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Locking-free Thick-Thin Rod/Beam Element Based on a
von Karman Type Nonlinear Theory in Rotated Reference
Frames For Large Deformation Analyses of Space-Frame

Structures
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Abstract: This paper presents a new shear flexible beam/rod element for large
deformation analyses of space-frame structures, comprising of thin or thick beams.
The formulations remain uniformly valid for thick or thin beams, without using any
numerical expediencies such as selective reduced integrations, etc. A von Karman
type nonlinear theory of deformation is employed in the co-rotational reference
frame of the present beam element, to account for bending, stretching, torsion and
shearing of each element. Transverse shear strains in two independant directions
are introduced as additional variables, in order to eliminate the shear locking phe-
nomenon. An assumed displacement approach is used to derive an explicit expres-
sion for the (16x16) symmetric tangent stiffness matrix of the beam element in the
co-rotational reference frame. Numerical examples demonstrate that the present
element is free from shear locking and is suitable for the large deformation anal-
ysis of spaced frames with thick/thin members. Significantly, this paper provides
a text-book example of an explicit expression for the (16x16) symmetric tangent
stiffness matrix of a finitely deforming beam element, which can be employed in
very simple analyses of large deformations of space-frames. The present method-
ologies can be extended to study the very large deformations of plates and shells as
well, and can be shown to be theoretically valid for thick or thin plates and shells,
without using selective reduced integrations and without the need for stabilizing
the attendant zero-energy modes.
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1 Introduction

Exact and efficient nonlinear large deformation analyses of space frames have at-
tracted much attention due to their significance in diverse engineering applications,
such as civil and aerospace engineering, and tensegrity structures in biological ap-
plications. In the past decades, many different methods were developed by numer-
ous researchers for the geometrically nonlinear analyses of 3D frame structures.
Bathe and Bolourchi (1979) employed the total Lagrangian and updated Lagrangian
approaches to formulate fully nonlinear 3D continuum beam elements. Punch and
Atluri (1984) examined the performance of linear and quadratic Serendipity hybrid-
stress 2D and 3D beam elements. Based on geometric considerations, Lo (1992)
developed a general 3D nonlinear beam element, which can remove the restriction
of small nodal rotations between two successive load increments. Kondoh, Tanaka
and Atluri (1986), Kondoh and Atluri (1987), Shi and Atluri(1988) presented the
derivations of explicit expressions of the tangent stiffness matrix, without employ-
ing either numerical or symbolic integration. Zhou and Chan (2004a, 2004b) devel-
oped a precise element capable of modeling elastoplastic buckling of a column by
using a single element per member for large deflection analysis. Izzuddin (2001)
clarified some of the conceptual issues which are related to the geometrically non-
linear analysis of 3D framed structures. Simo (1985), Mata, Oller and Barbat
(2007, 2008), Auricchio, Carotenuto and Reali (2008) considered the nonlinear
constitutive behavior in the geometrically nonlinear formulation for beams. Iura
and Atluri (1988), Chan (1994), Xue and Meek (2001), Wu, Tsai and Lee(2009)
studied the nonlinear dynamic response of the 3D frames. Lee, Lin, Lee, Lu and
Liu (2008), Lee, Lu, Liu and Huang (2008) gave the exact large deflection solutions
of the beams for some special cases. Atluri and Zhu (1998), Zhu, Zhang and Atluri
(1999), Wen and Hon (2007); Dinis, Jorge and Belinha (2009), Han, Rajendran
and Atluri (2005), Lee and Chen (2009) applied meshless methods to the analy-
ses of nonlinear problems with large deformations or rotations. Gendy and Saleeb
(1992), Atluri, Iura, and Vasudevan(2001) had brief discussions of the frames with
arbitrary cross sections. Large rotations in beams, plates and shells, and attendant
variational principles involving the rotation tensor as a direct variable, were stud-
ied extensively by Atluri and his co-workers (see, for instance, Atluri 1980, Atluri
1984 ,and Atluri and Cazzani 1994).

In Cai, Paik and Atluri (2009a), a simple “thin” beam/rod element, based on simple
mechanics and physical clarity, for geometrically nonlinear large rotation analyses
of space frames consisting of “thin” beam members of arbitrary cross-section, has
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been proposed. This thin element formulation lead to an explicit expression of the
(12x12) symmetric tangent stiffness matrix. However, the element is only accu-
rate in very thin structures because the influence of the shear deformation has been
neglected. The neglect of the effect of the shear deformation may impair the com-
putational accuracy and may lead to the error of results for moderately thick struc-
tures. Researchers had developed many shear-flexible beam elements (Reddy 1997;
Mukherjee and Prathap 2001; Atluri, Cho and Kim 1999; Zhang and Di 2003; Li
2007) to obtain the acceptable results for a wide range of element thicknesses, and
successful applied them to diverse engineering fields. Nevertheless, these methods
will involve very complex algebraic derivations when they are extended to the large
deformation analysis of structures. In this paper, a new shear flexible beam/rod ele-
ment is proposed for large deformation analyses of space-frame structures consist-
ing of thick or thin members. A von Karman type nonlinear theory of deformation
is employed in the co-rotational reference frame of the present beam element, to
account for bending, stretching, torsion and shearing of each element. Transverse
shear strains in two independent directions are introduced to eliminate the shear
locking phenomenon in the shear flexible beam elements, thus, the present formu-
lations remain uniformly valid for either thick or thin beams, without using the
numerical expediencies of selective reduced integrations and without the need for
stabilizing the attendant zero-energy modes. An assumed displacement approach
is used to derive an explicit expression for the (16x16) symmetric tangent stiffness
matrix of the beam element in the co-rotational reference frame. Numerical exam-
ples demonstrate that the present element is free from shear locking and is suitable
for the large deformation analysis of thick/thin spaced frames. Significantly, this
paper provides a text-book example of an explicit expression for the (16x16) sym-
metric tangent stiffness matrix of a finitely deforming beam element, which can be
employed in very simple analyses of large deformations of space-frames consisting
of either thick or thin members. The present methodologies can be extended to
study the very large deformations of plates and shells as well, and can be shown to
be theoretically valid for thick or thin plates and shells (Sladek, Sladek, Solek and
Atluri 2008; Majorana and Salomoni 2008; Gato and Shie 2008; Kulikov and Plot-
nikova 2008), without using selective reduced integrations and without the need for
stabilizing the attendant zero-energy modes.

Similar to Cai, Paik and Atluri (2010a), the present beam element including the
shear influence has a much simpler form than those based on exact continuum
theories of Simo (1985) and Bathe and Bolourchi (1979). The present explicit
derivation of the tangent stiffness matrix of a finitely deforming beam of an arbi-
trary cross-section is more general and much simpler than in the earlier papers of
Kondoh, Tanaka and Atluri (1986), Kondoh and Atluri (1987), and Shi and Atluri
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(1988). Furthermore, unlike in the formulations of Simo(1985), Crisfield (1990)
[and many others who followed them], which lead to the currently popular myth
that the stiffness matrices of finitely rotated structural members should be unsym-
metric, the (16x16) stiffness matrix of the beam element in the present paper is
enormously simple, and remains symmetric throughout the finite rotational defor-
mation.

2 Von-Karman type nonlinear theory including shear deformation for a rod
with large deformations

We consider a fixed global reference frame with axes x̄i (i = 1,2,3) and base vectors
ēi. An initially straight rod of an arbitrary cross-section and base vectors ẽi, in
its undeformed state, with local coordinates x̃i (i = 1,2,3), is located arbitrarily in
space, as shown in Fig.1. The current configuration of the rod, after arbitrarily large
deformations (but small strains) is also shown in Fig.1.

The local coordinates in the reference frame in the current configuration are xi and
the base vectors are ei (i = 1,2,3). The nodes 1 and 2 of the rod (or an element of
the rod) are supposed to undergo arbitrarily large displacements, and the rotations
between the ẽi (i = 1,2,3) and the ek (k = 1,2,3) base vectors are assumed to be
arbitrarily finite. In the continuing deformation from the current configuration, the
local displacements in the xi (ei) coordinate system are assumed to be moderate,
and the local gradient (∂u10/∂x1) is assumed to be small compared to the transverse
rotations (∂uα0/∂x1)(α = 2,3). Thus, in essence, a von-Karman type deformation
is assumed for the continued deformation from the current configuration, in the co-
rotational frame of reference ei (i = 1,2,3) in the local coordinates xi (i = 1,2,3).
If H is the characteristic dimension of the cross-section of the rod, the precise
assumptions governing the continued deformations from the current configuration
are
u10
H << 1; H

L need not be ≤ 1.

uα0

H
≈ O(1) (α = 2,3)

∂u10

∂x1
<<

∂uα0

∂x1
(α = 2,3)

and
(

∂uα0
∂x1

)2
(α = 2,3) are not negligible.

As shown in Fig.2, we consider the large deformations of a cylindrical rod, sub-
jected to bending (in two directions), and torsion around x1. The cross-section is
unsymmetrical around x2 and x3 axes,and is constant along x1.
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As shown in Fig.2, the warping displacement due to the torque T around x1 axis is
u1T (x2,x3) and does not depend on x1, the axial displacement at the origin (x2 =
x3 = 0) is u10 (x1), and the bending displacement at x2 = x3 = 0 along the axis x1
are u20 (x1) (along x2) and u30 (x1) (along x3).

We consider only loading situations when the generally 3-dimensional displace-
ment state in the ei system, donated as

ui = ui (xk) i = 1,2,3; k = 1,2,3

is simplified to be of the type:

u1 = u1T (x2,x3)+u10 (x1)− x2θ2− x3θ3

u2 = u20 (x1)−θ1x3

u3 = u30 (x1)+θ1x2

(1)

where θ1 is the total torsion of the rod at x1 due to the torque T , θ2 is the total
rotation around x3, and θ3 is the total rotation around x2, where θ2 and θ3 include
the influence of the shear deformation.

2.1 Strain-displacement relations

Considering only von Karman type nonlinearities in the rotated reference frame
ei (xi), we can write the Green-Lagrange strain-displacement relations in the up-
dated Lagrangian co-rotational frame ei in Fig.1 as:

ε11 =
∂u1

∂x1
+

1
2

(
∂u2

∂x1

)2

+
1
2

(
∂u3

∂x1

)2

=
∂u10

∂x1
+

1
2

(
∂u20

∂x1

)2

+
1
2

(
∂u30

∂x1

)2

− x2
∂θ2

∂x1
− x3

∂θ3

∂x1

ε12 =
1
2

(
∂u1

∂x2
+

∂u2

∂x1

)
=

1
2

(
∂u1T

∂x2
− ∂θ1

∂x1
x3 +

∂u20

∂x1
−θ2

)
ε13 =

1
2

(
∂u1

∂x3
+

∂u3

∂x1

)
=

1
2

(
∂u1T

∂x3
+

∂θ1

∂x1
x2 +

∂u30

∂x1
−θ3

)
ε22 =

∂u2

∂x2
+

1
2

(
∂u1

∂x2

)2

+
1
2

(
∂u2

∂x2

)2

+
1
2

(
∂u3

∂x2

)2

≈ 0

ε23 ≈ 0

ε33 ≈ 0

(2)



180 Copyright © 2010 Tech Science Press CMES, vol.57, no.2, pp.175-204, 2010

Figure 1: Kinematics of deformation of a space framed member
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 Figure 2: Large deformation analysis model of a cylindrical rod

By letting

θ
′
1 = θ1,1

γ2 = u20,1−θ2

γ3 = u30,1−θ3

χ22 =−u20,11

χ33 =−u30,11

ε
0
11 = u10,1 +

1
2

(u20,1)
2 +

1
2

(u30,1)
2 = ε

0L
11 + ε

0N
11

(3)
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the strain-displacement relations can be rewritten as

ε11 = ε
0
11 + x2χ22 + x3χ33 + x2γ2,1 + x3γ3,1

ε12 =
1
2
(
u1T,2−θ

′
1 x3 + γ2

)
ε13 =

1
2
(
u1T,3 +θ

′
1 x2 + γ3

)
ε22 = ε33 = ε23 = 0

(4)

where , i denotes a differentiation with respect to xi.

The matrix form of the Eq.(4) is

ε = ε
Lb + ε

Ls + ε
N = ε

L + ε
N (5)

where εLb is the linear part of the bending strain, εN is the nonlinear part of the
bending strain, εLs is the shear strain, and

ε
Lb =


εLb

11
εLb

12
εLb

13

=


u10,1 + x2χ22 + x3χ33

1
2 (u1T,2−θ ′1 x3)
1
2 (u1T,3 +θ ′1 x2)

 (6)

ε
Ls =


εLs

11
εLs

12
εLs

13

=


x2γ2,1 + x3γ3,1

γ2/2
γ3/2

 (7)

ε
N =


εN

11
εN

12
εN

13

=


1
2 (u20,1)

2 + 1
2 (u30,1)

2

0
0

 (8)

From Eqs.(3) and (4), it is seen that in the present formulation, the transverse dis-
placements (u20 and u30) as well as the transverse shear strains (γ2 and γ3) are re-
tained as independent variables. This type of formulation has beem clearly shown
(Atluri 2005) to lead to be locking-free and remains uniformly valid for either thick
or thin beams, without using such numerical gimmicks as selective/reduced inte-
grations and without the need for stabilizing the attendant spurious modes of zero-
energy. On the other hand, one may also use formulations wherein the transverse
displacements (u20 and u30) as well as the total rotations (θ2 and θ3) are retained as
independent variables. However, it has been simply explained in (Atluri 2005), how
such formulations lead to locking, thus necessitating the use of selective reduced
integration and the need for the stabilization of the attendant zero-energy modes.
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2.2 Stress-Strain relations

Taking the material to be linear elastic, we assume that the additional second Piola-
Kirchhoff stress, denoted by tensor S1 in the updated Lagrangian co-rotational ref-
erence frame ei of Fig.1 (in addition to the pre-existing Cauchy stress due to prior
deformation, denoted by τ0), is given by:

S1
11 = Eε11

S1
12 = 2µε12

S1
13 = 2µε13

S1
22 = S1

33 = S1
23 ≈ 0

(9)

where µ = E
2(1+ν) ; E is the elastic modulus; ν is the Poisson ratio.

By using Eq.(5), Eq.(9) can also be written as

S1 = D̃
(

ε
Lb + ε

Ls + ε
N
)

= SLb +SLs +SN = S1L +S1N (10)

where

D̃ =

E 0 0
0 2µ 0
0 0 2µ

 (11)

From Eq.(4) and Eq.(9), the generalized nodal forces of the rod element in Fig.1
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can be written as

N11 =
∫

A
S1

11dA = E
(

Aε
0
11 + χ22

∫
A

x2dA+ χ33

∫
A

x3dA+ γ2,1

∫
A

x2dA+ γ3,1

∫
A

x3dA
)

= E
(
Aε

0
11 + I2χ22 + I3χ33 + I2γ2,1 + I3γ3,1

)
M33 =

∫
A

S1
11x3dA = E

∫
A

(
ε

0
11 + x2χ22 + x3χ33 + x2γ2,1 + x3γ3,1

)
x3dA

= E
(
I3ε

0
11 + I23χ22 + I33χ33 + I23γ2,1 + I33γ3,1

)
M22 =

∫
A

S1
11x2dA = E

∫
A

(
ε

0
11 + x2χ22 + x3χ33 + x2γ2,1 + x3γ3,1

)
x2dA

= E
(
I2ε

0
11 + I22χ22 + I23χ33 + I22γ2,1 + I23γ3,1

)
T =

∫
A

S1
13x2−S1

12x3dA = 2µ

∫
A
(x2ε13− x3ε12)dA

=
2µ

2

∫
A

[(
u1T,3 +θ

′
1x2 + γ3

)
x2−

(
u1T,2−θ

′
1x3 + γ2

)
x3
]

dA

= µ

∫
A

θ
′
1
(
x2

2 + x2
3
)

dA+ µ

∫
A
(γ3x2− γ2x3)dA+ µ

∫
A
(u1T,3x2−u1T,2x3)dA

= µIrrθ
′
1 + µI2γ3−µI3γ2 + µ

∮
S
(u1T n3x2−u1T n2x3)dS

= µIrrθ
′
1 + µI2γ3−µI3γ2

Q12 =
∫

A
S1

12dA = µ

∫
A

(
u1T,2−θ

′
1x3 + γ2

)
dA ≈ µ

(
−I3θ

′
1 +Aγ2

)
Q13 =

∫
A

S1
13dA = µ

∫
A

(
u1T,3 +θ

′
1x2 + γ3

)
dAt

(12)

where n j is the outward normal, I2 =
∫

A x2dA, I3 =
∫

A x3dA, I33 =
∫

A x2
3dA, I22 =∫

A x2
2dA, I23 =

∫
A x2x3dA, and Irr =

∫
A

(
x2

2 + x2
3
)

dA.

The matrix form of the above equations is

σ = DE (13)

where

σ =



σ1
σ2
σ3
σ4
σ5
σ6


=



N11
M22
M33
T

Q12
Q13


= element generalized stresses (14)
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E = EL +EN =



E1
E2
E3
E4
E5
E6


= element generalized strains (15)

D =



EA EI2 EI3 0 0 0
EI2 EI22 EI23 0 0 0
EI3 EI23 EI33 0 0 0
0 0 0 µIrr −µI3 µI2
0 0 0 −µI3 µkA 0
0 0 0 µI2 0 µkA

 (16)

where k is the shear coefficient related to the cross section, e.g., k is taken to be 2/3
for the rectangular cross sections and k is taken to be 1.0 for the asymmetric cross
sections in this paper.

EL =
[
u10,1 −u20,11 + γ2,1 −u30,11 + γ3,1 θ1,1 γ2 γ3

]T (17)

EN =
[

1
2

(
u2

20,1 +u2
30,1

)
0 0 0 0 0

]T
(18)

3 Updated Lagrangian formulation in the co-rotational reference frame ei

3.1 Interpolation functions

As shown in Fig.1, the rod element has two nodes with 8 degrees of freedom per
node. By defining the following shape functions

φ1 = 1−ξ ,φ2 = ξ (19)

N1 = 1−3ξ 2 +2ξ 3,N3 = 3ξ 2−2ξ 3

N2 =
(
ξ −2ξ 2 +ξ 3

)
l,N4 =

(
ξ 3−ξ 2

)
l

(20)

where l is the length of the rod element,

ξ =
x1− 1x1

l
(0 < ξ < 1)

and 1x1 is the coordinate of the node 1 along axis x1, we can approximate the
displacement function in each rod element by

u = Nâ =
[

1N 2N
]{1â

2â

}
(21)
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where the displacement interpolation matrix is

1N =



φ1 0 0 0 0 0 0 0
0 N1 0 0 0 N2 0 0
0 0 N1 0 −N2 0 0 0
0 0 0 φ1 0 0 0 0
0 0 0 0 0 0 φ1 0
0 0 0 0 0 0 0 φ1

 (22)

2N =



φ2 0 0 0 0 0 0 0
0 N3 0 0 0 N4 0 0
0 0 N3 0 −N4 0 0 0
0 0 0 φ2 0 0 0 0
0 0 0 0 0 0 φ2 0
0 0 0 0 0 0 0 φ2

 (23)

u =
[
u10 u20 u30 θ1 γ3 γ2

]T (24)

and the displacement vectors of node i in the updated Lagrangian co-rotational
frame ei of Fig.1 are:

iâ =
[

iu1
iu2

iu3
iu4

iu5
iu6

iu7
iu8
]T

=
[

iu10
iu20

iu30
iθ1

i~θ2
i~θ3

iγ3
iγ2

]T
[i = 1,2]

(25)

where i~θ2 =−iu30,1 and i~θ3 = iu20,1.

From Eqs.(15) and (21), one can obtain

E = EL +EN =
(
BL + B̂N) â (26)

where

BL =



φ1,1 0 0 0 0 0 0 0
0 −N1,11 0 0 0 −N2,11 0 φ1,1
0 0 −N1,11 0 N2,11 0 φ1,1 0
0 0 0 φ1,1 0 0 0 0
0 0 0 0 0 0 0 φ1
0 0 0 0 0 0 φ1 0

∣∣∣∣∣∣∣∣∣∣∣∣
φ2,1 0 0 0 0 0 0 0
0 −N3,11 0 0 0 −N4,11 0 φ2,1
0 0 −N3,11 0 N4,11 0 φ2,1 0
0 0 0 φ2,1 0 0 0 0
0 0 0 0 0 0 0 φ2
0 0 0 0 0 0 φ2 0



(27)
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G =



0 0 0 0 0 0 0 0
0 N1,1 0 0 0 N2,1 0 0
0 0 N1,1 0 −N2,1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
0 0 0 0 0 0 0 0
0 N3,1 0 0 0 N4,1 0 0
0 0 N3,1 0 −N4,1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



(28)

A =



0 u20,1 u30,1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (29)

B̂N =
1
2

AG =
1
2



0 N1,1u20,1 N1,1u30,1 0 −N2,1u30,1 N2,1u20,1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
0 N3,1u20,1 N3,1u30,1 0 −N4,1u30,1 N4,1u20,1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


(30)

and thus

δ (E) =
(
BL +2B̂N)

δ â =
(
BL +BN)

δ (â) = Bδ â (31)
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3.2 Updated Lagrangian (U.L.), assumed displacement, weak-formulation of
the rod element in the co-rotational reference frame

If τ0
i j are the initial Cauchy stresses in the updated Lagrangian co-rotational frame

ei of Fig.1, and S1
i j are the additional (incremental) second Piola-Kirchhoff stresses

in the same updated Lagrangian co-rotational frame with axes ei, then the static
equations of linear momentum balance and the stress boundary conditions in the
frame ei are given by

∂

∂xi

[(
S1

ik + τ
0
ik
) (

δ jk +
∂u j

∂xk

)]
+b j = 0 (32)

(
S1

ik + τ
0
ik
) (

δ jk +
∂u j

∂xk

)
ni− f j = 0 (33)

where b j are the body forces per unit volume in the current reference state, and f j

are the given boundary loads.

By letting Sik = S1
ik + τ0

ik, the equivalent weak form of the above equations can be
written as∫
V

{
∂

∂xi

[
Sik

(
δ jk +

∂u j

∂xk

)]
+b j

}
δu jdV

−
∫
Sσ

[
Sik

(
δ jk +

∂u j

∂xk

)
ni− f j

]
δu jdS = 0 (34)

where δu j are the test functions.

By integrating by parts the first item of the left side, the above equation can be
written as∫
V

−Sik

(
δ jk +

∂u j

∂xk

)
δu j, idV +

∫
V

b jδu jdV +
∫
Sσ

f jδu jdS = 0 (35)

From Eq.(10) we may write

S1
ik = S1L

ik +S1N
ik (36)

Then the first item of Eq.(35) becomes

Sik
(
δ jk +u j,k

)
δu j,i =

(
τ

0
i j + τ

0
iku j,k +S1L

i j +S1N
i j +S1

iku j,k
)

δu j,i

= S1L
i j δε

L
i j + τ

0
ikδ

(
1
2

u j,ku j,i

)
+
(
τ

0
i j +S1N

i j +S1
iku j,k

)
δu j,i

(37)
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By using Eq.(5), Eq.(35) may be written as∫
V

(
S1L

i j δε
L
i j + τ

0
i jδε

N
i j
)

dV =

∫
V

b jδu jdV +
∫
Sσ

f jδu jdS−
∫
V

(
τ

0
i j +S1N

i j +S1
iku j,k

)
δε

L
i jdV (38)

The terms on the right hand side are ‘correction’ terms in a Newton-Rapson type
iterative approach. Carrying out the integration over the cross sectional area of each
rod, and using Eqs.(1) to (31), then Eq.(38) can be easily shown to reduce to:

∑
e

δ âT
∫
l

(
BL)T DBLdl â+δ âT

∫
l

(
BN)T

σ
0dl

=

∑
e

δ âT F̂1−δ âT
∫
l

(
BL)T (

σ
0 +σ

1N)dl −δ âT
∫
l

(
BN)T

σ
1dl

 (39)

where F̂1 =
∫
V

NT b∗ dV +
∫

Sσ

NT f∗ dS is the external equivalent nodal force.

Eq.(39) can be rewritten as

∑
e

[
δ âT (K̂L + K̂N) â

]
= ∑

e

[
δ âT (F̂1− F̂N) ] (40)

where K̂ = K̂L + K̂N is the symmetric tangent stiffness matrix of the rod element,

K̂L =
∫
l

(
BL)T DBLdl linear part (41)

K̂N =
∫
l

(
BN)T

σ
0dl =

∫
l

σ
0
1 GT Gdl nonlinear part (42)

and

F̂N =
∫
l

(
BL)T (

σ
0 +σ

1N) dl +
∫
l

(
BN)T

σ
1dl =

∫ 1

0
Fσ (ξ )dξ (43)

where σ = σ0 +σ1 = σ0 +σ1L +σ1N are the element generalized stresses.

In this implementation, the linearized σ1 is employed to update the element stress
in the current non-linear step, i.e.,

σ
1 = σ

1L = DBLâ (44)
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If we neglect the nonlinear items in Eq.(43) for the convenience of solving the non-
linear equation, and substituting Eq.(13) and Eq.(27) into Eq.(43), Fσ (ξ ) can be
written as

Fσ =
[
−σ0

1 c1σ0
2 c1σ0

3 −σ0
4 c2σ0

3 −c2σ0
2 −σ0

3 + c4σ0
6 −σ0

2 + c4σ0
5

σ0
1 −c1σ0

2 −c1σ0
3 σ0

4 c3σ0
3 −c3σ0

2 σ0
3 + lξ σ0

6 σ0
2 + lξ σ0

5

]T
(45)

where c1 = 6−12ξ

l ,c2 = 4−6ξ ,c3 = 6ξ −2, and c4 = l (1−ξ ).
The external equivalent nodal force in Eq.(45) can also be simplified to

Fσ =
[
−σ0

1 c1σ0
2 c1σ0

3 −σ0
4 c2σ0

3 −c2σ0
2 0 0

σ0
1 −c1σ0

2 −c1σ0
3 σ0

4 c3σ0
3 −c3σ0

2 0 0
]T (46)

Numerical examples indicate that the simplified Eq.(46) could dramatically accel-
erate the convergence rates of the large deformation analyses of the shear flexible
beam element in some cases, however, it would not impair the accuracy of the
results.

3.3 Explicit expressions of the tangent stiffness matrix

We assume for simplicity that the initial stress state σ0
1 is constant in a rod element.

The components of the element tangent stiffness matrix, K̂L and K̂N , respectively,
can be derived explicitly, after some simple algebra, as follows.

(16×16 symmetric matrix)

K̂N

a0
=



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a1 0 0 0 a2 0 0 0 −a1 0 0 0 a2 0 0

a1 0 −a2 0 0 0 0 0 −a1 0 −a2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

a3 0 0 0 0 0 a2 0 a4 0 0 0
a3 0 0 0 −a1 0 0 0 a4 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
a1 0 0 0 −a2 0 0

a1 0 a2 0 0 0
0 0 0 0 0

a3 0 0 0
a3 0 0

0 0
0


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(47)

where a0 = σ0
1
l ,a1 = 1.2,a2 = 0.1l,a3 = 2l2

15 , and a4 = −l2

30 .

The symmetric stiffness matrix K̂N (16×16), accounts for the interaction of the ax-
ial stress in the beam in the co-rotational reference frame, with the continued trans-
verse displacement in the beam in the co-rotational reference frame. In Eq.(47), l
is the current length of the beam element in the current reference state with base
vectors ei, as shown in Fig.1.

K̂L =
E
l

[
K̂L1 K̂L12(

K̂L12
)T K̂L2

]
(48)

where

K̂L1 =



A 0 0 0 I3 −I2 I3 I2
b1 b2 0 −b4 b5 0 0

b3 0 −b6 b4 0 0
b7 0 0 −b8 b9

4I33 −4I23 I33 I23
4I22 −I23 −I22

symm. b10 I23
b11


(49)

K̂L2 =



A 0 0 0 I3 −I2 I3 I2
b1 b2 0 b4 −b5 0 0

b3 0 b6 −b4 0 0
b7 0 0 b8 −b9

4I33 −4I23 I33 I23
4I22 −I23 −I22

symm. b10 I23
b11


(50)

K̂L12 =



−A 0 0 0 −I3 I2 −I3 −I2
0 −b1 −b2 0 −b4 b5 0 0
0 −b2 −b3 0 −b6 b4 0 0
0 0 0 −b7 0 0 −b8 b9
−I3 b4 b6 0 2I33 −2I23 −I33 −I23
I2 −b5 −b4 0 −2I23 2I22 I23 I22
−I3 0 0 b8 −I33 I23 −b12 −I23
−I2 0 0 −b9 −I23 I22 −I23 −b13


(51)
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where b1 = 12I22/l2, b2 = 12I23/l2, b3 = 12I33/l2, b4 = 6I23/l, b5 = 6I22/l, b6 =
6I33/l, b7 = µIrr/E, b8 = 0.5µI2l/E, b9 = 0.5µI3l/E, b10 = µAkl2/(3E) + I33,
b11 = µAkl2/(3E)+ I22, b12 =−µAkl2/(6E)+ I33, and b13 =−µAkl2/(6E)+ I22.

Thus, K̂L is the usual linear symmetric (16×16) stiffness matrix of the beam in the
co-rotational reference frame, with the geometric parameters I2, I3, I22, I33,

I23 and Irr, and the current length l. If the cross section of the beam is symmetric,
I2 = I3 = I23 = 0 and the linear stiffness matrix in Eq.(48) can be simplified.

It is clear from the above procedures, that the present (16×16) symmetric tan-
gent stiffness matrices of the beam in the co-rotational reference frame, based on
the simplified rod theory, are much simpler than those based on the exact contin-
uum beam theories of Simo (1985), and Bathe and Bolourchi (1979), or those of
Kondoh, Tanaka and Atluri (1986), Kondoh and Atluri (1987), and Shi and Atluri
(1988). Moreover, the explicit expressions for the tangent stiffness matrix of each
rod can be seen to be derived as text-book examples of nonlinear analyses.

4 Transformation between deformation dependent co-rotational local [ei],
and the global [ēi] frames of reference

As shown in Fig.1, x̄i (i = 1,2,3) are the global coordinates with unit basis vectors
ēi. x̃i and ẽi are the local coordinates for the rod element at the undeformed element.
The basis vector ẽi are initially chosen such that (Shi and Atluri 1988)

ẽ1 = (∆x̃1ē1 +∆x̃2ē2 +∆x̃3ē3)/L

ẽ2 = (ē3× ẽ1)/|ē3× ẽ1|
ẽ3 = ẽ1× ẽ2

(52)

where ∆x̃i = x̃2
i − x̃1

i , L =
(
∆x̃2

1 +∆x̃2
2 +∆x̃2

3
) 1

2 .

Then ẽi and ēi have the following relations:
ẽ1
ẽ2
ẽ3

=

 ∆x̃1/L ∆x̃2/L ∆x̃3/L
−∆x̃2/S ∆x̃1/S 0

−∆x̃1∆x̃3/(SL) −∆x̃2∆x̃3/(SL) s/L


ē1
ē2
ē3

 (53)

where S =
(
∆x̃2

1 +∆x̃2
2
) 1

2 .

Thus we can define a transformation matrix λ̃0 between ẽi and ēi as

λ̃0 =

 ∆x̃1/L ∆x̃2/L ∆x̃3/L
−∆x̃2/S ∆x̃1/S 0

−∆x̃1∆x̃3/(SL) −∆x̃2∆x̃3/(SL) S/L

 (54)
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When the element is parallel to the x̄3 axis, S =
[
∆x̃2

1 +∆x̃2
2
] 1

2 = 0 and Eq.(53) is
not valid. In this case, the local coordinates is determined by

ẽ1 = ē3, ẽ2 = ē2, ẽ3 =−ē1 (55)

Let xi and ei be the co-rotational reference coordinates for the deformed rod ele-
ment. In order to continuously define the local coordinates of the same rod element
during the whole range of large deformation, the basis vectors ei are chosen such
that

e1 = (∆x1ē1 +∆x2ē2 +∆x3ē3)/l = a1ē1 +a2ē2 +a3ē3

e2 = (ẽ3× e1)/|ẽ3× e1|
e3 = e1× e2

(56)

where ∆xi = x2
i − x1

i , l =
(
∆x2

1 +∆x2
2 +∆x2

3
) 1

2 .

We denote ẽ3 in Eq.(53) as

ẽ3 = c1ē1 + c2ē2 + c3ē3 (57)

Then ei and ēi have the following relations:
e1
e2
e3

=

 a1 a2 a3
b1 b2 b3

a2b3−a3b2 a3b1−a1b3 a1b2−a2b1


ē1
ē2
ē3

= λ0ēi (58)

where

b1 = (c2a3− c3a2)/l31
b2 = (c3a1− c1a3)/l31
b3 = (c1a2− c2a1)/l31

(59)

l31 =
[
(c2a3− c3a2)

2 +(c3a1− c1a3)
2 +(c1a2− c2a1)

2
] 1

2
(60)

and

λ0 =

 a1 a2 a3
b1 b2 b3

a2b3−a3b2 a3b1−a1b3 a1b2−a2b1

 (61)

Thus, the transformation matrix λ , between the 16 generalized coordinates in the
co-rotational reference frame, and the corresponding 16 coordinates in the global
Cartesian reference frame, is given by

λ =
[1λ

2λ

]
(62)
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where

i
λ =


λ0 0 0 0
0 λ0 0 0
0 0 b2 b3
0 0 a3b1−a1b3 a1b2−a2b1

 (63)

Letting xi and ei be the reference coordinates, and repeating the above steps [Eq.(56)
– Eq.(63)], the transformation matrix of each incremental step can be obtained in a
same way.

If a single straight beam is discretized into finite elements, one may enforce the
nodal continuity of (~θ2 and γ2) as well as (~θ3 and γ3) separately, thus leading to
the nodal continuity of the total rotations θ2 and θ3 respectively. However, when
two or more beams are connected arbitrarily at a node, as in a space-frame, geo-
metric compatibility requires the nodal connectivity of only the global Cartesian
components of θ2 and θ3 of the beams joined at the node. However, for algebraic
simplicity, and with some sacrifice of theoretical exactness, only the nodal connec-
tivity of the global Cartesian components of (~θ2 and ~θ3) as well as of (γ2 and γ3)
are enforced separately, in this paper.

Then the element matrices are transformed to the global coordinate system using

ā = λ
T â (64)

K̄ = λ
T K̂λ (65)

F̄ = λ
T F̂ (66)

where ā,K̄, F̄ are respectively the generalized nodal displacements, element tangent
stiffness matrix and generalized nodal forces, in the global coordinates system.

After assembling the element stiffness matrices and nodal force vectors, into their
global counterparts, we obtain the discretized equations of the space frames as

Ka = F−F0 (67)

The Newton-Raphson method, modified Newton-Rapson method or the artificial
time integration method (Liu 2007a, 2007b; Liu and Atluri 2008) can be employed
to solve Eq.(67). In this implementation, the Newton-Raphson algorithm is used.

5 Numerical examples

5.1 A cantilever beam with a symmetric cross section

A large deflection and moderate rotation analysis of a cantilever beam subject to a
transverse load at the tip, as shown in Fig. 3, is considered. The cross section of
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the beam is a square. The Poisson’s ration is ν = 0.25. The transverse load at the
tip is PL2/(EI) = 7.0. The exact linear solution of the vertical tip deflection of the
cantilever beam is given by Prathap and Bhashyam (1982) as

wr =
PL3

3EI

(
1+

3EI
kµAL2

)
(68)

For the comparison in the following examples, the rod element including the shear
deformation is denoted as ‘TKRE’, the rod element not including the shear de-
formation (Cai, Paik and Atluri 2009a) is denoted as ‘TNRE’, and the two nodal
Timoshenko shear flexible beam element with reduced integration is denoted as
‘TSBE’.

Tab.1 shows the comparison of the deflection at the tip for the linear analysis for
different ratios of h/L. Tab.2 shows the comparison of the deflection at the tip for
the large deformation analysis for different ratios of h/L.

Table 1: Comparison of the deflection (δ/L) at the tip for linear analysis

h/L 0.4 0.2 0.1 0.05 0.02 0.001 0.0001
TNRE 2.33400 2.33300 2.33350 2.33325 2.33330 2.33334 2.33333
TKRE 2.67400 2.41800 2.35450 2.33875 2.33420 2.33334 2.33333
TSBE 2.67800 2.41500 2.34950 2.33300 2.32840 2.32750 2.32750
Exact 2.67000 2.41700 2.35450 2.33850 2.33420 2.33334 2.33333

Table 2: Comparison of the deflection(δ/L) at the tip for nonlinear analysis

h/L 0.4 0.2 0.1 0.05 0.02 0.001 0.0001
TNRE 0.85800 0.79900 0.78500 0.78150 0.78060 0.78042 0.78042
TKRE 0.89800 0.81100 0.78800 0.78225 0.78070 0.78042 0.78042

The results presented in Tab.1 indicate that the present element TKRE has very
good characteristics of being free from locking for linear analysis of a rod.

It is shown in Tab.2 that, except for the shear strain, the Poisson’s ration has a little
influence to the results of the large deformation analysis of rod (for different ratios
of h/L).

5.2 A cantilever beam with an asymmetric cross section

We consider a cantilever beam with an asymmetric cross section, as shown in Fig.4.
The Poisson’s ration is ν = 0.3. The areas of cross section in Fig.4 are A = 1. The
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Figure 3: A cantilever beam subject to a transverse load at the tip

transverse load at the tip is PL2/(EI33) = 7.0. Let h = A1/2 be the characteristic
length of the cross section.

Tab.3 shows the comparison of the deflection u2/L at the tip for linear analysis for
different ratios of h/L. Tab.4 shows the comparison of the deflection u3/L at the
tip for linear analysis for different ratios of h/L.

Table 3: Comparison of the deflection (u2/L) at the tip for linear analysis

h/L 0.4 0.2 0.1 0.05 0.02 0.001 0.0001
TNRE 3.23600 3.23700 3.23650 3.23650 3.23650 3.23655 3.23650
TKRE 2.54400 3.06300 3.19300 3.22575 3.23480 3.23655 3.23650

Table 4: Comparison of the deflection (u3/L) at the tip for linear analysis

Table 4: Comparison of the deflection (u3/L) at the tip for linear analysis

h/L 0.4 0.2 0.1 0.05 0.02 0.001 0.0001
TNRE 5.44200 5.44100 5.44100 5.44100 5.44110 5.44107 5.44100
TKRE 8.92200 6.31100 5.65850 5.49550 5.44980 5.44109 5.44100

Fig. 5 shows the comparison of the deflections in x3 direction for the cantilever
beam with asymmetric cross section by using different rod elements, when h/L =
0.1. Fig.6 shows the deflection in x2 direction for the cantilever beam with asym-
metric cross section by using different rod elements, when h/L = 0.1. It is noted
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Figure 4: A cantilever beam with an asymmetric cross section
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Figure 5: Comparison of the deflections
in x3 direction for the cantilever beam
with asymmetric cross section
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Figure 6: Deflections in x2 direction
for the cantilever beam with asymmet-
ric cross section

that the scale of the abscissa axis should be corrected to P/2500 and E = 0.75e8 in
the same cantilever example with asymmetric cross section in Cai, Paik and Atluri
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(2009a, b).
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Figure 7: Initial and deformed geometries for cantilever subject to an end-moment
by using the thin/thick beam elements (h/L = 0.1)
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Figure 8: Initial and deformed geometries for cantilever subject to a transverse load
by using the thin/thick beam elements (h/L = 0.2)
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Figure 9: Framed dome

5.3 Large rotations of a cantilever subject to an end-moment and a transverse
load

An initially-straight cantilever subject to an end moment M∗ = ML
2πEI (Crisfield

1990) as shown in Fig.7, is considered. The cross section of the beam is the same
as the Fig.3. The beam is divided into 10 equal elements. Fig.6 shows the compari-
son of the deflections in x3 direction for the cantilever beam by using the thin/thick
beam elements, when h/L = 0.1.
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Figure 10: The comparison of the deflections in x3 direction for the crown point of
a framed dome

If a non-conservative, follower-type transverse load P∗ = PL2

2πEI is applied at the tip,
instead of M∗, the comparison of the deflections in x3 direction for the cantilever
beam by using the thin/thick beam elements, when h/L = 0.2, is shown in Fig.8.

5.4 A framed dome

A framed dome shown in Fig.9 is considered (Shi and Atluri 1988). A concentrated
vertical load P is applied at the crown point. Each member of the dome is modeled
by 4 elements. The comparison of the deflections in x3 direction at the crown point
by using the thin/thick beam elements is shown in Fig.10.

6 Conclusions

Based on a von Karman type nonlinear theory of deformation and the primal prin-
ciple, a new shear flexible rod/beam element has been developed for large defor-
mation analysis of space frames. The proposed element is simple, economic, and
locking free. There is no necessity to separate the bending deformation and shear-
ing deformation, or to employ the reduced/selective integration in this shear flexible
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rod element, as in the case of a majority of previous studies. It is shown to be pos-
sible to derive an explicit expression for the (16x16) tangent stiffness matrix of
each element, including nodal displacements, nodal derivatives of transverse dis-
placements, and nodal transverse shear strains, even if assumed-displacement type
formulations are used. The present method can be extended to consider the forma-
tion of plastic hinges in each beam of the frame; and also to consider large-rotations
of plates and shells.
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