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Green’s Functions for Anisotropic/Piezoelectric
Bimaterials and Their Applications to Boundary Element

Analysis

Y.C. Chen1 and Chyanbin Hwu2

Abstract: The Green’s function for anisotropic bimaterials has been investigated
around three decades ago. Since the mathematical formulation of piezoelectric
elasticity can be organized into the same form as that of anisotropic elasticity by just
expanding the dimension of the corresponding matrix to include the piezoelectric
effects, the extension of the Green’s function to piezoelectric bimaterials can be ob-
tained immediately through the associated anisotropic bimaterials. In this paper, the
Green’s function for the bimaterials bonded together with one anisotropic material
and one piezoelectric material is derived by applying Stroh’s complex variable for-
malism with the aid of analytical continuation method. For this problem, the inter-
facial condition of electric field depends on the electric conductivity of anisotropic
elastic materials. Employing these Green’s functions, a special boundary element
satisfying the interfacial continuity conditions of anisotropic/piezoelectric bimate-
rials is developed. With the embedded Green’s functions, this special boundary
element preserves two special features: (1) the interface continuity conditions are
satisfied exactly and no meshes are needed along the interface; (2) the materials be-
low and above the interface can be any kinds of piezoelectric or anisotropic elastic
materials. To show the advantages of the present special boundary element, sev-
eral numerical examples such as orthotropic/isotropic bimaterials, PZT-7A/PZT-5H
bimaterials and anisotropic/piezoelectric bimaterials are illustrated and compared
with the solutions calculated by other numerical methods. The numerical results
show that the present special boundary element is not only accurate but also effi-
cient.
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analytical continuation method

1 Introduction

A bimaterial bonded together with two dissimilar anisotropic materials is called
anisotropic bimaterials. Similarly, a piezoelectric bimaterial is the one bonded by
two dissimilar piezoelectric materials. Here, we use the name anisotropic/piezoelectric
bimaterials to denote the bimaterials which can be any combination of anisotropic
and piezoelectric materials. If an anisotropic/piezoelectric bimaterial is loaded by
a point force (or called concentrated force, sometimes called line force for two-
dimensional problems) applied at an internal point far from the boundary, the elas-
ticity solution of this problem is known to be Green’s function which can be used
as a fundamental solution of boundary element method.

The Green’s functions for anisotropic bimaterials have been investigated by [Bar-
nett and Lothe (1973); Belov, Chamrov, Indenbom and Lothe (1983); Kirchner and
Lothe (1987); Tewary, Wagoner and Hirth (1989); Ting (1992, 1996)]. Through
the correspondence relations between anisotropic and piezoelectric materials [Kuo
and Barnett (1991); Suo, Barnett and Willis (1992); Liang and Hwu (1996); Ting
(1996); Hwu (2008)], the Green’s functions for anisotropic bimaterials can eas-
ily be extended to piezoelectric bimaterials. It is known that the solution forms
of the Green’s functions for anisotropic bimaterials and piezoelectric bimateri-
als are exactly the same. The only difference is the dimension and content of
the matrices used in the solutions. Due to this difference, when we consider the
anisotropic/piezoelectric bimaterials the matrix dimension of anisotropic materi-
als will not match that of piezoelectric materials. To deal with this problem, two
different approaches are considered in this paper. One is re-deriving the Green’s
functions for two special combinations, and the other is specializing the Green’s
functions through general piezoelectric bimaterials. In the former we categorize the
anisotropic elastic materials into two kinds, conductors and insulators. In the latter,
the specialization is done by letting the piezoelectric stress tensor of anisotropic
elastic materials be zero, and also letting the dielectric permittivity tensor be zero
or infinity to represent, respectively, the insulators or conductors.

Using Green’s functions of specific problems as basis, several special boundary
elements have been developed in the literature, such as the anisotropic plates con-
taining cracks, holes and inclusions [Hwu and Yen (1991); Hwu and Liao (1994);
Berger and Tewary (1997); Pan and Amadei (1999); Shah, Tan and Wang (2006)],
the particulate composite materials [Okada, Fukui and Kumazawa (2004)], the gra-
dient elastic materials containing cracks [Karlis, Tsinopoulos, Polyzos and Beskos
(2008)], and the piezoelectric plates containing defects [Liang and Hwu (1996);
Qin and Lu (2000); Sanz, Solis and Dominguez (2007)]. With the success of these
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special boundary elements, in this paper we further apply the Green’s functions for
anisotropic/piezoelectric bimaterials to improve the traditional boundary elements.
In this way, no meshes are needed along the interfaces and the materials below and
above the interface can be any kinds of piezoelectric or anisotropic elastic materi-
als. Since the continuity conditions have been satisfied exactly and no meshes are
needed along the interfaces, for the interface problems the present special bound-
ary element is much more accurate and efficient than the other numerical methods
such as finite element method and traditional boundary element method. These
advantages are confirmed through numerical examples for three different kinds of
bimaterials - orthotropic/isotropic, PZT-7A/PZT-5H and anisotropic/piezoelectric
bimaterials.

2 Basic Equations

In a fixed rectangular coordinate system xi, i = 1,2,3, let ui,σi j,εi j,D j, and Ek
be, respectively, the displacement, stress, strain, electric displacement (or called
induction) and electric field. The constitutive laws, strain-displacement equations
and the equilibrium equations for anisotropic elasticity are [Ting (1996)]

σi j = Ci jklεkl, εi j =
1
2
(ui, j +u j,i), σi j, j = 0, i, j,k, l = 1,2,3 (1)

where repeated indices imply summation, a comma stands for differentiation. In
eqn.(1) the body forces are neglected and the elastic constants Ci jkl are assumed to
be fully symmetric and positive definite.

For piezoelectric anisotropic elasticity, to include the piezoelectric effects the con-
stitutive laws should be modified and the electrostatic equations should be consid-
ered, and hence the basic equations are modified as follows. [Rogacheva (1994)]

{
σi j = CE

i jklεkl− eki jEk,

D j = e jklεkl +ωε
jkEk,

εi j =
1
2
(ui, j +u j,i),

{
σi j, j = 0,

Di,i = 0,
i, j,k, l = 1,2,3,

(2)

in which CE
i jkl,eki j and ωε

jk are, respectively, the elastic stiffness tensor at constant
electric field, piezoelectric stress tensor and dielectric permittivity tensor at con-
stant strain. These tensors have the following symmetry properties

CE
i jkl = CE

jikl = CE
kli j, eki j = ek ji, ω

ε
jk = ω

ε
k j. (3)
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By letting

D j = σ4 j, −E j = u4, j = 2ε4 j, j = 1,2,3,

Ci jkl = CE
i jkl, i, j,k, l = 1,2,3,

Ci j4l = eli j, i, j, l = 1,2,3,

C4 jkl = e jkl, j,k, l = 1,2,3,

C4 j4l =−ω
ε
jl, j, l = 1,2,3,

(4)

the basic eqn. (2) can be rewritten in an expanded tensor notation as

σIJ = CIJKLεKL, εIJ =
1
2
(uI,J +uJ,I), σIJ,J = 0, I,J,K,L = 1,2,3,4, (5)

where expanded elastic stiffness tensor CIJKL possesses the fully symmetric prop-
erties.

Because the mathematical forms of basic equations (1) and (5) are exactly the same,
the general solutions satisfying these equations can be organized into the same
matrix form. For the convenience of following derivation, the general solution
valid for both anisotropic and piezoelectric elasticity is now shown below. [Ting
(1996)]

u = 2Re{Af(z)} ,±φ = 2Re{Bf(z)} , (6)

where Re stands for the real part of a complex number, u and ±φ are, respectively,
the displacement vector and stress function vector; f(z) is a vector containing holo-
morphic functions of complex variables zα(= x1 + µαx2); A and B are the material
eigenvector matrices associated with the material eigenvalues µα . The range of the
subscript α is 1 to 3 for general anisotropic materials and is 1 to 4 for piezoelectric
materials, and hence the dimension of the associated vectors and matrices are as
follows.

u,±φ , f : 3×1, A,B : 3×3, for anisotropic elasticity;

u,±φ , f : 4×1, A,B : 4×4, for piezoelectric elasticity.
(7)

The stresses and electric displacements are related to the stress function φi by

σi1 =−φi,2, σi2 = φi,1, i = 1,2,3, and D1 = σ41 =−φ4,2, D2 = σ42 = φ4,1, (8)

from which it has been proved that

t =
∂ ±φ

∂ s
(9)

where t is the generalized surface traction vector and s is the arc length measured
along a curved boundary of the body.
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3 Green’s Functions

3.1 Anisotropic bimaterials

Consider a bimaterial that consists of two dissimilar anisotropic elastic half-spaces.
Let the upper half-space x2 > 0 be occupied by material 1 and the lower half-
space x2 < 0 be occupied by material 2 (see Fig. 1). Assume these two dissimilar
materials are perfectly bonded along the interface x2 = 0. The Green’s function
for bimaterials is the elasticity solution for a bimaterial subjected to a concentrated
force p̂ applied at point x̂ = (x̂1, x̂2) of material 1. The boundary conditions of this
problem can be expressed as

u1 = u2, ±φ1 =±φ2, along the interface x2 = 0,∫
C

d±φ1 = p̂ for any closed curve C enclosing the point x̂,

σi j→ 0 at infinity,

(10)

 19

 

 
Figure 1: A bimaterial subjected to a point force p̂  on x̂ . 
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Figure 1: A bimaterial subjected to a point force p̂ on x̂.

in which the subscripts 1 and 2 denote materials 1 and 2, respectively. By employ-
ing the general solutions of Stroh formalism stated in eqn. (6), a solution satisfying
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the above boundary conditions has been obtained by [Ting (1992)] as

u1 = 2Re
{

A1[f0(z(1))+ f1(z(1))]
}

,±φ1 = 2Re
{

B1[f0(z(1))+ f1(z(1))]
}

,

u2 = 2Re
{

A2f2(z(2))
}

,±φ2 = 2Re
{

B2f2(z(2))
}

,
(11)

where the subscripts 1 and 2 or the superscripts (1) and (2) denote materials 1 and
2, respectively.

f0(z(1)) =
1

2πi
< ln(z(1)

α − ẑ(1)
α ) > AT

1 p̂,

f1(z(1)) =
1

2πi

3

∑
j=1

< ln(z(1)
α − ¯̂z(1)

j ) > A−1
1 (M̄2 +M1)−1(M̄2−M̄1)Ā1I jĀT

1 p̂,

f2(z(2)) =− 1
2π

3

∑
j=1

< ln(z(2)
α − ẑ(1)

j ) > A−1
2 (M2 +M̄1)−1A−T

1 I jAT
1 p̂,

(12)

in which M j, j = 1,2,is the impedance matrix defined by [Ting (1988)]

M j =−iB jA−1
j , j = 1,2. (13)

In eqn. (12), the superscript T denotes the transpose of a matrix; the overbar de-
notes the complex conjugate; the angular bracket < > stands for the diagonal ma-
trix in which each component is varied according to its subscript α; I j is a diagonal
matrix with unit value at the jj component and all the others are zero.

3.2 Piezoelectric bimaterials

From the discussion provided in [Hwu and Ikeda (2008)] we know that the conti-
nuity of displacement and traction as well as the continuity of electric potential and
electric displacement can be expressed by the first equation of (10) with the vectors
u and±φ generalized from 3×1 to 4×1. Moreover, the point force (p̂1, p̂2, p̂3) and
point charge p̂4 = q̂ equilibrium conditions can also be expressed by the second
equation of (10) with ±φ and p̂ generalized from 3×1 to 4×1, so is the infinity
condition given in the last equation of (10). Because general solution and bound-
ary conditions of this case can all be expressed by the same mathematical form as
those of section 3.1, i.e. eqns. (6) and (10), the Green’s function given in (11)-(13)
should also be valid for the present case. The only difference is size and content of
the matrices used in the Green’s function, which are now expanded from 3×1 and
3×3 to 4×1 and 4×4, respectively. The number of summation terms of the last two
equations of (12) should also be changed from 3 to 4.
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3.3 Anisotropic/piezoelectric bimaterials

In this subsection the anisotropic elastic materials are categorized into two kinds,
conductors and insulators. The electric field Ei of the conductors is considered to
be zero in the entire body, whereas the electric displacement Di of the insulators is
zero. With the relations u4, j =−E j, φ4,1 = D2 and φ4,2 =−D1 given in (4) and (8),
we know that the electric continuity conditions for the conductors and insulators
can be represented, respectively, by u4 = 0 and φ4 = 0 along the interface.

Case (i): the anisotropic material is a conductor

Consider a bimaterial whose upper half-space x2 > 0 (region S1) is occupied by a
piezoelectric material and the lower half-space x2 < 0 (region S2) is occupied by an
anisotropic elastic conductor. If a point force/charge p̂ = (p̂1, p̂2, p̂3, q̂)T is applied
at point x̂ = (x̂1, x̂2) of material 1, the boundary conditions along the interface can
be written as

u(1)
i = u(2)

i , φ
(1)
i = φ

(2)
i , i = 1,2,3, u(1)

4 = 0, along the interface x2 = 0. (14)

The equilibrium and infinity conditions can still be expressed by using the last two
equations of (10). To find the solution satisfying all the boundary conditions, we
first assume the solution be expressed in the form of eqn.(11) whose complex func-
tion vectors f1(z(1)) and f2(z(2)) will be determined through the use of analytical
continuation method. f0(z(1)) that represents the Green’s function of homogeneous
materials is still the one given in the first equations of (12).

With the general solutions given in (11), the boundary conditions (14) may now be
written as

Ae
1[f0(x1)+ f1(x1)]+ Āe

1[f0(x1)+ f1(x1)] = A2f2(x1)+ Ā2f2(x1),

Be
1[f0(x1)+ f1(x1)]+ B̄e

1[f0(x1)+ f1(x1)] = B2f2(x1)+ B̄2f2(x1),

Ap
1 [f0(x1)+ f1(x1)]+ Āp

1 [f0(x1)+ f1(x1)] = 0,

(15)

where Ae
1 and Be

1 are two 3×4 matrices, Ap
1 and Bp

1 are two 1×4 matrices, and they
are the submatrices of A1 and B1 defined by

A1 =

[
Ae

1

Ap
1

]
, B1 =

[
Be

1

Bp
1

]
. (16)

The dimensions of the other vectors and matrices are f0, f1 : 4× 1, f2 : 3× 1 and
A2,B2 : 3×3.

One of the important properties of the holomorphic functions is that f1(z̄) will be
holomorphic in S2 if f1(z) is holomorphic in S1. Similarly, f0(z̄) and f2(z̄) will be
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holomorphic in S1 if f0(z) and f2(z) are holomorphic in S2. With this understanding,
through the relation (15) we can now introduce the following three functions which
are continuous across the interface and holomorphic in the entire z-plane including
the points at infinity.

±θ1(z) =

{
−Āe

1f0(z̄)−Ae
1f1(z)+ Ā2f2(z̄) , z ∈ S1,

Ae
1f0(z)+ Āe

1f1(z̄)−A2f2(z) , z ∈ S2,
(17a)

±θ2(z) =

{
−B̄e

1f0(z̄)−Be
1f1(z)+ B̄2f2(z̄) , z ∈ S1,

Be
1f0(z)+ B̄e

1f1(z̄)−B2f2(z) , z ∈ S2,
(17b)

±θ3(z) =

{
−Āp

1 f0(z̄)−Ap
1 f1(z) , z ∈ S1,

Ap
1 f0(z)+ Āp

1 f1(z̄) , z ∈ S2.
(17c)

By Liouville’s theorem we conclude that

±θ1(z) =±θ2(z) =±θ3(z) = 0. (17d)

Combining the results of (17) and (18), we get

f1(z) =−G−1
1 G2f0(z̄), z ∈ S1,

f2(z) = A−1
2 (Ae

1− Āe
1 G−1

3 G4)f0(z) , z ∈ S2,
(18a)

where

G1 =
[

E
Ap

1

]
, G2 =

[
F̄

Āp
1

]
, G3 =

[
Ē

Āp
1

]
, G4 =

[
F

Ap
1

]
, (18b)

and

E = Be
1 + iM̄2Ae

1, F = Be
1− iM2Ae

1. (18c)

Note that when we derive the complex function vectors f(z) through the method of
analytical continuation, all the functions are written with the argument z = x1 +µx2
without indicating the subscript of µ since the results are obtained based upon the
conditions on x2 = 0. Once the solution of f(z) is obtained from the condition of
analytical continuation, a replacement of z1, z2, z3 or z4 should be made for each
component function according to solution form required in the general solution (6).
A translating technique based upon the above mathematical operation requirement
has been introduced by [Hwu (1993)]. Thus, the explicit full field solutions of
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f1(z) and f2(z) can be obtained by substituting (12)1 into (19a) and employing the
translation technique. The results are

f1(z(1)) =
1

2πi

4

∑
j=1

< ln(z(1)
α − ¯̂z(1)

j ) > G−1
1 G2I jĀT

1 p̂,

f2(z(2)) =
1

2πi

4

∑
j=1

< ln(z(2)
α − ẑ(1)

j ) > A−1
2 (Ae

1− Āe
1 G−1

3 G4)I jAT
1 p̂.

(19)

Case (ii): the anisotropic material is an insulator

Same situation as case (i) is considered here except that the conductor of material
2 is now replaced by an insulator. With this replacement, the boundary conditions
along the interface can be written as

u(1)
i = u(2)

i , φ
(1)
i = φ

(2)
i , i = 1,2,3, φ

(1)
4 = 0, along the interface x2 = 0. (20)

By a similar approach as case (i), the explicit full field solutions of f1(z) and f2(z)
can be obtained as follows.

f1(z(1)) =
1

2πi

4

∑
j=1

< ln(z(1)
α − ¯̂z(1)

j ) > G∗−1
1 G∗2I j~AT

1 p̂,

f2(z(2)) =
1

2πi

4

∑
j=1

< ln(z(2)
α − ẑ(1)

j ) > A−1
2 (Ae

1− Āe
1 G∗−1

3 G∗4)I jAT
1 p̂,

(21a)

where

G∗1 =
[

E
Bp

1

]
, G∗2 =

[
F̄

B̄p
1

]
, G∗3 =

[
Ē
B̄p

1

]
, G∗4 =

[
F

Bp
1

]
. (21b)

3.4 Discussions

From the above solutions we see that Green’s functions of the anisotropic bima-
terials and piezoelectric bimaterials have exactly the same mathematical forms,
whereas those of the anisotropic/piezoelectric bimaterials are different. Since piezo-
electric materials can be specialized to anisotropic materials by neglecting their
piezoelectric constants, it is expected that Green’s functions of anisotropic /piezo-
electric bimaterials may be reduced from those of piezoelectric bimaterials through
the specialization of piezoelectric tensor and dielectric permittivity tensor. From
the constitutive relations shown in (2), we observe that the alternative solutions of
(20) and (22) can be obtained from the Green’s function of piezoelectric bimateri-
als by letting eki j = 0 and ωε

i j→ ∞ for conductors, and letting eki j = 0 and ωε
i j→ 0

for insulators.
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4 Boundary Integral Equations

If body forces are omitted, the boundary integral equations for boundary value
problems in anisotropic elasticity can be written as [Brebbia, Telles and Wrobel
(1984)]

ci j(ξξξ )u j(ξξξ )+
∫

Γ

t∗i j(ξξξ ,x) u j(x)dΓ(x) =
∫

Γ

u∗i j(ξξξ ,x) t j(x)dΓ(x), (22)

in which the subscripts i and j range from 1 to 3 for anisotropic elastic materials
and range from 1 to 4 for piezoelectric materials. Γ denotes the boundary of the
elastic solid;u j(x) and t j(x) are the displacements and surface tractions along the
boundaries; u∗i j(ξξξ ,x) and t∗i j(ξξξ ,x) are, respectively, the displacements and tractions
in the x j direction at point x = (x1,x2) corresponding to a unit point force acting
in the xi direction applied at point ξξξ = (x̂1, x̂2); ci j(ξξξ ) is a coefficient dependent
on the location of ξξξ , which equals to δi j/2 for a smooth boundary and ci j = δi j

for an internal point. The symbol δi j is Kronecker delta. In practical applications,
ci j(ξξξ ) can be computed by considering rigid body motion. In other words, if we let
a unit rigid body movement in the direction of x j, u j = 1 which will not induce any
stresses and hence t j = 0. Substituting this condition into (23), we get

ci j(ξξξ ) =−
∫

Γ

t∗i j(ξξξ ,x) dΓ(x). (23)

The boundary integral equations given in (23) have now three unknown functions,
i.e., u j or t j, j = 1,2,3 if the point x is located on the anisotropic body, and have
four unknown functions if the point x is located on the piezoelectric body. Simi-
larly, equation (23) contains three equations if point ξξξ is located on the anisotropic
body, and four equations if point ξξξ is located on the piezoelectric body. For the con-
venience of boundary element formulation, the boundary integral equations (23) are
usually written in matrix form as

C(ξξξ )u(ξξξ )+
∫

Γ

T∗(ξξξ ,x)u(x)dΓ(x) =
∫

Γ

U∗(ξξξ ,x)t(x)dΓ(x), (24)

in which C,T∗,U∗,u and t are, respectively, the matrix symbols of ci j, t∗i j,u
∗
i j,ui and

ti. To make equation (25) work for the programming of boundary element codes,
we need to find the fundamental solutions t∗i j(ξξξ ,x) and u∗i j(ξξξ ,x) which are related
to the Green’s functions obtained in previous section. With the aid of relation (9),
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we can now write down the results of T∗ and U∗ as

T∗ =

{
2Re{ [Bα(F0,s +F1,s)]T}, if ξξξ ∈ S1,x ∈ S1, or ξξξ ∈ S2,x ∈ S2,

2Re{[BαF2,s]T}, if ξξξ ∈ S1,x ∈ S2, or ξξξ ∈ S2,x ∈ S1,

U∗ =

{
2Re{ [Aα(F0 +F1)]T}, if x̂ ∈ S1,x ∈ S1, or ξξξ ∈ S2,x ∈ S2,

2Re{[AαF2]T}, if ξ̂ξξ ∈ S1,ξξξ ∈ S2, or ξξξ ∈ S2,x ∈ S1,

(25)

in which the subscript α = 1, if x∈ S1 and α = 2, if x∈ S2.F0,F1and F2 are related
to f0(z(α)), f1(z(α)) and f2(z(α)) obtained in Section 3 by

f0(z(α)) = F0p̂, f1(z(α)) = F1p̂, f2(z(α)) = F2p̂. (26)

5 Boundary Element Formulation

After getting the fundamental solutions in (26), the unknowns remained in the
boundary integral equations (25) are u and t over the boundary Γ. In boundary
element formulation, the boundary Γ is approximated by a series of elements, and
the points x, displacements u and tractions t on the boundary are approximated by
the nodal points xn, nodal displacement un and nodal traction tn through different
interpolation functions. In this paper, we assume the same linear variation within
each element for the boundary points x, displacements u and tractions t. Thus, the
values of x, u and t at any point on the mth element can be defined in terms of their
nodal values and two linear interpolation functions ϖ1 and ϖ2 of the dimensionless
coordinate ς , such that

x = ϖ1x(1)
m +ϖ2x(2)

m , u = ϖ1u(1)
m +ϖ2u(2)

m , t = ϖ1t(1)
m +ϖ2t(2)

m , (27)

where a symbol with subscript m and superscript (1) or (2) denotes the value of
node 1 or 2 of the mth element. The interpolation functions ϖ1 and ϖ2 are given by

ϖ1 =
1
2
(1− ς), ϖ2 =

1
2
(1+ ς), (28)

where ς is the dimensionless coordinate defined by ς = 2s/`m in which `m is the
length of the mth element and s is the coordinate lying along the linear element and
directed from the first node to the second node of element m.

If the boundary Γ is discretized into M segments with N nodes, substitution of (28)
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and (29) into (25) yields

C(ξξξ )u(ξξξ )+
M

∑
m=1

{
Ŷ(1)

m (ξξξ )u(1)
m + Ŷ(2)

m (ξξξ )u(2)
m

}
=

M

∑
m=1

{
G(1)

m (ξξξ )t(1)
m +G(2)

m (ξξξ )t(2)
m

}
, (29)

in which Ŷ(i)
m (ξξξ ) and G(i)

m (ξξξ ), i=1,2, are the matrices of influence coefficients defin-
ing the interaction between the point ξξξ and the particular node (1 or 2) on element
m, and are defined as

Ŷ(i)
m (ξξξ ) =

∫
Γm

T∗(ξξξ ,x(1)
m ,x(2)

m ,ς)ϖi(ς)dΓm(ς),

G(i)
m (ξξξ ) =

∫
Γm

U∗(ξξξ ,x(1)
m ,x(2)

m ,ς)ϖi(ς)dΓm(ς), i = 1,2.
(30)

Γm denotes the mth segment of the discretized boundary. To evaluate the integrals
along Γm, T∗ and U∗ are expressed in terms of the dimensionless coordinate ς and
the differential dΓm(ς) is transformed to dς multiplied by the Jacobian |Jm|= `m/2.
Substituting the results of (26) into (31), Ŷ(i)

m (ξξξ ) and G(i)
m (ξξξ ) can be evaluated nu-

merically by employing a numerical integration scheme such as Gaussian quadra-
ture rule.

If the connecting elements, for example the (m− 1)th and the mth element, are
continuous at the connecting nodal points, the second node of the (m−1)th element
will be the first node of the mth element and can be named as the nth node of the
whole boundary element. We let

u(2)
m−1 = u(1)

m = un, t(2)
m−1 = t(1)

m = tn, ..., etc. (31)

To write (25) corresponding to point ξξξ in discrete form, we need to add the contri-
bution from two adjoining elements, m and m-1, into one term. Hence, we let

Ŷ(2)
m−1 + Ŷ(1)

m = Ŷn, G(2)
m−1 +G(1)

m = Gn, ..., etc. (32)

Equation (30) can then be rewritten as

C(ξξξ )u(ξξξ )+
N

∑
n=1

Ŷn(ξξξ )un =
N

∑
n=1

Gn(ξξξ )tn. (33)
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Consider ξξξ to be the location of node i and use Ci,ui, Ŷin,Gin to denote the values
of C,u, Ŷn,Gn at node i. Equation (34) can now be expressed as

N

∑
n=1

Yinun =
N

∑
n=1

Gintn, i = 1,2, ...,N, (34a)

in which

Yin =Ŷin, for i 6= n,

Yin =Ŷin +Ci, for i = n.
(34b)

When all the nodes are taken into consideration, equation (35a) produces a 3N×3N
system of equations. By applying the boundary condition such that either ui or ti
at each node is prescribed, the system of equations (35a) can be reordered in such
a way that the final system of equations can be expressed as Kv=p where K is a
fully populated matrix, v is a vector containing all the boundary unknowns and p
is a vector containing all the prescribed values given on the boundary. Once (35a)
has been solved, all the values of tractions and displacements on the boundary
are determined. With this result, the values of stresses and displacements at any
interior point can be calculated through the strain-displacement relation and the
stress-strain law shown in eqns. (1) and (2).

6 Numerical Examples

To show the advantages of the present special boundary element method (SBEM),
in this section several numerical examples such as orthotropic/isotropic, PZT-7A/PZT-
5H and anisotropic/piezoelectric bimaterials are illustrated.

Example 1. orthotropic/isotropic bimaterials

An orthotropic/isotropic bimaterial subjected to uniform tension σ̂ = 1MPa is con-
sidered in this example. The loading, geometry and boundary element meshes of
this problem are shown in Fig. 2. The material above the interface is orthotropic
whose mechanical properties are:

E11 = 134.45GPa, E22 = E33 = 11.03GPa, v12 = v13 = 0.301, v23 = 0.49,

G12 = G13 = 5.84GPa, G23 = 2.98GPa,

and the material below the interface is isotropic whose properties are E = 10GPa
and v = 0.2. Fig. 3 shows the results of stresses along the interface. From this
figure we see that the stresses calculated from the finite element software ANSYS
are discontinuous across the interface, which will approach to a continuous value
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Figure 2: A mesh diagram for a bimaterial plate subjected to uniform tension σ̂ . 
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Figure 2: A mesh diagram for a bimaterial plate subjected to uniform tension σ̂ .

calculated by the present SBEM if finer meshes are used for ANSYS. In other
words, with much less elements (40 of SBEM compared to 900 of ANSYS) the
present SBEM can provide more accurate results than ANSYS for the interface
problems. This result is expected since the continuity condition of SBEM has been
satisfied exactly through the Green’s functions obtained in Section 3, and no meshes
are needed along the interface for SBEM.

Example 2. PZT-7A/PZT-5H bimaterials

In order to know the applicability of SBEM on piezoelectric materials, same prob-
lem of example 1 is reconsidered in this example by replacing the materials above
and below the interface to PZT-7A and PZT-5H and imposing the electric displace-
ment D̂2 = −0.001C / M on the lower edge and D̂2 = 0.001C / M on the upper
edge of the plate. The material properties of PZT-7A and PZT-5H are given in Tab.
1. Fig. 4 shows the results of electric displacements along the interface. Like the
results of previous example, this figure also shows that the electric displacements
calculated from ANSYS are discontinuous across the interface, and will approach
to a continuous value calculated by the present SBEM if finer meshes are used for
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Figure 3: Stresses along the interface of anisotropic bimaterials. (a) 12σ ; (b) 22σ .  Figure 3: Stresses along the interface of anisotropic bimaterials. (a) σ12; (b) σ22.

ANSYS.

Example 3. anisotropic/piezoelectric bimaterials

As shown in Section 3, the Green’s functions for anisotropic/piezoelectric bima-
terials are categorized into two kinds, conductors and insulators. As discussed in
Section 3.4, both of these two cases can be specialized from the piezoelectric bi-
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materials. In order to prove this specialization numerically, in this example the ma-
terial above the interface is selected to be PZT-7A, whereas the material below the
interface is selected to be the one made up by PZT-5H and is called p-elastic whose
properties is given in Tab. 1. The scaling factor k appearing in the properties of
p-elastic is used to approximate the conductors or insulators. From the discussion
of Section 3.4, we know that p-elastic will behave like a conductor when k→ ∞,
and like an insulator when k→ 0.

x10-3
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0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
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C
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Figure 4: Electric displacement along the interface of piezoelectric bimaterials.

Consider a point force/charge p̂ = (1, 1, 0 , 0.0001)×106 applied at x̂ = (0,1). The
numerical results of u4 and φ4 of Green’s functions along the axis x1 = 1 are shown
in Fig. 5. The solid line denotes the results calculated by the solutions presented in
Section 3.3 for the bimaterials with conductors or insulators. The dotline with sym-
bols are the results calculated by the solutions presented in Section 3.2 for piezo-
electric bimaterials. Fig. 5(a) shows that the electric potential u4 approximates to
zero for the entire p-elastic material if its k = 103, which is exactly the boundary
condition set for the conductors. On the other hand, Fig. 5(b) shows that the gener-
alized stress function φ4 approximates to zero for the entire p-elastic material if its
k = 10−3, which is exactly the boundary condition set for the insulators.

7 Conclusions

The Green’s functions for any combination of anisotropic/piezoelectric bimateri-
als are derived in this paper. With these Green’s functions, a special boundary
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Figure 5: Electric potential and generalized stress function along the axis 1 1x =  of 

anisotropic/piezoelectric bimaterials. (a) 4u ; (b) 4φ . 

Figure 5: Electric potential and generalized stress function along the axis x1 = 1 of
anisotropic/piezoelectric bimaterials. (a) u4; (b) φ4.

element for the interface problems is developed. Through two simple numerical
examples presented in Section 6, it has been shown that the present special bound-
ary element is more accurate and efficient than the finite element software AN-
SYS. Because similar special boundary elements have also been developed for the
anisotropic plates containing holes, cracks and inclusions, by employing the subre-
gion technique it can be expected that more practical problems including multiple
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Table 1: Material constants of PZT-5H, PZT-7A and p-elastic.

PZT-7A PZT-5H p-elastic
C11,C33[GPa] 148 126 126
C12,C23[GPa] 74.2 53 53

C13[GPa] 76.2 55 55
C22[GPa] 131 117 117

C44,C66[GPa] 25.4 35.3 35.3
C55[GPa] 55.9 35.5 35.5
e21[C/m2] -2.1 -6.5 0
e22[C/m2] 9.5 23.3 0
e23[C/m2] -2.1 -6.5 0

e16,e34[C/m2] 9.7 17 0
ω11,ω33[10−9 C/(V m)] 8.11 15.1 15.1k

ω22[10−9 C/(V m)) 7.35 13 13k

holes, cracks, inclusions and interfaces can be analyzed accurately and efficiently
by combining these special boundary elements.
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