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Directional Cohesive Elements for the Simulation of Blade
Cutting of Thin Shells
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Abstract: This paper is concerned with the finite element simulation of a thin
membrane cutting by a sharp blade. Smeared crack finite element approaches
appear to be unsuitable for this purpose, since very small elements would be re-
quired to conform to the sharp edge of the cutter. Furthermore, when the membrane
material is very ductile, classical interface cohesive elements, where the cohesive
forces are transmitted in the direction of the crack opening displacement, cannot
correctly reproduce situations where the blade crosses the process zone. A sim-
plified approach, based on the new concept of “directional" cohesive elements, is
here proposed for a computationally effective simulation of this type of problems.
Whenever a crack is opening, cohesive “cable" elements are introduced between
the separating nodes. These elements are geometric entities which can be moni-
tored throughout the analysis to detect possible contact with the blade. When this
happens, the cables transmit in a straightforward way cohesive forces to the crack
flanks in different directions. The procedure has been tested against a real cutting
process providing encouraging results with relatively coarse meshes. The calibra-
tion of the material properties of the cohesive cables is also briefly discussed.

Keywords: blade cutting, cohesive crack, finite elements, shells

1 Introduction

The numerical simulation of fracture and fragmentation of shells and plates is a
timely topic in computational structural engineering and is receiving increasing
attention. Since many years, most explicit commercial finite element codes (see e.g.
Abaqus and LS-Dyna) offer the possibility to simulate crack propagation in shells
by eliminating from the model those finite elements where developing damage has
reached a critical threshold. While this provision provides good results for the
simulation of diffused damage due to explosions or crashes against large obstacles,
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it is not convenient for the simulation of the propagation of isolated cracks in large
structures or of localized damages produced by sharp obstacles. These type of
problems appear to be better tackled by approaches based on the use of cohesive
fracture models, capable to transmit cohesive forces across either an intra-element
or inter-element displacement discontinuity.

As noted in [Song and Belytschko (2009)], the literature on cohesive crack propa-
gation in shells is rather limited. Potyondy, Wawrzynek, and Ingraffea (1995) used
standard shell finite elements with stress intensity factor calculations and remeshing
at different scales to simulate crack propagation in pressurized fuselage structures.
Li and Siegmund (2002), developed a cohesive interface element for the simulation
of crack growth in thin metal sheet to be used in shell element meshes of the finite
element code Abaqus. Cirak, Ortiz, and Pandolfi (2005) proposed an inter-element
cohesive crack model based on Kirchhoff shell theory. Areias and Belytschko
(2005) and Areias, Song, and Belytschko (2006) formulated a Mindlin-Reissner
and a Kirchhoff type shell element, respectively, for fracture analysis based on the
Extended Finite Element Method (XFEM). Zavattieri (2006) proposed an inter-
face cohesive element to be placed between four node Belytschko-Lin-Tsay [Be-
lytschko, Lin, and Tsay (1984)] shell elements, whereby the damage contribution
due to the bending moment transmitted across the interface is explicitly taken into
account. More recently, Song and Belytschko (2009) developed an XFEM shell
element, also based on Belytschko-Lin-Tsay element, endowed with a nonlocal
strain-based fracture criterion. The method was applied to the simulation of crack
propagation in metallic pipes.

The mechanics of cutting a shell with a sharp object or tool has attracted particu-
lar attention in the field of naval engineering for the development of ship ground-
ing models. Analyzing the kinematics of the deformation of a metal sheet ini-
tially cut by a sharp wedge, Wierzbicki and Thomas (1993) identified three sep-
arate dissipation mechanisms: “far-field”plastic deformation (global mechanism);
“near-tip”fracture (local mechanism) and friction. They also developed a simpli-
fied analytical model for the approximate quantification of the contribution of each
mechanism to the total work. For the same type of problem, Zheng and Wierzbicki
(1996) developed a simplified model capable to predict the cutting force needed for
the steady-state wedge cutting of a metal sheet. Muscat-Fenech and Atkins (1998)
studied experimentally the collision of plates against either blunt or sharp obsta-
cles, with relative motion having both normal and parallel components to the plate.
The aim was the determination of horizontal and vertical forces experienced by
the plate for the different tested collision conditions. More recently, Simonsen and
Törnqvist (2004) carried out a combined experimental-numerical investigation for
the calibration of crack propagation criteria in large shell structures. The proposed
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criteria were then validated by simulating by LS-Dyna a large scale grounding ex-
periment where a double bottom shell structure was grounded and torn on a conical
obstacle.

A molecular numerical model for the simulation of cutting has been recently pro-
posed by Lin and Ye (2009) at the nanoscale where an assemblage of copper atoms
is cut by diamond blades with different shapes.

An accurate numerical tool for the simulation of blade cutting would result ex-
tremely useful also in biomedical (especially surgical) applications. Chanthasopeep-
han, Desai, and Lau (2007), conducted experimental tests and finite element sim-
ulations on the scalpel cutting of a pig liver. When open or laparoscopic surgery
involves the cutting of thin sheets, the most effective tools are scissors. Mahvash,
Voo, Kim, Jeung, Wainer, and Okamura (2008) developed an analytical model to
calculate forces applied to scissors during cutting of tissues. The mechanics of scis-
sors cutting has also been studied extensively by Atkins and coworkers [Atkins, Xu,
and Jeronimidis (2004); Atkins and Xu (2005); Atkins (2006)], providing models
for the determination of the cutting forces and the definition of the optimal blade
shape.

It is also worth mentioning the recently published treatise [Atkins (2009)] which
presents a comprehensive account of the state of the art of the research on cutting
engineering.

The present work is concerned with the development of a finite element model for
the simulation of the blade cutting of thin membranes of the type used in the carton
packaging industry to seal a package containing liquid food. The membrane is
typically a layered composite, with a total thickness ranging from 70 to 85 µm,
made of a thin aluminium layer (6-9 µm) and various low-density polyethylene
(LDPE) coating layers. In most cases, the composite is laminated by extruding the
LDPE powder directly onto the aluminium layer. A typical response of a uniaxial
test of one of these materials is shown in Fig. 1, from which the main features can
be noticed:

• the two curves refer to tests on samples extracted in the lamination ma-
chine direction (MD) and cross-machine (CD) direction, and only a mild
anisotropy can be observed;

• the nominal stress reaches a peak followed by a sudden drop coinciding with
the rupture of the aluminium layer;

• the failure of the aluminium layer is followed by a long plateau, usually cor-
responding to the occurrence of localized necking deformation, where the
molecules of the LDPE realign along the direction of loading;
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Figure 1: Typical uniaxial response of layered composite for food packaging.

• the limit nominal strain of 500% corresponds to the cross-head limit of the
testing rig and not to the failure of the specimen, which has a typical failure
nominal strain of 700-900%.

The objective of the opening process is to create a circular hole of a diameter of ap-
proximately 15 mm, in a region of the package where a hole has been pre-laminated
in the paperboard (Fig. 2a) to reduce the force necessary to cut the laminate. In the
hole region there is no paper and only thin aluminium and polymeric layers have to
be cut. The hole is produced using the applied cap shown in Fig. 2b. Thanks to a
screw thread, the cap rotation transmits the motion to the high-density polyethylene
(HDPE) blades of the type shown in Fig. 2c. The opening tool consists of several
teeth (four in the figure) which undergo a motion with both normal and tangential
components to the laminate surface.

As it will be discussed in the following sections, the standard cohesive interface
elements are not suited for the simulation of this type of cutting, dominated by
the sharpness of the tooth blade and by the extremely high failure opening of the
cohesive interface. The objective of this work is then to develop a new concept of
“directional" cohesive element, to be placed at the interface between adjacent shell
elements, where the cohesive forces can have different directions on the two sides
of the crack whenever the cohesive region is crossed by the cutting blade.

The new cohesive element has been implemented in a shell finite element code and
the simulation tool has been validated against the results of an opening test.
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Figure 2: Example configuration of opening system:a) package with pre-laminated
hole (PLH); b) applied cap; c) cutting HDPE teeth.

2 Kinematic description

Consider a constant thickness shell body whose geometry is parametrized in terms
of the convective coordinates ξ 1,ξ 2,ξ 3

X = Φ(ξ 1,ξ 2,ξ 3) = Φ̄(ξ 1,ξ 2)+ξ
3T(ξ 1,ξ 2) − h

2
≤ ξ

3 ≤ h
2

(1)

where X is the position vector of a material point in the shell body; X̄ = Φ̄(ξ 1,ξ 2)
is the position vector of points belonging to the shell middle surface M (ξ 3 = 0),
with boundary ∂M ; the unit vector T(ξ 1,ξ 2) denotes the director field and h is
the shell thickness. According to the Mindlin-Reissner theory, T is assumed to
be normal to the middle surface in the original configuration but is not forced to
remain so during the deformation.

At time t ∈ [0,T ], the shell configuration is defined by the mapping x = χ t(X) and
is parametrized as

x = ϕ(ξ 1,ξ 2,ξ 3) = ϕ̄(ξ 1,ξ 2)+ξ
3t(ξ 1,ξ 2) − h

2
≤ ξ

3 ≤ h
2

(2)

with obvious meaning of symbols. The deformation (2) accounts for the inextensi-
bility assumption of the director field. The displacement u at a point X(ξ 1,ξ 2,ξ 3)
is then defined as

u(ξ 1,ξ 2,ξ 3)= x(ξ 1,ξ 2,ξ 3)−X(ξ 1,ξ 2,ξ 3)= ū(ξ 1,ξ 2)+ξ
3[t(ξ 1,ξ 2)−T(ξ 1,ξ 2)]

(3)

It is convenient to define the covariant basis vectors {Ai} and {ai}, i = 1,2,3, on
the shell middle surface in the original and deformed configurations, respectively.
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The basis vectors belonging to the local tangent plane are defined as Aα = Φ̄,α and
aα = ϕ̄,α , α = 1,2, while the unit vectors normal to the middle surface are defined
as

A3 =
A1×A2

‖A1×A2‖
, a3 =

a1×a2

‖a1×a2‖
(4)

The Green-Lagrange strain tensor is expressed in the shell body as

E =
1
2
(gi ·g j−Gi ·G j)Gi⊗G j = Ei jGi⊗G j (5)

where Gi and Gi are the covariant and contravariant base vectors, respectively, in
the reference configuration and gi is the covariant basis in the current configuration.
These are defined as

Gα = Φ,α = Aα +ξ
3T,α (6)

G3 = Φ,3 = T = A3 (7)

gα = ϕ,α = aα +ξ
3t,α (8)

g3 = ϕ,3 = t (9)

Let us consider now a through-crack developing in the shell body. In the initial
reference system, the image of the crack surface is denoted as Γc× [−h

2 , h
2 ], where

Γc is its intersection with the middle surface. In the current configuration the crack
is open and its flanks Γ+

c × [−h
2 , h

2 ] and Γ−c × [−h
2 , h

2 ] are separated.

The displacement jump across the crack is obtained from (3) as

w = JuK = u+−u− = w̄+ξ
3JtK (10)

Points belonging to the crack surface Γc× [−h
2 , h

2 ] in the initial configuration are
defined by the mapping

Xc = Φ̄c(ξ 1(η),ξ 2(η))+ξ
3Tc(ξ 1(η),ξ 2(η)) (11)

where Φ̄c(η) is the parametric representation of Γc on the middle surface and η is
a scalar parameter.

Defining as

Ac =
∂ξ α

∂η
Φ̄c,α An =

Ac×Tc

‖Ac×Tc‖
= An (12)
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the tangent and normal vectors to Γc on the middle surface, a covariant basis for
the crack surface in the original configuration can be defined as

Gc =
∂ξ α

∂η
(Φ̄c,α +ξ

3Tc,α) = Ac +ξ
3 ∂ξ α

∂η
Tc,α (13)

G3 = T(ξ 1(η),ξ 2(η)) = Tc (14)

Gn =
Gc×G3

‖Gc×G3‖
= Gn (15)

3 Weak form of equilibrium

Let pdS be the cohesive force acting on an elementary area dS = ‖Gc×G3‖dξ 3dη

of the crack reference surface Γc× [−h
2 , h

2 ]. Equilibrium is enforced in weak form
through the virtual work equality

δΠint−δΠext = 0 (16)

where

δΠext =
∫

V
f ·udV +

∫
∂V

p̄ ·udS (17)

δΠint = δΠint,V +δΠint,c = (18)

=
∫

M \Γc

∫ h
2

− h
2

S : δEµdξ
3dM +

∫
Γc

∫ h
2

− h
2

(p− ·δu−+p+ ·δu+)γdξ
3dΓc

(19)

In equations (17) and (19), V is the volume occupied by the shell body in the
reference configuration, ∂V is the portion of the boundary where traction boundary
conditions are prescribed, f and p̄ denote the assigned body and traction forces,
respectively, dM = ‖A1×A2‖dξ 1dξ 2 is the middle surface infinitesimal element,
S is the second Piola-Kirchhoff stress tensor, µ and γ are defined as

µ =
‖G1×G2‖
‖A1×A2‖

, γ =
‖Gc×G3‖√

Ac ·Ac
(20)

and account for the curvature of the middle surface and of Γc, respectively, while
δE, δu− and δu+ are the variations of the kinematic fields, conjugate to S and p−,
p+.
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In classical cohesive formulations, equilibrium conditions at the interface require
that p+ =−p− = p and the internal work on the cohesive interface is rewritten as

δΠint,c =
∫

Γc

∫ h
2

− h
2

p ·δwγdξ
3dΓc (21)

4 The concept of directional cohesive element

Standard finite element approaches to fracture, based on the introduction of a co-
hesive interface between adjacent shell elements, usually follow these steps: the
deformation and the state of stress in the uncracked shell structure is determined;
wherever a prescribed propagation criterion is exceeded at a node, that node is du-
plicated and a displacement discontinuity is allowed along the element interfaces,
in the direction defined by the propagation criterion; opposite cohesive forces are
introduced across the discontinuity. The direction of the opposite forces depends
only on the direction of the displacement jump and on the adopted cohesive law.
When the material is quasi-brittle and/or the impacting object is blunt, there is no
interference between the object and the cohesive region because the ultimate co-
hesive opening displacement is much smaller than the typical size of the object.
On the contrary, when the material is very ductile, as in the case of the laminate
considered in Fig. 1, or the cutting blade is sharp, it may well happen that the blade
intersects the trajectory of the cohesive forces, giving rise to inaccurate predictions
of the crack propagation. This problem does not occur when crack propagation is
simulated by removing damaged elements from the mesh, as it is currently done
in advanced commercial finite element codes. In this case the contact algorithm is
active on the element until the element is removed and penetration of the blade is
not allowed. However, this approach requires a mesh of the shell body fine enough
to conform to the blade edge. If the blade is sharp, as in the case of the cutters of
interest herein, an accurate description of the propagation can lead to prohibitive
computational costs.

A different approach is adopted in this work, based on the following specific fea-
tures of the fracture nucleation and propagation in the considered aluminium-polymeric
composite.

• The aluminium layer is quasi-brittle, especially if compared to the highly
ductile LDPE layers.

• After the aluminium layer has failed, in correspondence to the sudden drop in
Fig. 1, the load is transmitted entirely by the highly ductile polymeric layers
along the constant stress plateau of Fig. 1.
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• In the plateau region of Fig. 1, plastic strains localize in a very narrow band,
where the aluminium layer is broken, mainly located in the region in contact
with the cutter edge, while the material outside the process zone unloads in
the elastic regime. In fact, the sharper is the blade, the more localized is
the damage produced in the laminate. In a sheet of paper cut by a razor
blade, the sheet remains elastic and the cut pieces match almost perfectly to
each other [Atkins, Xu, and Jeronimidis (2004)]. This observation allows
one to interpret the inelastic part of the stress-strain behavior of Fig. 1, as
the behavior of the material in the process zone. The cohesive law is then
assumed in the form shown in Fig. 4, where ` is the current length of material
fibers in the cohesive zone.

• As noted in [Atkins and Xu (2005)] on the basis of experimental tests, the
specific surface work required for crack propagation is unaffected by relative
blade motion and does not depend on the mode of fracture, while it is influ-
enced by friction between the blade and the sheet. As a consequence, only
Mode I tearing will be considered in the fracture process and perfect adhe-
sion will be postulated between the cutter blade and the polyethylene fibrils
in the process zone.

• In view of the small thickness of the shell and of its small bending inertia, the
bending strength in the cohesive region can be neglected. The internal work
contribution of the cohesive interface in Eq. (19) can be rewritten neglecting
in Eq. (3) the displacement variations along the thickness:

δΠint,c =
∫

Γc

∫ h
2

− h
2

(p− ·δ ū−+p+ ·δ ū+)γdξ
3dΓc (22)

=
∫

Γc

(P− ·δ ū−+P+ ·δ ū+)dΓc (23)

where it has been defined

P =
∫ h

2

− h
2

pγdξ
3 (24)

The cohesive force is then integrated along the element interfaces using the
trapezoidal rule, giving rise in the discretized model to cohesive forces F±i
concentrated at the separated nodes i±.

Based on these observations and assumptions, the proposed approach can be de-
scribed as follows. When the selected fracture criterion is met at a given node,
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Figure 3: Cohesive forces between detaching elements.

the node is duplicated and it is assumed that cohesive forces F±i are transmitted
between the newly created pair of nodes i± by a massles “cable”, i.e. a truss ele-
ment introduced ad hoc in the model in correspondence of each pair of separating
nodes. It is worth stressing that, in the current implementation, the cohesive cables
are attached to nodes lying in the middle surface of the shell, but different options
in which cables are e.g. attached to Gauss points along fractured edges are equally
feasible.

In the present contribution, fracture is activated when the maximum principal stress
σI reaches a given threshold σF . The cohesive force exerted by the cable on the two
nodes is set, for the very first time step after crack initiation, to ±σFAim, where Ai

is the area of the cohesive surface through the shell pertinent to the node i and m is
a direction which is “orthogonal” in the average to the separating flanks.

During the subsequent time steps the nodes separate and the cable is a straight
segment naturally endowed with a length ` which is simply the distance between
the nodes. The direction of the cohesive force is provided by the opening vector
w̄ defined in Eq. (10). The intensity of the force is σAi, where σ depends on the
specific cohesive constitutive law adopted for the cable. In the present case, this
has been selected as the non-holonomic law of Figure 4. This is the case of the first
cable in the magnified frame on the left in Figure 3, which has not been contacted
by the cutter yet.

Unlike in standard cohesive approaches, the cable element is a well defined geo-
metric entity, and its contact against the cutting blade can be checked throughout
the analysis duration, even though, in view of the sharpness of the cutter and to en-
hance the computational efficiency of the procedure, contact is here only checked
against points belonging to the cutting edge (and not against the cutting sides).
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When a point of a cable element is detected to be in contact with the blade, the
cable element is subdivided in two truss elements by introducing a joint in cor-
respondence of the contact point. The length of the cable is now defined as the
sum of the lengths of the two constituent trusses. Due to the high level of friction
between the cutter and the LPDE membrane, it is assumed that the contact point
cannot move along the cutting edge of the cutter. Two forces F+

i and F−i of the
same magnitude are assumed to be transmitted by the two branches of the cable to
the crack flanks. The direction of the forces is however different at the two nodes
i+ and i−, being determined by the directions of the truss elements connecting the
nodes to the contact point (see Fig. 3). The force magnitude in the cable is obtained
from the stress in Fig. 4 corresponding to the total cable length `. In this way, the
cohesive force can be transmitted between the crack flanks in a direction which is
not along the line connecting the separating nodes, correctly taking into account
the presence of the cutter. When the current length of the cable exceeds the limit
value `U , the cable is removed and no cohesive forces are applied to the associated
nodes.

Figure 4: Constitutive modeling of cohesive elements.

5 Example of application

We focus here on the simulation of a specific cutting process where the membrane
is a circle of radius R = 10.2 mm and thickness h = 0.074 mm and is assumed to be
clamped on the outer boundary. The aluminium foil is approximately 1/10th of the
overall thickness.
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Figure 5: Different meshes M1 and M2 employed for the deformable shell.

The cutting tool employed is depicted in Figure 2 and has an average radius of
9.4 mm. The radius of curvature at the cutting edge is approximatively of 0.1 mm.
In view of this small size, in the finite element model it is represented as the sharp
intersection of two element edges. The tool is treated here as a rigid body under-
going a prescribed rotation and vertical displacement simulating the true opening
process.

In order to test possible mesh-dependence of results, the membrane has been dis-
cretized with two different meshes of quadrilateral MITC4 elements [Bathe (1996)],
as illustrated in Figure 5. The coarse mesh M1 contains 2634 elements, while the
finer mesh M2 has 8647 elements. For the application of the fracture activation
criterion, stresses have been extrapolated at nodes using the superconvergent patch
recovery technique proposed by Zienkiewicz and Zhu (1992).

5.1 Choice of constitutive parameters

At the beginning of the analysis, the composite lamina is simulated as an equiva-
lent homogenized and isotropic membrane endowed with a linear constitutive law
expressing Piola-Kirchhoff stresses in terms of Green-Lagrange strains with Young
modulus E = 1678 MPa and Poisson coefficient ν = 0.3.

Cohesive elements are dynamically activated only when the fracture criterion de-
scribed in Section 4 is met. Fracture parameters for the cohesive elements have
been selected as σF = 18 MPa; σC = 12 MPa, `A = 0.5 mm, `P = 3 mm and
`U = 4 mm. It is worth stressing that cohesive elements can only be activated along
the edges of the shell mesh, thus excluding a priori any form of remeshing during
the analysis.
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Figure 6: Evolution of the opening process simulated with mesh M1.
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While the choice of σF and σC has been performed by simple inspection of Figure
1, the selection of `A, `P and `U is more delicate and deserves some comments. As
far as the aluminium layer is concerned, Pardoen, Marchal, and Delannay (2002)
report a limit toughness of G f = 30 kJ/m2 for aluminium plates of vanishing thick-
ness (toughness in the plane-stress limit). On the other hand, Kao-Walter (2004)
reports on significantly smaller values coming from experimental tests on thin free-
standing aluminium foils (6-7 µm). However, Kao-Walter also notes that unex-
pectedly higher values of fracture energy are obtained for LDPE-aluminium lam-
inates, hinting that the presence of the other layers constrains the development of
through-thickness plastic strains in the aluminium foil, increasing in this way its
fracture energy. For these reasons, and in the absence of further experimental data,
a fracture energy G f = 30 kJ/m2 is adopted. In order to estimate the dissipation
associated to LDPE fracture, following Section 4, the concept of essential work of
fracture [Williams and Rink (2007)] is employed, adopting Wf = 45 kJ/m2, which
is in agreement with the average values obtained from laboratory experiments on
free-standing LDPE foils (see also e.g. [Pegoretti, Castellani, Franchini, Mariani,
and Penati (2009)]). The average of the dissipation energies, weighted through
the thickness of the different layers, gives an overall dissipation per unit thick-
ness of 43.5 kJ/m2, which corresponds to the area beneath the curve in Figure 4:
(1/2)(σF −σC)`A +(1/2)σC(`P + `U). The choice of the values of `A, `P and `U

indicated above avoids steep softening branches which might induce numerical os-
cillations. Different choices are not expected to affect results considerably, as long
as the dissipation energy is preserved.

5.2 Numerical analysis

Due to the strong geometrical and material non-linearities involved in the problem
at hand, the equations of motions are integrated in time by making recourse to
the central difference explicit algorithm. At each time step, the increment of the
director is computed at every node by expressing the angular velocity in a local
frame tangent to the shells, thus eliminating any drilling DoF.

The mass matrix is diagonalized, according to the spirit of explicit approaches.
However, since in such thin shells the true dynamics of the directors is of no prac-
tical interest, a selective scaling for the rotational inertia is applied as explained in
[Hughes (1987), chap. 9], in order to increase the maximum allowable time step.

The time steps employed in the simulations with the two meshes M1 and M2 are of
the order of ∆t1 = 1×10−7 s and ∆t2 = 0.7×10−7 s, respectively.

Contact conditions between the rigid cutting tool and the deformable shell are en-
forced by means of a penalty approach. The cutter is selected as the master surface
and a global-local search technique is implemented in order to efficiently monitor
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Figure 7: Torque-angle of rotation graph for mesh M1. Experiments (crosses) vs.
numerical results (dots)

Figure 8: Torque-angle of rotation graph for mesh M2. Experiments (crosses) vs.
numerical results (dots)
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the nodes of the shell which are closest to the cutter. When an interpenetration
occurs at a point of the cutter of outward normal n, the force −λ f (g)An is ap-
plied to the translational DoF of the node, where λ = 104 N/(mm3) is the penalty
coefficient, A is the shell area associated to the slave node (1/4 of the average of
the areas of the elements sharing the node itself), g is the absolute value of the
interpenetration and f is a smoothing function with:

f (g) =

{
(g/gM)3(3gM−2g), if g < gM

g, if g≥ gM

where gM = (1/4)h.

A dissipative term has also been added to the discretized equations. The dissi-
pation matrix is expressed as a weighted sum of the mass and stiffness matrices,
with coefficients α = 0.1 and β = 5.010−8 respectively (measured in a unit system
consistent with s,mm and N).

All these ingredients have been programmed in a Fortran90 parallel code for shared
memory architectures. A typical graphical output is presented in Fig, 6 which
collects a series of snapshots of the numerical analysis at different stages of the
opening process.

5.3 Experimental validation

An experimental campaign has been conducted in parallel in order to evaluate both
the torque as a function of rotation angle of the cutter and to provide videos of the
deformation and cracking pattern of the thin membrane.

The comparison between the numerical prediction and experiments in terms of
torque vs. rotation angle is presented in Figures 7 and 8 where a very good agree-
ment is observed. The numerical torque is evaluated on the basis of the contact
forces between the cutter and the shell.

This results corroborates the basic assumption that an elastic constitutive behaviour
for the bulk material should be accurate enough for the evaluation of macroscopic
quantities like the opening torque. It is also worth stressing that almost no mesh de-
pendence is observed, in agreement with the common understanding that the simu-
lation of damage and fracture by means of discrete cracking and cohesive elements
allows to eliminate the issue of mesh dependence observed in diffused/smeared
cracking approaches.

A visual comparison is also attempted in Figure 9 between the snapshots of the sim-
ulation and of the experimental video. A good qualitative agreement is observed
in terms of fracture pattern and advancement, though the real membrane displays
a somehow higher toughness (lower brittleness), possibly associated to a slightly
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Figure 9: Comparison of fracture advancement and pattern in experiments (left)
and simulations (right).
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greater bluntness of the real cutter edge with respect to the numerical model, where
the blade edge results from the intersection of flat elements and is therefore ex-
tremely sharp.

6 Conclusions

We have developed a simplified procedure, based on the definition of “directional”
cohesive elements, for the simulation of the blade cutting of thin membranes used in
the carton packaging industry to seal packages containing liquid food. The mem-
brane consists of a composite lamina made of thin layers of aluminium and low
density polyethylene (LPDE). Since LPDE is a highly ductile material, the post-
aluminium-fracture behaviour is crucial to reproduce the macroscopic response of
the membrane as measured, e.g., by the torque-rotation angle graph. In standard
interface cohesive elements, the direction of the cohesive forces simply depends
on the crack opening and cannot account for the presence of sharp cutting tools
progressing between the cohesive flanks. A new kind of “directional” cohesive el-
ements has then been introduced which simulate the contact between LPDE and
the cutting tool within the fracture process zone and are able to capture the es-
sential phenomena of the opening process. The constitutive law of the cohesive
elements has been calibrated on the basis of ad hoc laboratory experiments and
of data available in the literature. A validation of the model has been performed
against laboratory opening tests and a good agreement has been found with rela-
tively coarse meshes. As expected, the adoption of a cohesive model has eliminated
almost completely the dependence of results on the refinement of the mesh which
is a major issue in standard FEM simulation since LPDE displays a softening be-
haviour. One limitation of the present implementation is the absence of plasticity
in the shell model for the composite membrane. The introduction of plastic defor-
mations, currently in progress, together with specifically conceived experimental
tests for material parameters calibration, should allow to improve the accuracy of
the simulation both in quantitative and qualitative terms.

Acknowledgement: The financial support by Tetra Pak Packaging Solutions is
kindly acknoweledged.

References

Areias, P. M. A.; Belytschko, T. (2005): Non-linear analysis of shells with arbi-
trary evolving cracks using xfem. International Journal for Numerical Methods in
Engineering, vol. 62, no. 3, pp. 384–415.



Directional Cohesive Elements 223

Areias, P. M. A.; Song, J. H.; Belytschko, T. (2006): Analysis of fracture in thin
shells by overlapping paired elements. Computer Methods in Applied Mechanics
and Engineering, vol. 195, no. 41-43, pp. 5343–5360.

Atkins, A.; Xu, X. (2005): Slicing of soft flexible solids with industrial applica-
tions. International Journal of Mechanical Sciences, vol. 47, no. 4-5, pp. 479–492.

Atkins, A. G.; Xu, X.; Jeronimidis, G. (2004): Cutting, by ’pressing and slicing,’
of thin floppy slices of materials illustrated by experiments on cheddar cheese and
salami. Journal of Materials Science, vol. 39, no. 8, pp. 2761–2766.

Atkins, T. (2006): Optimum blade configurations for the cutting of soft solids.
Engineering Fracture Mechanics, vol. 73, no. 16, pp. 2523–2531.

Atkins, T. (2009): The science and engineering of cutting. Buttherworth Heine-
mann, Oxford, UK.

Bathe, K. (1996): Finite element procedures. Prentice-Hall Int., Englewood
Cliffs, NJ, USA.

Belytschko, T.; Lin, J. I.; Tsay, C. S. (1984): Explicit algorithms for the nonlin-
ear dynamics of shells. Computer Methods in Applied Mechanics and Engineering,
vol. 42, no. 2, pp. 225–251.

Chanthasopeephan, T.; Desai, J. P.; Lau, A. C. W. (2007): Modeling soft-tissue
deformation prior to cutting for surgical simulation: Finite element analysis and
study of cutting parameters. Biomedical Engineering, IEEE Transactions on, vol.
54, no. 3, pp. 349–359.

Cirak, F.; Ortiz, M.; Pandolfi, A. (2005): A cohesive approach to thin-shell
fracture and fragmentation. Computer Methods in Applied Mechanics and Engi-
neering, vol. 194, no. 21-24, pp. 2604–2618.

Hughes, T. (1987): The Finite Element Method: linear static and dynamic finite
element analysis. Prentice-Hall Int., Englewood Cliffs, NJ, USA.

Kao-Walter, S. (2004): On the Fracture of Thin Laminates. PhD thesis, Blekinge
Institute of Technology, Karlskrona, Sweden, 2004.

Li, W.; Siegmund, T. (2002): An analysis of crack growth in thin-sheet metal
via a cohesive zone model. Engineering Fracture Mechanics, vol. 69, no. 18, pp.
2073–2093.

Lin, Z.-C.; Ye, J.-R. (2009): Quasi-steady molecular statics model for simulation
of nanoscale cutting with different diamond cutters. CMES: Computer Modeling
in Engineering & Science, vol. 50, no. 3, pp. 227–252.



224 Copyright © 2010 Tech Science Press CMES, vol.57, no.3, pp.205-224, 2010

Mahvash, M.; Voo, L. M.; Kim, D.; Jeung, K.; Wainer, J.; Okamura, A. M.
(2008): Modeling the forces of cutting with scissors. Biomedical Engineering,
IEEE Transactions on, vol. 55, no. 3, pp. 848–856.

Muscat-Fenech, C.; Atkins, A. G. (1998): Denting and fracture of sheet steel by
blunt and sharp obstacles in glancing collisions. International Journal of Impact
Engineering, vol. 21, no. 7, pp. 499–519.

Pardoen, T.; Marchal, Y.; Delannay, F. (2002): Essential work of fracture com-
pared to fracture mechanics-towards a thickness independent plane stress tough-
ness. Engineering Fracture Mechanics, vol. 69, no. 5, pp. 617–631.

Pegoretti, A.; Castellani, L.; Franchini, L.; Mariani, P.; Penati, A. (2009): On
the essential work of fracture of linear low-density-polyethylene. i. precision of the
testing method. Engineering Fracture Mechanics.

Potyondy, D. O.; Wawrzynek, P. A.; Ingraffea, A. R. (1995): Discrete crack
growth analysis methodology for through cracks in pressurized fuselage structures.
International Journal for Numerical Methods in Engineering, vol. 38, no. 10, pp.
1611–1633.

Simonsen, B.; Törnqvist, R. (2004): Experimental and numerical modelling of
ductile crack propagation in large-scale shell structures. Marine Structures, vol.
17, no. 1, pp. 1–27.

Song, J. H.; Belytschko, T. (2009): Dynamic fracture of shells subjected to
impulsive loads. Journal of Applied Mechanics, vol. 76, no. 5, pp. 051301_1–
051301_9.

Wierzbicki, T.; Thomas, P. (1993): Closed-form solution for wedge cutting force
through thin metal sheets. International Journal of Mechanical Sciences, vol. 35,
no. 3-4, pp. 209–229.

Williams, J.; Rink, M. (2007): The standardisation of the ewf test. Engineering
Fracture Mechanics, vol. 74, no. 7, pp. 1009–1017.

Zavattieri, P. D. (2006): Modeling of crack propagation in thin-walled structures
using a cohesive model for shell elements. Journal of Applied Mechanics, vol. 73,
no. 6, pp. 948–958.

Zheng, Z. M.; Wierzbicki, T. (1996): A theoretical study of steady-state wedge
cutting through metal plates. International Journal of Fracture, vol. 78, no. 1, pp.
45–66.

Zienkiewicz, O. C.; Zhu, J. Z. (1992): The superconvergent patch recovery and
a posteriori error estimates. part 1: The recovery technique. International Journal
for Numerical Methods in Engineering, vol. 33, no. 7, pp. 1331–1364.


