
f̃ d(r, t)||Hk ≤

√
||Hk||2||ρk

f̃ d(r, t)||2.
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Thus, since

||ρk
f̃ d(r, t)||2 ≤

√√√√ lk

∑i
1
|s̃k

i |2 max
r∈Ωk
|d(r, t)|.

and since, from (15) and from the notion of spectral norm of a symmetric positive-definite
matrix, it is

1
||Hk||2

= min
x6=0

xT Ekx
xT x

= min
x6=0

xT Ekx
xT Ek

1x
xT Ek

1x
xT x

≥min
x6=0

xT Ekx
xT Ek

1x
min
x 6=0

xT Ek
1x

xT x
=

1
max
r∈Ωk
||ηk(r)||2

1
||Hk

1||2
,

being Hk
1 the inverse of Ek

1, so that

||Hk||2 ≤max
r∈Ωk
||ηk(r)||2||Hk

1||2,

it follows

||ρk
f̃ d(r, t)||Hk ≤ Rk

H

√
|Ωk|max

r∈Ωk

√
||ηk(r)||2 max

r∈Ωk
|d(r, t)|,

with

Rk
H =

√√√√√√
lk

∑i
1
|s̃k

i |2

|Ωk|
||Hk

1||2.

Since it can be assumed that the basis functions scale with Ωk, Rk
H does not change if the

Ωk is scaled, and since each Ωk is geometrically similar to a volume in the finite set S ,
then (30) holds with

RH = max
Ωk∈S

Rk
H

and the thesis follows.

Lemma 6 If the pair of dual grids G , G̃ is such that each volume of G is geomet-
rically similar to a volume in the finite set S then constants RN, RM, independent
of the pair of dual grids G , G̃ exist, such that (31), (32) hold.

Proof. For each Ωk, it is

||ρk
f b(r, t)||Nk ≤

√
||Nk||2||ρk

f b(r, t)||2.

Thus, since

||ρk
f b(r, t)||2 ≤

√√√√ f k

∑i
1
|sk

i |2 max
r∈Ωk
|b(r, t)|.
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and since, from (23),

||Nk||2 ≤max
r∈Ωk
||νk(r)||2||Nk

1||2,

the elements of Nk
1 being defined by (23) with νk(r) = I, it follows

||ρk
f b(r, t)||Nk ≤ Rk

N

√
|Ωk|max

r∈Ωk

√
||νk(r)||2 max

r∈Ωk
|b(r, t)|,

with

Rk
N =

√√√√√√
f k

∑i
1
|sk

i |2

|Ωk|
||Nk

1||2.

Since it can be assumed that the basis functions scale with Ωk, Rk
N does not change if the

Ωk is scaled, and since each Ωk is similar to a volume in the finite set S , then (31) holds
with

RN = max
Ωk∈S

Rk
N.

For each Ωk, it is

||ρk
ẽ h(r, t)||Mk ≤

√
||Mk||2||ρk

ẽ h(r, t)||2.

Thus, since

||ρk
ẽ h(r, t)||2 ≤

√√√√ f k

∑i
1
|l̃k

i |2 max
r∈Ωk
|h(r, t)|.

and since, from (23) and from the notion of spectral norm of a symmetric positive-definite
matrix, it is

1
||Mk||2

= min
x6=0

xT Nkx
xT x

= min
x6=0

xT Nkx
xT Nk

1x
xT Nk

1x
xT x

≥min
x6=0

xT Nkx
xT Nk

1x
min
x6=0

xT Nk
1x

xT x
=

1
max
r∈Ωk
||µk(r)||2

1
||Mk

1||2
,

being Mk
1 the inverse of Nk

1, so that

||Mk||2 ≤max
r∈Ωk
||µk(r)||2||Mk

1||2,

it follows

||ρk
ẽ h(r, t)||Mk ≤ Rk

M

√
|Ωk|max

r∈Ωk

√
||µk(r)||2 max

r∈Ωk
|h(r, t)|,
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with

Rk
M =

√√√√√√
f k

∑i
1
|l̃k

i |2

|Ωk|
||Mk

1||2.

Since it can be assumed that the basis functions scale with Ωk so that Rk
M does not change

if the Ωk is scaled, and since each Ωk is similar to a volume in the finite set S , then (32)
holds with

RM = max
Ωk∈S

Rk
M.

and the thesis follows


