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New Interpretation to Variational Iteration Method:
Convolution Iteration Method Based on Duhamel’s

Principle for Dynamic System Analysis

Yunhua Li1,2, Yunze Li3, Chieh-Li Chen4 and Cha’o-Kuang Chen5

Abstract: Addressing the identification problem of the general Lagrange multi-
plier in the He’s variational iteration method, this paper proposes a new kind of
method based on Duhamel’s principle for the dynamic system response analysis.
In this method, we have constructed an analytical iteration formula in terms of the
convolution for the residual error at the nth iteration, and have given a new inter-
pretation to He’s variational iteration method. The analysis illustrates that the com-
putational result of this method is equal to that of He’s variational iteration method
on the assumption of considering the impulse response of the linear parts, or equal
to that of Adomian’s method on the assumption of considering the only the impulse
response of the highest-ordered differential operator, respectively. However, new
convolution iteration method doesn’t need to solve the complicated Euler-Poisson
variation equation. Some test examples for showing the application procedure of
the convolution iteration method are provided.

Keywords: Adomian decomposition method, convolution, integral transforma-
tion, nonlinear differential equation, variational iteration method.

1 Introduction

Finding the analytical solution of the differential equation within a predefined ac-
curacy by successive iterations has been being an important problem, and it makes
a lot of mathematicians and engineers pay great attentions. In the past decades, sev-
eral methods, e.g. the Adomian decomposition method(ADM) [Adomain (1994);
Drof and Bishop (1998); Inokuti et al. (1978); and Wazwaz (2001)], and He’s
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variational iteration method[He (1997-1999),(2007)], had been proposed and they
had been applied to solve the ordinary differential equations(ODE) and the partial
differential equations(PDE) in the vibration, thermodynamics, and fluid mechan-
ics[Abdou and Soliman (2005); Inokuti et al. (1978); Lu (2007); Lai, Chen, and
Hsu (2008);Tatari and Dehghan (2007); and Yıldırım (2008)].

The main problem existed in the ADM are that the analytical computation the high-
order correction terms and the high-order Adomian’s polynomials. When the order
n of the Adomian’s polynomials is great-equal than 3, their computations are with
very difficult; especially, the computation explosive will take place for the more
complicated source term function or the non-linear term. The other problem of
the ADM is its slow convergent velocity. For simplifying the computation of the
ADM, Tien and Chen(2007) proposed the ADM based on Legendre polynomi-
als, and Hosseini(2006) put forward the ADM with Chebyshev polynomials. The
above-mentioned two kinds of method can improve the global approaching preci-
sion when the solution component resulted from the source term is solved by the
expand method of the function. Azreg-Aïnou (2009) expressed Adomian polyno-
mials(AP’s) in terms of new objects called reduced polynomials(RP’s), so that RP’s
is more easily understand than AP’s and the computation formulas of the ADM be-
come dramatically simple and compact; but the convergent property of ADM is
still needed to be improved.

In order to improve the convergent property of ADM, J.H.He (1997) proposed the
variational iteration method (VIM). This method introduced the concept of the
restricted variation, and converted the n-order iterating-correcting problem to the
problem of a solution of the Lagrange multiplier and 1-order integral iteration. Be-
cause it considers the contribution of the overall linear components L[u] + R[u]in
the nonlinear differential equation, it can increase the convergent velocity of the
iteration. Since He’s variational iteration method has been proposed, some of the
progress has been made [see He (2007), Yıldırım (2008)]. At present, He’s vari-
ational iteration method has become a kind of very effective method to solve the
ODE and the PDE of the non-linear system [see He (2007), Inokuti et al. (1978);
Lu (2007); Tatari and Dehghan (2007); Wu and He (2008); and Yıldırım (2008)].

Variation method is the mathematical fundamental of the domain decomposition
methods, e.g. finite element method. It has been applied to solve the partial dif-
ferential equations and a variety of boundary value problems [Martin (2008); Han
(2007); Tsail (2010); and Vodička, Mantič, and París (2007)]. Generally speaking,
to solve variational equation is not a easy task.

Addressing the determination of the Lagrange multiplier λ (τ) and the improvement
of the iterating computation method in the He’s VIM, this paper obtained the same
iteration formula as the He’s VIM from the Duhamel’s principle for the system
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response analysis, thus a new method to find the λ (τ) and a new interpretation to
He’s variational iteration method were proposed, and the computation procedure
was greatly simplified.

The rest of the paper is organized as follows. In section 2, based on the Duhamel’s
principle for the system response analysis, the convolution iteration method is in-
vestigated, and we point out the Lagrange multiplier in He’s VIM is similar to the
weighted function or impulse response in the system response analysis, so that we
can convert the solution of the ODE and the PDE of the non-linear system to a
convolution iteration problem. Moreover, we studied the relationship between He’s
variational method and the convolution iteration method proposed by the author so
as to reveal the physical meaning of the Lagrange multiplier and He’s VIM. Section
3 gives some examples to illustrate how to apply the proposed method to solve the
nonlinear ODE and PDE. In section 4, some significant conclusions are drawn.

2 Convolution iteration method

Convolution is an important integral operator in the differential equation [Edwards
and Penny(2004)], signal and image processing [Gonzalez and Woods (2008)], and
control theory [Drof and Bishop (1998)]. In the differential equation field, the
convolution is mainly used to solve the linear system’s response under the external
forced excitation; and in the signal and image processing, the convolution is applied
to the filter and the localization processing. Here, by means of the iteration, we
introduce the convolution to solve the non-linear ODE and PDE.

2.1 Convolution iteration method based on Duhamel’s principle

Considering the following operator equation of the non-linear system

H(u)+R(u)+N(u) = g(τ), (1)

where H, R and N are the highest order differential operator, the linear operator,
and the non-linear operator, respectively, g(τ) is the known continuous function,
and u is the solution to (1). Obviously, at the beginning of the n-th iteration,
H(un)+R(un)+N(un) 6= g(τ), liked to the restricted variation method, a restricted
correction is introduced to the (1) yields

H(un + cn)+R(un + cn)+N(un) = g(τ), (2)

where, cn is the correction of uat the n-th iteration. Defining the residual error of u
at the n-th iteration rn

∆= g(τ)−H(un)−R(un)−N(un), and substituting it into (2),
we can express rn and cn using the following formula

H(cn)+R(cn) = rn, (3)
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at the n-th iteration respectively. According to the Duhamel’s principle for the sys-
tem response analysis, we can obtain the computational expression of cn as follows

cn =
∫ t

0
h(t− τ)rn(τ)dτ =

∫ t

0
h(t− τ)(g(τ)−H(un)−R(un)−N(un))dτ, (4)

where h(τ) is the weight function or impulse response function of the linear system
H(u)+R(u) = δ (τ), and δ (τ) is the Dirac delta function. Therefore, the (n+1)-th
iteration solution un+1of the non-linear system can be written as follows

un+1 = un +
∫ t

0
h(t− τ)(g(τ)−H(un)−R(un)−N(un))dτ. (5)

Because the computation of the correction is actually a convolution of the residual
error, we call (4) convolution iteration method. It converts the Lagrange’s multi-
plier’s computation in He’s variational iteration method to solve the impulse re-
sponse function of the linear system, and the latter is easier than the former. Ac-
cording to the definition of Laplace’s transform, h(τ) = L−1[1/(H(s)+R(s))]), and
this work can be easily completed by looking up Laplace’s transform table.

Compared with He’s variational iteration method, although the convolution itera-
tion method expressed by (5) is equivalent from the viewpoint of the computational
result, it gives the explicit physical meaning for the correction and the weighted
function. This provides a new kind of the method for solving the non-linear differ-
ential equation.

2.2 Convolution iteration method derived from He’s iteration method

For the operator equation of the non-linear system described by (1), we apply the
He’s variational iteration method to (1) yields

un+1 = un +
∫ t

0
λ (τ){g−Hun−Run−Nũn}dτ, (6)

where λ (τ) is a general Lagrange multiplier [Abdou and Soliman (2005); and He
(1997)], and ũn is considered as a restricted variation to satisfy the conditionδ ũn =
0. Because the optimal correction at the n-th iteration meets the variation condition
δun+1 = 0, and to substitute it into (6) we can obtain

δun−
∫ t

0
λ (τ)δ ((H +R)un)dτ = 0. (7)

From the Euler-Poisson variation equation and through a series of the variation
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calculation to (7), we can write the following stationary conditions:
δyn : (H1 +R1)λ (τ) = 0,

δyi+1
n : λ (i)(τ) |τ=t = 0,0≤ i < n−1,

δyn : 1− (−1)nλ (n−1)(τ) |τ=t = 0,

(8)

where H = Dn,H1 = (−1)nDn,R = ∑
n−1
i=0 aiDi, R1 = ∑

n−1
i=0 ai(−1)iDi, D = d

dτ
. Let

t−τ = v, then τ = t⇒ v = 0; and λ (τ)⇒ h(v), we substitute these results into (8)
and change the self variable v to τ and then we can get the following equation:

(H +R)h(τ) = 0,

h(i)(τ) |τ=0 = 0,0≤ i < n−1,

h(n−1)(τ) |τ=0 = 1.

(9)

Applying Laplace’s transform to (9) and considering L(h(n)(τ))= snH(s)−sn−1h(0)−
. . .− sh(n−2)(0)−h(n−1)(0) yield

(sn +R(s))H(s) = 1. (10)

Obviously seen from (10), H(s) is the Laplace transform of unit impulse response
with the transfer function (sn + R(s))−1, it’s inverse Laplace transform h(τ) is the
unit impulse response of the linear system without containing nonlinear term.

In this way, we can convert to solve λ (τ) using Euler-Poisson equation into a prob-
lem to determine unit impulse response h(τ), and the latter can be obtained by the
simple reading up Laplace transforms table. Thus, we can get

un+1 = un +
∫ t

0
h(t− τ){g−Hun−Run−Nun}dτ. (11)

In (11), because we don’t need to solve the Lagrange multiplier, the restriction
Nũnto nonlinear item Nun is not needed. Obviously, (11) is the expression of the
convolution iteration method.

If we derive the iteration formula (11) only to consider the highest term H[u]for
solving h(τ), we have

h(τ) =
τn−1

(n−1)!
, (12)

and

un+1 = un +
∫ t

0

(t− τ)n−1

(n−1)!
{g−Hun−Run−Nun}dτ. (13)
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After a series of the operation of the integration by parts for (13), we can obtain∫ t

0

(t− τ)n−1

(n−1)!
gdτ = H−1g,∫ t

0

(t− τ)n−1

(n−1)!
[R(un)+N(un)]dτ = H−1R(un)+H−1N(un),

∫ t

0

(t− τ)n−1

(n−1)!
H(un)dτ =un−un(0)− tu′n(0)−·· ·− tn−1u(n−1)

n (0) = un−φn(t).

Note that un(0)= u0(0), · · · ,u(n−1)
n (0)= u(n−1)

0 (0); so u(n−1)
n (0)= u(n−1)

0 (0); φn(t)=
φ0(t) = φ(t). Substituting these results into (13) yields

un+1 = φ(t)+H−1g−H−1Run−H−1Nun, (14)

where H−1 =
∫ t

0 · · ·
∫ t

0 (·)dτ is an inverse of operator H. Let (14) subtract un =
φ(t)+H−1g−H−1Run−1−H−1Nun−1 results in

un+1−un =−H−1R(un−un−1)−H−1(Nun−Nun−1). (15)

2.3 Revised Adomian Method derived from Convolution iteration method

According to the Adomian decomposition method, we can express the uas

u = u0 + ū1 + ū2 + . . . = u0 +∑
+∞

i=1 ūi, (16)

where u0 is the initial solution to consider the contribution of the initial condi-
tion, terminal condition and the source function,u0 = φ(τ)+

∫ t
0 h(t− τ)g(τ)dτ . Let

n = 0 and substituting the expression of the u0 into (11) yields ū1 = u1− u0 =∫ t
0 h(t− τ)[g(τ)−H(u0)−R(u0)−N(u0)]dτ , and note H(u0)−R(u0) = g(τ), so

we have

ū1 =−
∫ t

0
h(t− τ)N(u0)dτ, (17)

Defining ū0 = 0 and un = un−1 + ūn, by the same manipulation, we can obtain the
correction ū2 and ūn as follows

ū2 = ū1−
∫ t

0
h(t− τ)(H(ū1)+R(ū1)+A1)dτ, (18)

and

ūn+1 = ūn−
∫ t

0
h(t− τ)(H(ūn)+R(ūn)+An)dτ, (19)
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where the expressions of the Adomain polynomials An are as follows

A0 = N(u0),

A1 = ū1
d

du0
N(u0),

A2 = ū2
d

du1
N(u1),

. . .

An = ūn
d

dun−1
N(un−1).

Thus, we have obtained the expression of the revised Adomian’s decomposition
method in terms of the convolution. Note ūi in the above-equations are not same
as the one of Adomian’s decomposition method, so it results in the computational
expressions of the Adomain’s polynomials An different to ADM. Compared the re-
vised Adomian polynomials with the traditional Adomian’s decomposition method,
it has simplified the computation of the Adomian’s polynomials and the correction
terms.

2.4 Relationship among of three kinds of the iteration methods

Through the above discussions, we can deduce the relationship among of the con-
volution iteration method, the He’s variational iteration method and the Adomian’s
decomposition method as follows:

1) He’s variational iteration method is same as the convolution iteration method
from the view point of the computational result, but the latter simplifies the com-
putation of the weight function and gives the more significant physical meaning.

2) If the weight function is only determined by the highest differential term, there
are the same computational results and the convergent speed in three kinds of
the iteration methods.

3 Test examples

Here, we select some examples used in [see He (1999, 2007); and Tatari and De-
hghan(2007)] to illustrate the effectiveness of the convolution iteration method.

Example 1. Consider ∂

∂ t u(x, t)+Ru(x, t)+Nu(x, t) = 0, u(x,0) = f (x), Abassy et
al. constructed an iteration formula as

un+1 = un−
∫ t

0
{R(un−un−1)+Gn−Gn−1}dτ, (20)
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where Gn(x, t)+ O(tn+1) = Nun(x, t), u−1 = 0,u0 = f (x). Using the convolution
iteration method, we can give the proof of (20).

According to (15), obviously h(τ) = 1, so we can derive

un+1−un =−
∫ t

0
{R(un−un−1)− (Nun−Nun−1)}dτ,

it is exactly (20).

Example 2. He (2007) summarized some of useful iteration formulas to direct to
the common non-linear differential equations. Where, we list the following convo-
lution iteration formula as

u′+ f (u,u′) = 0
h(t) = 1
un+1(t) = un+1(t)−

∫ t
0 {u′n + f (un,u′n)}dτ

, (21)


u′+αu+ f (u,u′) = 0
h(t) = e−αt

un+1(t) = un+1(t)−
∫ t

0 e−α(t−τ){u′n +αun + f (un,u′n)}dτ

, (22)


u′′+ f (u,u′,u′′) = 0
h(t) = t
un+1(t) = un+1(t)+

∫ t
0 (t− τ){u′′n + f (un,u′n,u

′′
n)}dτ

, (23)


u′′+ω2u+ f (u,u′,u′′) = 0
h(t) = sinωt

ω

un+1(t) = un+1(t)−
∫ t

0
sinω(t−τ)

ω
{u′′n +ω2un + f (un,u′n,u

′′
n)}dτ

, (24)


u′′−α2u+ f (u,u′,u′′) = 0
h(t) = 1

2α
(eαt − e−αt)

un+1(t) = un+1(t)−
∫ t

0
[eα(t−τ)−e−α(t−τ)]

2α
{u′′n−α2un + f (un,u′n,u

′′
n)}dτ

, (25)


u(n) + f (u,u′,u′′, · · · ,u(n−1)) = 0
h(t) = 1

(n−1)! t
n−1

un+1(t) = un+1(t)−
∫ t

0
1

(n−1)!(t− τ)n−1 {u(n) + f (un,u′n,u
′′
n, · · · ,u

(n−1)
n )}dτ

.

(26)

Seen easily, the above results are same as He’s results.
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Example 3. Consider the telegraph equation [see Tatari and Dehghan(2007)]

utt +2dut −uxx = 0 (x, t) ∈ R× (0,∞),
u = g, ut = h (x, t) ∈ R×{t = 0},

(27)

for d > 0, the term 2dut representing a physical damping of wave propagation.
Using the convolution iteration method, we can write (s2 + 2ds)H(s) = 1, and
h(τ) = 1

2d (1− e−2dτ), so

un+1 = un +
∫ t

0
h(t− τ){0− ∂ 2

∂ t2 un−2d
∂

∂ t
un +

∂ 2

∂x2 un}dτ. (28)

Substituting the expression of h(τ) into (28) yields

un+1 = un +
∫ t

0

1
2d

[1− e−2d(t−τ)]{ ∂ 2

∂x2 un−
∂ 2

∂ t2 un−2d
∂

∂ t
un}dτ. (29)

Example 4. Consider the Duffing equation with non-linearity of the fifth order [see
He (2007)]

u′′+u+ εu5 = 0

u(0) = A, u′(0) = 0.
(30)

We apply the convolution iteration method for (30), then we can write the Laplace
transformation equation of the weight function as (s2 + 1)H(s) = 1, and then we
can solve the weight function h(τ) = sinτ . According to (5), the iteration formula
can be written down as follows

un+1 = un +
∫ t

0
sin(t− τ){0−u′′n−un− εu5

n}dτ

= un−
∫ t

0
sin(t− τ){u′′n +un + εu5

n}dτ.

(31)

Obviously, equation (31) is same as the result derived by example 1 in He’s pa-
per[He (2007)], so the follow-up computational procedure is no longer discussed.

Example 5. Consider a non-linear wave equation [He (2007)]

utt − c2uxx + f (u) = 0, (32)

with initial conditions

u(x,0) = F(x),
ut(x,0) = G(x).

(33)
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In case f = 0 we have the D’Alembert exact solution to be expressed as

u(x, t)
∣∣ f =0 =

F(x+ ct)+F(x− ct)
2

+
1
2c

∫ x+ct

x−ct
G(τ) dτ. (34)

Obviously, while the n-th iteration, the differential equation between the correction
and the residual error is as follows

c′′n = rn = c2unxx− f (un)−untt . (35)

So, we have h(τ) = τ. Let u0(x, t) = u(x,0)+ tut(x,0) = F(x)+ tG(x), from (11),
we can obtain

un+1(x, t) = un(x, t)+
∫ t

0
(t− τ)(c2unxx− f (un)−unττ)dτ. (36)

To apply the integration by parts to −
∫ t

0 (t− τ)unττdτ in (36) yields

un+1(x, t) = un(x,0)+ tunt(x,0)+
∫ t

0
(t− τ)(c2unxx− f (un))dτ, (37)

where un(x,0) = u0(x,0) = F(x),unt(x,0) = u0t(x,0) = G(x). Note that (34) can
also meet the initial condition (33) while t = 0, so we can select

u0(x, t) =
F(x+ ct)+F(x− ct)

2
+

1
2c

∫ x+ct

x−ct
G(τ) dτ,

substituting it into (36) can get the same result as (37), i.e.

un+1(x, t) = F(x)+ tG(x)+
∫ t

0
(t− τ)(c2unxx− f (un))dτ. (38)

If f (u) = 0, by the iterating manipulation for (38), we can obtain

un+1(x, t) = F(x)+
c2t2

2
F ′′(x)+ · · ·+ c2nt2n

(2n)!
F(2n)(x)+ tG(x)+

c2t3

2
G′′(x)+ · · ·

+ t
c2nt2n

(2n)!
G(2n)(x), (39)

u(x, t) = lim
n→∞

un+1(x, t) =
F(x+ ct)+F(x− ct)

2
+

1
2c

∫ x+ct

x−ct
G(τ)dτ. (40)

Obviously, this is exactly the exact solution to be given by (34). For non-homogeneous
case of (32), f (u) = f (x, t), we can have

un+1(x, t) = F(x)+ tG(x)−
∫ t

0
(t− τ) f (x,τ)dτ +

∫ t

0
(t− τ)c2unxxdτ. (41)
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Note that∫ t

0
(t− τ)

∫
τ

0
(τ− τ1) fxx(x,τ1)dτ1dτ =

∫ t

0

c2

3!
(t− τ)3 fxx(x,τ)dτ,

· · ·∫ t

0
(t− τ)

∫
τ

0

1
(2n−1)!

(τ− τ1)2n−1 f (2(n−1))
x (x,τ1)dτ1dτ =∫ t

0

c2

(2n+1)!
(t− τ)2n+1 f (2(n−1))

x (x,τ1)dτ1dτ.

(42)

After a similar the operation of the integration to (39) for (41) and substituting
(42) into (41), we can obtain the exact solution of the non-homogenous equation as
follows

u(x, t) = lim
n→∞

un+1(x, t) =
F(x+ ct)+F(x− ct)

2
+

1
2c

∫ x+ct

x−ct
G(τ)dτ

− 1
2c

∫ t

0

∫ x+c(t−τ)

x−c(t−τ)
f (ξ ,τ)dξ dτ. (43)

Equation 43 is exactly the exact solution of the non-homogenous wave equation.

4 Conclusions

Based on the discussions of the iteration solution of the non-linear differential equa-
tion and the Duhamel’s principle for the system dynamic response analysis, this
paper has constructed a new kind of the method to solve the Lagrange multiplier in
He’s variational iteration method and provided a new interpretation for He’s varia-
tional iteration method. The theoretical analysis in the paper has revealed the rela-
tionship among of the convolution iteration method, J.H. He’s variation method and
Adomian’s decomposition method. Some test examples illustrate the effectiveness
of the method proposed in the paper.
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