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Effect of Residual Stresses on Wave Propagation in
Adhesively Bonded Multilayered MEMS Structures

M. Kashtalyan1,2 and Y.A. Zhuk3

Abstract: The paper investigates propagation of stationary plane longitudinal
and transverse waves along the layers in adhesively bonded multilayered structures
for MEMS applications in the presence of residual stresses. The multilayered struc-
ture is assumed to consist of the infinite amount of the periodically recurring layers
made of two different materials possessing significantly dissimilar properties: con-
ductive metal layer and insulating adhesive layer. It is assumed that the mechani-
cal behaviour of both materials is nonlinear elastic and can be described with the
help of the elastic Murnaghan potential depending on the three invariants of strain
tensor. The problem is formulated in the framework of the three-dimensional lin-
earized elasticity theory of finite initial deformations. The influence of the residual
stresses in each layer and of the ratio of the layer thicknesses on the normalized
velocity of propagation of the stationary plane wave is examined and discussed. It
is found that for some multilayered structures there exist such values of the ratio of
the layer thicknesses that wave velocities do not depend on the magnitude of resid-
ual stresses but are equal to the corresponding wave velocities in the unstressed
structure.

Keywords: microelectromechanical systems, multilayered structure, three-dimen-
sional linearized elasticity theory, initial stresses, longitudinal wave; transverse
wave; wave velocity

1 Introduction

The past two decades have seen the rapid growth of microelectromechanical sys-
tems (MEMS) that combine mechanical and electrical function in devices at very
small scales, as an important area of technology [Ljung, Bachtold, Spasojevic
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(2000); Romanowicz, Zaman, Bart, Rabinovich, Tchertkov, Zhang, da Silva, Desh-
pande, Greiner, Gilbert, Cunningham (2000); Ye, Mukherjee (2000); Bettini, Brusa,
Munteanu, Specogna Trevisan (2008)]. Examples of MEMS include pressure sen-
sors, accelerometers, gyroscopes and optical devices, as well as chemical, biomedi-
cal and fluidic applications. The ability to integrate the mechanical (or biological or
chemical) function with the electrical required for control and power conditioning
in a single device allows for consideration of concepts such as the highly distributed
networks required for health monitoring of large structures and systems or for dis-
tributed power and chemical production schemes.

Since MEMS typically contain several deposited and bonded layers of dissimilar
materials, residual stresses can play an important role in determining their perfor-
mance and reliability. Residual stresses in thin films and other deposited layers
arise from several sources: thermal expansion mismatch, incorporation of residual
gases into deposited materials, lattice mismatch, grain growth and grain size, sinter-
ing and the change in volume associated with incorporation or removal of defects.
The relative importance of these stress producing mechanisms depends crucially
on the materials, processing conditions and microstructure [Spearing (2000)]. Cre-
ation of MEMS devices with larger mechanical power and force capabilities may
require deposition of thicker layers than those typically utilised in microelectronic
applications. These thicker layers have a greater tendency to fracture and the thick-
ness (and therefore size of the device that can be realised) may be limited by the
residual stress state. The ability to control and characterize residual stresses is very
important for the development of higher performance MEMS [Spearing (2000)].

Using adhesives in MEMS has not been very popular until recently due to chemical
instability and remarkable changes of mechanical properties of adhesives during the
life cycle. But with development of advanced dispersing techniques and improve-
ment of properties of adhesives in general, they are starting to play a more im-
portant role in the field of microbonding [Niklaus, Enoksson, Kalvesten, Stemmes
(2001); Satyanarayana, Karnik, Majumdar (2005); Kim, Kim, Hwang, Baek, Kim
(2006); Andrijasevic, Smetana, Esinenco, Brenners (2006); Pang, Zhao, Du, Fang
(2008)]. Adhesive microbonding can overcome some of drawbacks of the con-
ventional microbonding, which is associated with demanding process requirements
(high voltage, high process temperature, specific materials to be used, quality of
surface, etc) which can restrain or disable the assembly process. Some advantages
of adhesive microbonding are its lower process temperature; multi-material appli-
cability; partial recyclability and possible biocompatibility. Additionally, it can be
performed on all levels of package integration. Several different polymers can be
used for adhesive bonding in MEMS, e.g. polyimides and epoxies. The choice
of the polymer material used as an adhesive depends very much on the thermal,
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chemical and mechanical requirements of the application.

To the best of our knowledge, residual stresses in adhesively bonded MEMS have
been the subject of a very small number of studies in the literature. The effect of the
stresses on the mechanical behaviour of such structures is little understood. Elastic
deformation of adhesively bonded MEMS components taking into account residual
stresses has been studied in [Sadaba, Fox, McWilliam (2006)] using a finite element
model.

This paper investigates the effect of residual stresses on propagation of longitudinal
and transverse waves along the layers in adhesively bonded multilayered structures
for MEMS applications. The investigation is focused on the mechanical aspect of
the problem. Therefore neither electric nor magnetic effects are taken into consid-
eration. A multilayered structure analysed in the paper is assumed to be composed
of infinite amount of the periodically recurring layers made of two different ma-
terials possessing significantly dissimilar properties: electrically conductive metal
layer and insulating adhesive layer. The materials of both layers are assumed to be
nonlinear elastic under the studied loading, and the elastic Murnaghan potential de-
pending on the three invariants of strain tensor is used to describe their mechanical
behaviour.

Propagation of the stationary plane waves with different polarization demands the
three-dimensional problem statement to be used. The problem is formulated in
the framework of the three-dimensional linearized elasticity theory of finite ini-
tial deformations. The dependencies of normalized velocity of the wave on two
components of residual stresses in each layer as well as on the ratio of the layer
thicknesses are examined and discussed.

2 Problem formulation

Stationary plane wave propagation in solids has been the subject of numerous
studies in the literature, most recently [Menshykova, Menshykov, Guz (2009);
Chakraborty (2009); Lee, Chen (2009); Wei, Su (2009); Guz, Menshykov, Zozulya,
Guz (2007)]. Propagation of elastic waves in periodically layered macro, meso-,
and microcomposites without and with residual stresses was studied in [Brekhovskikh
(1960); Han (1977)] and [Guz (2002); Guz (2004); Guz, Zhuk, Makhort (1976);
Guz, Han (1976)], respectively. Here, we formulate and solve the problem of prop-
agation of the stationary plane elastic waves in a multilayered structure with peri-
odically recurring layers for MEMS applications taking into account the presence
of residual stresses. For this purpose, we employ the three-dimensional linearized
theory of elasticity assuming that the initial strains are finite [Guz (2002); Guz
(1999)]. Such approach appears to be highly suitable for analysis of multilayered
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structures because it allows us to extend the description of material behaviour to
situations where deviations from classical linear elasticity theory are noticeable.
In [Zhuk, Guz (2006); Zhuk, Guz (2007)], this approach was used to study the
propagation of a plane acoustic wave at a right angle to the layers of a laminated
nanocomposite. Here we use it to analyze the propagation of plane waves along
layers of a pre-stressed multilayered MEMS structure.

z1

z3

O h(2)

h(1)

 

Figure 1: Multilayered structure

Using the approach developed in [Guz (2002); Guz (2004); Guz, Zhuk, Makhort
(1976)] to study the propagation of plane elastic waves, we consider a multilayer
structure consisting of two periodically recurring layers (see Fig. 1) – layer 1 being
a conductive material and layer 2 a bonding adhesive material – with known den-
sities ρ , Young moduli E, Poisson’s ratios ν , as well as elastic moduli of the third
order (Murnaghan constants) A, B, and C. Henceforth, all quantities associated
with these layers will be denoted by corresponding numbers in parentheses. The
materials of both conductive and adhesive layers are assumed to be compressible
and isotropic.

As in [Guz (2002; Guz (2004)], we distinguish three states: (i) natural state (no
stresses and strains in all layers); (ii) initial state labelled by the superscript “0”; and
(iii) perturbed state (the superposition of the initial state and the stationary plane
waves). It is also assumed that the stress amplitudes caused by the waves are much
smaller then the stresses in the initial state. Such assumptions allow us to apply the
three-dimensional linearized theory of elasticity [Guz (2002); Guz (1999)]. Indeed,
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if all non-zero stresses in the initial state are much greater than the perturbations,
then the equations of motion, strain-stress relations (equation of state), and bound-
ary and initial conditions can be linearized with respect to this state. Henceforth,
the term “linearized equations” will refer to equations for perturbations.

We will use the notation adopted in finite-strain theory and the most general elastic
equations [Guz (2002); Guz (1999)]. Let us introduce two coordinate systems: (i)
Lagrangian frame of reference (x1,x2,x3) coinciding with the Cartesian coordinate
system of the natural state and (ii) Cartesian coordinate system (z1,z2,z3) of the ini-
tial state. It is obvious that Lagrangian frame of reference for the two neighbouring
layers can differ in general case. Let the Cartesian coordinate system of the initial
state be common for all layers (Fig. 1). This choice allows convenient analysis of
the problem when the elongations of the materials are different.

The kinematic pattern of deformation is described by displacement fields ~u( j),(
u( j)

m = u( j)
m (x1,x2,x3, t)

)
, j = 1,2; m = 1,2,3; t is time.

Denote the components of the Green strain tensor by εmn, n = 1,2,3. Then the
elongations of infinitesimal elements directed, before deformation, along the unit
vectors of the Cartesian coordinate system of the natural state are expressed as

λm =
√

1+2εmm, m = 1,2,3,

where there is no summation over m on the right-hand side according to the index-
ing rules. For homogeneous initial states, we have

zm = λ
(1)
m x(1)

m , zm = λ
(2)
m x(2)

m , λ
( j)
m = const, j = 1,2

zm = x( j)
m +u0( j)

m , u0( j)
m = δmn

(
λ

( j)
m −1

)
x( j)

n , m,n = 1,2,3,
(1)

where δi j is the Kronecker delta.

We assume that the mechanical behaviour of both materials is nonlinear elastic and
can be described with the help of the elastic Murnaghan potential depending on the
three invariants of strain tensor [Guz (2002); Guz (1999)]:

Φ =
1
2

λ (A1)
2 + µA2 +

A
3

(A1)
3 +BA1A2 +

C
3

A3. (2)

where λ and µ are Lamé constants (elastic moduli of the second order)

λ =
νE

(1+ν)(1−2ν)
, µ =

E
2(1+ν)

and A1, A2, and A3 are the first, second, and third algebraic invariants of the Green
strain tensor εi j, which for a symmetric tensor of the second rank are determined
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from the following formulas [Guz (2002); Guz (1999)]:

A1 = εii, A2 = εi jε ji, A3 = εi jε jkεki, i, j,k = 1,2,3.

In view of Eq. (1), the generalized stresses are given by

σ
∗0( j)
im = const, j = 1,2, i,m = 1,2,3. (3)

Let the Oz3-axis be normal to the interface beteen the layers (Fig. 1). The thick-
nesses h( j) of the layers in the natural state and the thicknesses h̃( j) of the layers in
the initial state are related by

h̃( j) = λ
( j)
3 h( j). (4)

In the general case, the linearized equations of state for a compressible solid can be
represented as follows [Guz (2002); Guz (1999)]:

σ
∗
in = λinαβ uα,β , tim = ωimαβ uα,β , i,n,m,α,β = 1,2,3, (5)

where tim is the Kirchhoff tensor; λinαβ and ωimαβ are the components of fourth-
rank tensors.

In the three-dimensional linearized theory of elasticity, the equations of motion
with no perturbation of body forces in Lagrangian coordinates for a compressible
solid with a homogeneous initial state, given by Eqs. (1), (2), have the form [Guz
(2002); Guz (1999)]:

L( j)
mαu( j)

α = 0, L( j)
mα = ω

( j)
imαβ

∂ 2

∂ x( j)
i ∂ x( j)

β

−ρ
( j)

δmα

∂ 2

∂ t2 ; i,m,α,β = 1,2,3, (6)

The components of the interface load at x( j)
3 = const, referred to the body configu-

ration at the natural state, take the form

P∗( j)
m = ω

( j)
3mαβ

∂ u( j)
α

∂ x( j)
β

, α,β ,m = 1,2,3. (7)

These expressions are needed to formulate continuity and periodicity conditions.

Since all layers are isotropic in the natural state, then, considering the results ob-
tained in [Guz (2002); Guz (2004)] and taking into account condition, given by Eq.
(1) instead of Eq. (3), we obtain

σ
∗0( j)
im = δinσ

∗0( j)
mn , i,m,n = 1,2,3. (8)
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In this case, the components of tensor ω( j) take form

ω
( j)
imαβ

=λ
( j)
m λ

( j)
α

[
δimδαβ a( j)

iβ +δiαδmβ (1−δim)µ
( j)
im +δmαδiβ (1−δim)µ

( j)
βm

]+
δαmδiβ σ

∗0( j)
ii , i,m,α,β = 1,2,3.

(9)

Formulas for a( j)
iβ and µ

( j)
im for compressible bodies were derived in [Guz (2002);

Guz (2004)]. They should only be indexed to indicate the layer being dealt with.

It seems more convenient to formulate all the expressions in the Cartesian coor-
dinates of the initial state. In this case, according to Eq. (1), we would have a
common coordinate system for the conductive and adhesive layers.

Taking into account Eq. (1), we re-arrange the governing equations to the Cartesian
coordinate system (z1,z2,z3) of the initial state. According to Eqs.(1) and (6), they
take the following form for compressible solids [Guz (2002); Guz (1999)]:

L̃( j)
mαu( j)

α = 0, L̃( j)
mα = ω̃

( j)
imαβ

∂ 2

∂ zi∂ zβ

− ρ̃
( j)

δmα

∂ 2

∂τ2 , i,m,n = 1,2,3, (10)

where

ω̃
( j)
imαβ

=
λ

( j)
i λ

( j)
β

λ
( j)
1 λ

( j)
2 λ

( j)
3

ω
( j)
imαβ

; ρ̃
( j) =

ρ( j)

λ
( j)
1 λ

( j)
2 λ

( j)
3

, (11)

and ρ̃( j) is the density in the initial state.

Let us consider the components of the interface load at z3 = const referred to the
body configuration at the natural state. According to Eqs. (1) and (6), we have

P̃( j)
m = ω̃

( j)
3mαβ

∂ u( j)
α

∂ zβ

; P̃( j)
m =

1

λ
( j)
1 λ

( j)
2

P∗( j)
m ,

m,α,β = 1,2,3. (12)

The formulas for tensor ω remain the same. If all layers are isotropic in the natural
state, then the relations, given by Eqs. (8) and (9), remain valid. Note that the
conductive layers have thicknesses h̃(1) and adhesive layers are of thickness h̃(2) in
the initial strain state, with h̃(1)»h̃(2). The continuity and periodicity conditions on
the interfaces (Fig. 1) are

u(1)
m (0) = u(2)

m (0) ; P̃(1)
m (0) = P̃(2)

m (0) , (13)
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u(1)
m

(
h̃(1)
)

= u(2)
m

(
h̃(2)
)

; P̃(1)
m

(
h̃(1)
)

= P̃(2)
m

(
−h̃(2)

)
. (14)

Thus, the problem of propagation of small elastic perturbations caused by the sta-
tionary plane wave in a prestrained multilayered structure is reduced to the lin-
earized equations of motion, Eq. (10), with the continuity and periodicity condi-
tions, Eqs. (13) and (14).

3 Solution method

Let us consider a stationary plane wave with a phase normal ~n = {n1,n2,n3}. As
indicated in the previous section, the wave velocity and the phase normal will be
referred to the Cartesian coordinate system at the initial state (z1,z2,z3). According
to [Guz (2002); Guz (2004); Guz, Makhort (2000)], the solution of Eq. (10) can be
represented in the form

u( j)
α = û( j)

α (z3)exp
[
i
(
knγzγ −ω t

)]
, α,γ = 1,2,3, . (15)

where k is the wave number.

Substituting this trial solution, Eq. (15) into Eqs. (10), we obtain a system of
ordinary differential equations for the amplitudes û( j)

α (z3):

exp
[

i
(
−knγzγ

)]
ω̃

( j)
imαβ

∂ 2

∂ zi∂ zβ

û( j)
α (z3)exp [i(knqzq)]+ ρ̃

( j)
ω

2û( j)
m (z3) = 0;

i,m,q,α,β ,γ = 1,2,3.

(16)

To determine the components of the interface forces at z3 = const, we substitute
Eq. (15) into Eq. (12):

P̃( j)
m = P̂( j)

m (z3)exp
[
i
(
knγzγ −ω t

)]
, m,q,α,β ,γ = 1,2,3;

P̂( j)
m (z3) = exp [i(−knqzq)] ω̃

( j)
3mβ

∂

∂ zβ

u( j)
α (z3)exp

[
i
(
knγzγ

)]
.

(17)

Let us examine in detail the continuity and periodicity conditions, Eq. (13) and
Eq. (14). Suppose we consider a system consisting of two neighbouring layers
of conductive and adhesive materials. Let the conductive layer occupy the domain
−h̃(1) ≤ z3 ≤ 0 on the Oz3-axis and the adhesive layer is within the domain 0 ≤
z3 ≤ h̃(2) on the same axis (Fig. 1). We will use the superscripts (1) and (2) to refer
to the former and latter layers, respectively. Then the continuity conditions, Eq.
(13), at z3 = 0 become

û(1)
m (0) = û(2)

m (0) ; P̂(1)
m (0) = P̂(2)

m (0) , m = 1,2,3., (18)
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By virtue of the Floquet theorem [Brillouin, Parodi (1953)], the amplitudes û( j)
m (z3)

and P̂( j)
m (z3) must satisfy the following periodicity conditions, which are similar to

Eq. (14):

û(1)
m

(
h̃(1)
)

= û(2)
m

(
h̃(2)
)

; P̂(1)
m

(
h̃(1)
)

= P̂(2)
m

(
−h̃(2)

)
, m = 1,2,3. (19)

Thus, it is necessary to solve a set of ordinary differential equations, Eqs. (16),
i.e. to determine functions u( j)

α (z3), find the functions P̂( j)
m (z3) from the second

relation in Eq. (17) and substitute the resulting expressions into the continuity and
periodicity conditions, Eqs. (18) and (19). After that, a dispersion equation can
be derived from the requirement that set of algebraic equations has a non-trivial
solution.

4 Propagation of plane waves along layers

Let a sequence of manufacturing processes induce the residual stresses σ
∗0(1)
33 ,

σ
∗0(2)
33 , σ

∗0(1)
11 and σ

∗0(2)
11 in each layer of the multilayered structure. We assume

that these stresses are homogeneous and, in the general case, different in dissimilar
layers; the layers are relatively rigid (no large strains); and applied loads do not ex-
ceed the yield limit. Then, we can restrict ourselves to the first approximation of the
linearized theory of elastic waves in pre-stressed solids. For this approximation, we
will take the modification of the theory where the wave velocities are determined
by neglecting the second order terms with respect to

(
P0

j /µ

)
in the coefficients

appearing in the equations of the problem. Here, µ is the shear modulus and P0
j is

the intensity of the external load acting on the body in the initial stress-strain state
and referred to the natural (undeformed) configuration of the body [Guz (2002);
Guz (2004)]. Since materials are elastic, and the loads are small compared with the
elastic limit, we can use true stresses instead of generalized stresses: σ

∗0( j)
11 = σ

0( j)
11 ,

σ
∗0( j)
33 = σ

0( j)
33 , j = 1,2.

Let us now consider a plane acoustic wave propagating in the multilayered struc-
ture. Then the manufacturing residual stresses are considered as the initial ones in
the problem of propagation of low-amplitude waves. We will examine the effect of
these stresses on the macroscopic properties (in particular, the velocity of acoustic
waves) of the multilayered structure for different ratios of the layers thickness.

We will examine in detail the following two cases: (a) waves are polarized in the
plane z1Oz3 and (b) displacements of the body are parallel to the Oz2-axis.
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4.1 Waves polarized in the plane z1 Oz3

Let us consider waves polarized in the plane z1Oz3 (u( j)
2 = 0) that have the wave

vector~k = (k,0,0). According to [Han (1977); Guz, Han (1976)], the solution of
Eq. (10) can be represented in the form

u( j)
α = û( j)

α exp [ i (kz1−ω t)] , û( j)
3 = A( j) exp

[
ia( j)z3

]
, u( j)

1 = γ
( j)û( j)

3 , α = 1,3, j = 1,2,

(20)

where A( j), a( j) and γ( j) are some constants.

Following the procedure outlined in the previous section, we substitute Eq. (20)
into Eq. (10) to obtain

γ
( j)
(

ω̃
( j)
1111k2 + ω̃

( j)
3113a( j)2− ρ̃

( j)
ω

2
)

+
(

ω̃
( j)
1313 + ω̃

( j)
1133

)
ka( j) = 0;

γ
( j)
(

ω̃
( j)
1313 + ω̃

( j)
1133

)
ka( j) +

(
ω̃

( j)
1331k2 + ω̃

( j)
3333a( j)2− ρ̃

( j)
ω

2
)

= 0.
(21)

Equations (21) yield four solutions for a( j): a( j)
1 = −a( j)

2 ; a( j)
3 = −a( j)

4 . Then the
representation, given by Eq. (20), becomes

û( j)
3 =A( j)

1 exp
(

ia( j)
1 z3

)
+A( j)

2 exp
(
−ia( j)

1 z3

)
+A( j)

3 exp
(

ia( j)
3 z3

)
+A( j)

4 exp
(
−ia( j)

3 z3

)
;

û( j)
1 =γ

( j)
1

[
A( j)

1 exp
(

ia( j)
1 z3

)
−A( j)

2 exp
(
−ia( j)

1 z3

)]
+

γ
( j)
3

[
A( j)

3 exp
(

ia( j)
3 z3

)
−A( j)

4 exp
(
−ia( j)

3 z3

)]
.

(22)

Considering two neighbouring layers, we take continuity and periodicity conditions
at z3 = const in the form of Eq. (18) and Eq. (19), respectively, with the only
difference that the index m takes the values 1 and 3. These conditions yield a
homogeneous system of algebraic equations of the eighth order, omitted here for
the sake of brevity. A requirement for this set of equations to have a non-trivial
solution leads to the dispersion equation.

Let us apply this procedure to some special types of waves.

4.1.1 Quasi-shear waves

Let u( j)
1 be asymmetric (odd) and u( j)

3 be symmetric (even) about the middle sur-
faces of the layers. This type of motion is schematically shown in Fig. 2a. Such
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z1

z3

O

h(2)

h(1)

u3 u1

   

z1

z3

O

h(2)

h(1)

u3 u1

 
a)           b) 

 Figure 2: Schematic representation of: a) quasi-shear wave and b) quasi-
compressional wave

a wave within each layer is referred to as quasi-shear [Guz (2004)] or shear in the
mean [Brekhovskikh (1960); Behrens (1967)].

Let us consider waves polarized in the plane z1Oz3 (u( j)
2 = 0) that have the wave

vector~k = (k,0,0). According to [Han (1977), Guz, Han (1976)], the solution of
Eq. (10) can be represented in the form of Eq. (20). Then Eqs. (22) become

û(1)
1 =γ

(1)
1

{
Ā(1)

1 exp
[
ia(1)

1

(
z3− h̃(1)/2

)]
− Ā(1)

2 exp
[
−ia(1)

1

(
z3− h̃(1)/2

)]}
+

γ
(1)
3

{
Ā(1)

3 exp
[
ia(1)

3

(
z3− h̃(1)/2

)]
− Ā(1)

4 exp
[
−ia(1)

3

(
z3− h̃(1)/2

)]}
;

û(2)
1 = γ

(2)
1

{
Ā(2)

1 exp
[
ia(2)

1

(
z3 + h̃(2)/2

)]
− Ā(2)

2 exp
[
−ia(2)

1

(
z3 + h̃(2)/2

)]}
+

γ
(2)
3

{
Ā(2)

3 exp
[
ia(2)

3

(
z3 + h̃(2)/2

)]
− Ā(2)

4 exp
[
−ia(2)

3

(
z3 + h̃(2)/2

)]}
; .

(23)

The relations for û(1)
3 and û(2)

3 can be written in a similar manner.

For the wave in question, Ā( j)
1 = Ā( j)

2 , Ā( j)
3 = Ā( j)

4 and, hence, the continuity and
periodicity conditions in terms of amplitudes, Eq. (18) and Eq. (19) coincide.
Therefore, one can obtain a homogeneous system of four algebraic equations for
Ā( j)

1 and Ā( j)
3 = Ā( j)

4 . Equating the determinant of this system to zero, we arrive at
the dispersion equation derived in [Han (1977)].

This equation is essentially nonlinear and very complicated in structure, and also
extremely difficult to solve. However, using the long-wave approximation, which



12 Copyright © 2010 Tech Science Press CMES, vol.57, no.1, pp.1-30, 2010

is of special interest for the class of problems and objects considered here, can sig-
nificantly simplify this equation. In this case, in view of Eq. (21), the dispersion
equation yields an expression for the squared velocity of a quasi-shear wave polar-
ized in the plane z1Oz3 and propagating along the Oz1-axis in the presence of initial
stresses

c2
z1z3

=
ω̃

(1)
1331h̃(1) + ω̃

(2)
1331h̃(2)−

[
ω̃

(2)
3113h̃(1) + ω̃

(1)
3113h̃(2)

]−1
h̃(1)h̃(2)

(
ω̃

(1)
1313− ω̃

(2)
1313

)2

ρ̃(1)h̃(1) + ρ̃(2)h̃(2)
,

(24)

where the first subscript indicates the direction of wave propagation and the sec-
ond subscript notes the preferred (in the mean) direction of displacements in the
medium. Let us introduce the ratio of the layers thickness in the natural state as

q = h(2)
/

h(1). (25)

Taking into account Eqs. (1), (4), (9), and (25), we obtain

c2
z1z3

=(
ρ(1)

λ
(1)
1 λ

(1)
2

+
qρ(2)

λ
(2)
1 λ

(2)
2

)−1[
λ

(1)
1

λ
(1)
2

(
λ

(1)
3

2
µ

(1)
13 +σ

0(1)
11

)

+
qλ

(2)
1

λ
(2)
2

(
λ

(2)
3

2
µ

(2)
13 +σ

0(2)
11

)
−

(
λ

(1)
1 λ

(1)
3 µ

(1)
13

λ
(1)
2

−
λ

(2)
1 λ

(2)
3 µ

(2)
13

λ
(2)
2

)2
λ

(2)
1

2
µ

(2)
13 +σ

0(2)
33

qλ
(2)
1 λ

(2)
2

+
λ

(1)
1

2
µ

(1)
13 +σ

0(1)
33

λ
(1)
1 λ

(1)
2

−1
 .

(26)

Let us denote the velocity of a wave in a multilayered structure without initial
stresses by vx1x3 , where the subscripts x1 and x3 indicate that the velocity is a macro-
scopic property of the composite referred to the coordinate system of the natural
state. Equating the initial strains in Eq. (26) to zero and using the elastic potential
of a linear elastic body, we arrive at the following relation for vx1x3 :

v2
x1x3

=
µ(1) +qµ(2)−

[
µ(2) +qµ(1)

]−1
q
(

µ(1)−µ(2)
)2

ρ(1) +qρ(2) (27)
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To characterize the effect of residual stresses, we will estimate the relative velocity
η13 of a plane wave as

η13 =
cz1z3− vx1x3

vx1x3

. (28)

It follows from Eq. (26) that λ
( j)
1 , λ

( j)
2 , λ

( j)
3 and µ

( j)
13 should be calculated to make

use of Eq. (28). Using the general results obtained in [Guz (2004)],

µ
( j)
iβ = µ

( j) +
B( j)σ

0( j)
αα

3K( j)
0

+
C( j)

4µ( j)

[(
σ

0( j)
ii +σ

0( j)
ββ

)
− 2λ ( j)σ

0( j)
αα

3K( j)
0

]
, (29)

(no summation over doubled i and β in Eq. (29)), we arrive at the expressions

λ
( j)
1

2
= 1+

2
(
λ ( j) + µ( j)

)
σ

0( j)
11 −λ ( j)σ

0( j)
33

3K( j)
0 µ( j)

, λ
( j)
2

2
= 1−

λ ( j)
(

σ
0( j)
11 +σ

0( j)
33

)
3K( j)

0 µ( j)
,

λ
( j)
3

2
= 1+

2
(
λ ( j) + µ( j)

)
σ

0( j)
33 −λ ( j)σ

0( j)
11

3K( j)
0 µ( j)

,

µ
( j)
13 = µ

( j)

1+

(
σ

0( j)
11 +σ

0( j)
33

)
3K( j)

0 µ( j)

(
B( j) +

λ ( j) +2µ( j)

4µ( j) C( j)

) .

(30)

These formulas allow us to determine the relative velocity of a plane wave and to
examine the influence of the residual stresses and the ratio of the layers thickness
on the wave propagation pattern.

4.1.2 Quasi-compressional waves

Suppose that σ
0( j)
11 6= 0, σ

0( j)
33 6= 0, and σ

0( j)
22 = 0, j = 1,2. Let u( j)

1 be symmet-
ric (even) and u( j)

3 be asymmetric (odd) about the middles of the layers. This
type of motion is schematically shown in Fig. 2b. Such a wave within each layer
is referred to as quasi-compressional [Guz (2004)] or compressional in the mean
[Brekhovskikh (1960); Behrens (1967)]. Here it is necessary to set Ā( j)

1 = −Ā( j)
2 ,

Ā( j)
3 =−Ā( j)

4 in Eq. (23).

Following the procedure outlined in subsection 4.1.1, we obtain, from Eqs. (18)
and (19), a homogeneous system of equations for Ā( j)

1 and Ā( j)
3 . Equating its deter-

minant to zero, we arrive at a dispersion equation in a quite complicated form [Han
(1977)].
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The equation can be simplified significantly by using the long-wave approximation.
In view of Eq. (21), the dispersion equation yields the squared velocity of a quasi-
compressional wave polarized in the plane z1Oz3 and propagating along the Oz1-
axis in the presence of initial stresses as

c2
z1z1

=
ω̃

(1)
1111h̃(1) + ω̃

(2)
1111h̃(2)−

[
ω̃

(2)
3333h̃(1) + ω̃

(1)
3333h̃(2)

]−1
h̃(1)h̃(2)

(
ω̃

(1)
1133− ω̃

(2)
1133

)2

ρ̃(1)h̃(1) + ρ̃(2)h̃(2)
.

(31)

Taking (1), (4), (9), and (25) into account, we get

c2
z1z1

=(
ρ(1)

λ
(1)
1 λ

(1)
2

+
qρ(2)

λ
(2)
1 λ

(2)
2

)−1[
λ

(1)
1

λ
(1)
2

(
λ

(1)
1

2
a(1)

11 +σ
0(1)
11

)

+
qλ

(2)
1

λ
(2)
2

(
λ

(2)
1

2
a(2)

11 +σ
0(2)
11

)
−

(
λ

(1)
1 λ

(1)
3 a(1)

13

λ
(1)
2

−
λ

(2)
1 λ

(2)
3 a(2)

13

λ
(2)
2

)2
λ

(2)
3

2
a(2)

33 +σ
0(2)
33

qλ
(2)
1 λ

(2)
2

+
λ

(1)
3

2
a(1)

33 +σ
0(1)
33

λ
(1)
1 λ

(1)
2

−1
 .

(32)

Let us denote the velocity of a quasi-compressional wave in a multilayered structure
without residual stresses by vx1x1 . The meaning of the subscripts is the same as in
subsection 4.1.1. Equating the initial strains in Eq. (32) to zero and using the elastic
potential of a linear elastic body, we arrive at the following expression forvx1x1 :

v2
x1x1

=

( (
λ (1) +2µ(1)

)
+q
(
λ (2) +2µ(2)

)
−[(

λ (2) +2µ(2)
)
+q

(
λ (1) +2µ(1)

)]−1
q
(

λ (1)−λ (2)
)2

)
ρ(1) +qρ(2) (33)

To characterize the effect of residual stresses, we will estimate the relative velocity
η11 of a plane wave:

η11 =
cz1z1− vx1x1

vx1x1

. (34)

It follows from Eq. (32) that λ
( j)
1 , λ

( j)
2 , λ

( j)
3 , a( j)

11 , a( j)
13 and a( j)

33 should be calculated
to make use of Eq. (34). The first three quantities can be determined from the
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first three formulas in Eq. (30). To determine a( j)
11 , a( j)

13 and a( j)
33 , we use the results

obtained in [Guz (2002); Guz (2004)]. For example, the following general relation
for a( j)

iβ has been derived in [Guz (2004)]:

a( j)
iβ =λ

( j) +
B( j)

µ( j)

(
σ

0( j)
ii +σ

0( j)
ββ

)
+

2

3K( j)
0

(
a( j)− B( j)λ ( j)

µ( j)

)
σ

0( j)
αα +

2δiβ

[
µ

( j) +
C( j)σ

0( j)
ii

2µ( j) +
σ

0( j)
αα

3K( j)
0

(
B( j)−C( j)λ ( j)

2µ( j)

)]
.

(35)

Here there is no summation over doubled iand β , as in Eq. (29).

Thus, we arrive at the expressions

a( j)
11 =

(
λ

( j) +2µ
( j)
)

1+

(
σ

0( j)
11 +σ

0( j)
33

)(
2A( j)µ( j)−2B( j)

(
λ ( j)−µ( j)

)
−λ ( j)C( j)

)
3K( j)

0 µ( j)
(
λ ( j) +2µ( j)

) +

σ
0( j)
11

(
2B( j) +C( j)

)
µ( j)

(
λ ( j) +2µ( j)

) ] ,

a( j)
13 =λ

( j) +

(
σ

0( j)
11 +σ

0( j)
33

)
3K( j)

0

(
2a( j) +

B( j)
(
λ ( j) +2µ( j)

)
µ( j)

)
,

a( j)
33 =

(
λ

( j) +2µ
( j)
)

1+

(
σ

0( j)
11 +σ

0( j)
33

)(
2A( j)µ( j)−2B( j)

(
λ ( j)−µ( j)

)
−λ ( j)C( j)

)
3K( j)

0 µ( j)
(
λ ( j) +2µ( j)

) +

σ
0( j)
33

(
2B( j) +C( j)

)
µ( j)

(
λ ( j) +2µ( j)

) ] .

(36)

The above expressions, Eq. (36), allow us to determine the relative velocity of a
longitudinal plane wave, Eq. (34), propagating along the Oz1-axis if the moduli of
the second and third order of the layers are known. By changing the magnitude and
type of residual stresses and the thickness ratio of the layers, we can study their
influence on the behaviour of quasi-compressional waves. This is useful for the
determining the residual stresses and identifying the internal pattern of the multi-
layered structure.
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4.2 Purely shear waves

Let us consider a purely shear wave propagating along the Oz1-axis. In this case,
only the

displacement components u( j)
2 are nonzero:

u( j)
2 6= 0, u( j)

1 = u( j)
3 = 0.

Then, according to [Han (1977); Guz (2002)], the solution is sought in the form

u( j)
2 = a( j) exp

(
ia( j)z3

)
exp [i(kz1−ωt)] . (37)

Substituting Eq. (37) into Eq. (10), we obtain

a( j)2
=−ω̃

( j)
3223

−1(
ω̃

( j)
1221k2− ρ̃

( j)
ω

2
)

.

The displacement u( j)
2 can be expressed as

u( j)
2 =

(
A( j)

1 exp
[
ia( j)z3

]
+A( j)

2 exp
[
−ia( j)z3

])
exp [i(kz1−ωt)] . (38)

Substituting Eq. (38) into Eq. (18) and Eq. (19), we arrive at the following disper-
sion equation [Han (1977)]

2ω̃
(1)
3223ω̃

(2)
3223a(1)a(2)

(
1− cosa(1)h̃(1) cosa(2)h̃(2)

)
+(

ω̃
(1)
3223a(1)2

+ ω̃
(2)
3223a(2)2)

sina(1)h̃(1) sina(2)h̃(2) = 0.
(39)

Using the long-length approximation, used previously in subsections 4.1.1 and
4.1.2, we obtain the velocity of a shear wave in a multilayered structure as

c2
z1z2

=

(
ρ(1)

λ
(1)
1 λ

(1)
2

+
qρ(2)

λ
(2)
1 λ

(2)
2

)−1

[
λ

(1)
1

λ
(1)
2

(
λ

(1)
2

2
µ

(1)
12 +σ

0(1)
11

)
+

qλ
(2)
1

λ
(2)
2

(
λ

(2)
1

2
µ

(2)
12 +σ

0(2)
11

)]
. (40)

In the absence of residual stresses, this velocity is given by

v2
x1x2

=
µ(1) +qµ(2)

ρ(1) +qρ(2) . (41)
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To examine the effect of the initial stresses and thickness ratio, we will consider the
relative velocity η12 of a plane wave

η12 =
cz1z2− vx1x2

vx1x2

. (42)

All quantities in Eq. (40), except for µ
( j)
12 , are known. To determine this coefficient,

we again take advantage of Eq. (29)

µ
( j)
12 = µ

( j) +
σ

0( j)
11 +σ

0( j)
33

3K( j)
0

+
C( j)

4µ( j)

[
σ

0( j)
11 −

2λ ( j)

3K( j)
0

(
σ

0( j)
11 +σ

0( j)
33

)]
. (43)

These formulas allow us to determine the relative velocity, Eq. (42), of a plane
wave and to examine the effect of the initial stresses and thickness ratio on the
propagation pattern of purely shear waves.

5 Results and discussion

Let us consider plane waves propagating in a multilayered structure consisting of
periodically recurring electrically conductive (metal) and adhesive (plastic) layers
modelled by isotropic materials described by a Murnaghan-type potential, Eq. (2).
To this end, we will analyze the dependence of Eqs. (28), (34), and (42) on the
residual stresses and on the thickness ratio of the layers, q.

To assess the method developed here, we use the following model materials: polystyrene
(PS), a 90:10 mixture of EPON-828 epoxy resin and polystyrene (EP-PS), polyme-
thil methacrylate (PMMA), steel, bronze, and brass, with properties listed in Table
1. Nine compositions can be made up of these materials. For brevity, we denote
them by the letter C followed by a sequence number. The possible compositions
are summarized in Table 2 and arranged into three groups: I (C1, C2, C3), II (C4,
C5, C6), and III (C7, C8, C9), depending on the type of the softer material.

To facilitate analysis, results will be presented in terms of ψ
( j)
1 and ψ

( j)
3 , where

ψ
( j)
1 = σ

0( j)
11 /µ(1), ψ

( j)
3 = σ

0( j)
33 /µ(1), j = 1,2, i.e. residual stresses in a given layer

will be normalised by the shear modulus of the stiffer material of the composition
(metal), labelled with the superscript (1) (Fig. 1).

Analysis of the numerical results for all the compositions listed in Table 2 shows
that the dependences of η on ψ and of η on q are qualitatively similar within each
group. Therefore, we will only present the most typical results for each group.

The properties of the adhesive layer seem to be the major factor that governs the be-
haviour of the graphs for given levels of normalised residual stresses (−5 ·10−4 ≤
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Table 1: Density ρ , Lamé constants λ and µ (elastic moduli of the second order),
and Murnaghan constants A, B, and C (elastic moduli of the third order) for the
conductive and adhesive layer materials

Material ρ , kg/m3 λ , GPa µ , GPa A, GPa B, GPa C, GPa
PS 1.050·103 1.71 1.140 –10.8 –7.85 –9.81

EP-PS 1.195·103 3.424 0.977 –1.08 –0.785 –0.981
PMMA 1.16·103 4.04 1.9 0.268 –3.12 –6.77

Steel 7.795·103 92.6 77.5 –235.0 –275.0 –490.0
Brass 7.20·103 94.9 44.7 –70.0 270.0 –340.0

Bronze 7.20·103 81.6 38.4 120.0 –310.0 480.0

Table 2: Compositions investigated

Group Composition Composition

I
C1 Steel – PMMA
C2 Brass – PMMA
C3 Bronze – PMMA

II
C4 Steel – EP-PS
C5 Brass – EP-PS
C6 Bronze – EP-PS

III
C7 Steel – PS
C8 Brass – PS
C9 Bronze – PS

ψ
( j)
i ≤ 5 · 10−4, i = 1,3; j = 1,2) and thickness ratio q(0 ≤ q ≤ 0.5). The solid,

dash-and-dot, and dashed lines represent the parameters η13, η12, and η11, respec-
tively.

Figure 3 shows the relative velocities of plane waves propagating along the Oz1-
axis as a function of the layer thickness ratio q in a steel-PS composition (C1 in
Table 2) with ψ

(1)
3 = ψ

(2)
3 = ψ

(1)
1 = 0, ψ

(2)
1 =5·10−4, i.e., when the residual stress

σ
0(2)
11 = 38.75 MPa and the other three residual stresses are zero. As can be seen, the

parameters η12 monotonically increase with q. The rate of increase in the relative
velocity is constant for the investigated interval of q. Thus, the longitudinal tensile
stress induced in the softer adhesive layer increases the velocity of purely shear
plane waves. The behaviour of the relative velocity η13 of quasi-shear plane wave
is also monotonous but decreasing with the q increases. Also, η13 is negative unlike
η12. It quickly drops to the value of –0.3 approximately at the q ≈ 0.1 and then
slightly decreases as the q approaches the value of 0.5.
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Figure 3: Normalized relative velocities
of plane waves propagating along the
Oz1-axis as a function of the thickness
ratio of layers q in a multilayered struc-
ture with C1 composition
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Figure 4: Normalized relative veloci-
ties η13 and η11 vs q for different levels
of normalised residual stress ψ

(2)
1 for C1

composition (small q)

The behaviour of the velocity of a quasi-compressional wave is essentially dif-
ferent under these conditions. The parameter η11 is negative in the interval 0 <
q≤ 0.9 initially decreasing with increase in the layer thickness of PS, reaching a
minimum of η11 ≈ – 0.7·10−2 at q ≈ 0.2·10−1. Next, the relative velocity of the
quasi-compressional wave increases and becomes equal to zero at q ≈ 0.75·10−1.
This means that there exists a thickness ratio of the layers such that the velocity of
a quasi-compressional wave in a multilayered structure with residual stress σ

0(2)
11

in the PS layer is equal to its velocity in the corresponding composition without
residual stresses.

Detailed analysis of this phenomenon for different levels of the residual stress σ
0(2)
11

is presented in Fig. 4, which shows the behaviour of η13 and η11 for small values
of q. The values of ψ

(2)
1 are indicated near the curves. It can be seen that the effect

persists. Moreover, when q ≈ 0.75·10−1, the velocity of a quasi-compressional
wave in a multilayered structure with any level of pre-stress is equal to its velocity
in the corresponding structure without pre-stresses. Increase in ψ

(2)
1 leads to an

increase in the absolute value of the local minimum of η12 as a function of q.
Conversely, decrease in the residual stress causes the curve of the relative velocity
versus the thickness ratio, as one would expect, to tend to the horizontal axis, which
corresponds to a stress-free material.

Figure 5 shows the dependences of η12 and η13 on qfor different values of ψ
(2)
1
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Figure 5: Effect of different levels of
residual stresses σ

0(2)
11 on the relative

velocities η13 and η12 dependences on
q for C1 composition
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Figure 6: Normalized relative velocities
η11, η12 and η13 vs q for different levels
of normalised residual stress ψ
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Figure 7: Relative velocities as a func-
tion of the thickness ratio q in the pres-
ence of two equal normalised residual
stresses ψ

(1)
3 = ψ

(2)
3 in both conductive

and adhesive layers for C1 composition
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Figure 8: Relative velocities as a func-
tion of the thickness ratio q in the pres-
ence of two equal components of nor-
malised residual stress ψ

(1)
3 = ψ

(1)
1 in

the conductive layer and zero pre-stress
in the adhesive layers for C1 composi-
tion



Effect of Residual Stresses on Wave Propagation 21

-4 -2 0 2 4
-2

-1

0

1

2

3
(1) 10 4

10
4

3
(2)= 1

(1)= 1
(2)=0, q=0.5

 

Figure 9:
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Figure 10: Normalized relative velocity
η11 as a function of normalised residual
stress ψ

(1)
3 for q = 0.01.
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Figure 11: Dependence of η13 on nor-
malised residual stress ψ

(2)
1 for different

combinations of ψ
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1 , ψ
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3 and ψ

(2)
3 .

3
(1) 10 4

-4 0

. 1
0
3

0.4

0.6

0.8

1.0
3
(2)=0, 1

(1)=0, 1
(2)=5 10 -4, q=0.5

4

 

Figure 12: Normalized relative veloci-
ties η11, η12 and η13 as the functions of
ψ

(1)
3 for ψ

(2)
3 = ψ

(1)
1 = 0, ψ

(2)
1 =5·10−4,

q= 0.5 for C1 composition

over the entire range of thickness ratios examined. It is evident that the behaviour
of the curves remains the same and the relative velocities reach saturation faster at
lower initial stresses.

The behaviour of the curves will not change if the stress σ
0(1)
11 is nonzero too. For

the residual stresses that are compressive, all the curves can be obtained by mirror-
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ing the curves for tensile stresses about the q-axis, which is completely consistent
with the results obtained in [Zhuk, Guz (2006); Zhuk, Guz (2007)].

The pattern will change if the residual stresses σ
0( j)
33 , j = 1,2, are nonzero. Figure

6 presents the case where ψ
(1)
3 =5·10−4, ψ

(2)
3 = ψ

(1)
1 = ψ

(2)
1 = 0. For small values

of qthe curves of η11 versus qand η13 versus qhave local minima and the curves go
through zero at q ≈ 0.026. The relative velocity parameter η12 is negative over the
whole interval of q. Both η12 and η11 become saturated very fast.

The above results indicate that under certain conditions and for special values of
the thickness ratio of the layers, there are points η11 = 0 when transverse resid-
ual stresses are nonzero (σ0( j)

33 6= 0, σ
0( j)
11 = 0, j = 1,2) and the curve of η13 ver-

sus qgoes through zero when longitudinal residual stresses are nonzero (σ0( j)
33 = 0,

σ
0( j)
11 6= 0 j = 1,2). Other possible combinations of residual stress components

may either strengthen or weaken this effect. For example, Fig. 7 shows the de-
pendences of η on qfor all the types of waves considered for ψ

(1)
3 = ψ

(2)
3 =5·10−4,

ψ
(1)
1 = ψ

(2)
1 = 0. It can be seen that the point η11 = 0 shifts towards q ≈ 0.35.

Figure 8 illustrates the behaviour of relative velocities in the presence of both trans-
verse and longitudinal residual stresses that are tensile in the metal layers and com-
pressive in the adhesive layers (ψ(1)

3 = ψ
(1)
1 =5·10−4, ψ

(2)
3 = ψ

(2)
1 =–5·10−4). Here

none of η11, η12 or η13 is equal to zero over the considered range of the layer
thickness ratio q.

Thus, the problem appears to be a multi-parameter one, with the magnitude and
sign of residual stress components in layers having a combined effect. However,
the type of the residual stress state in a multilayered structure and its internal pattern
can be inferred from the behaviour of the dependences of η on q.

We also examine the influence of residual stresses on the behaviour of the relative
velocities of plane waves in the multilayered structure under consideration. Typical
results are presented in Figs. 9–12. Figure 9 illustrates the dependence of η on ψ

(1)
3

for ψ
(2)
3 = ψ

(1)
1 = ψ

(2)
1 = 0 and q =0.5. As can be seen, η12 decreases and η11 and

η13 increase linearly with increase in the pre-stress, the curves going through zero
at ψ

(1)
3 = 0 (which represents a stress-free multilayered structure). These data are

in good agreement with the results obtained in [Guz, Zhuk, Makhort (1976); Guz,
Makhort (2000)]. Figure 10 shows η11 as a function of ψ

(1)
3 for q = 0.01. The

relative velocity depends linearly on the residual stress for all the volume fractions
of the multilayered structure constituents. For the relative velocities of quasi-shear
and purely shear waves, the pattern is similar.

The effect of the second pre-stress components on the relative velocity of a quasi-
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shear wave is illustrated by Fig. 11, which shows η13 as a function of ψ
(2)
1 for –

5·10−4≤ψ
(2)
1 ≤5·10− 4 and different combinations of ψ

(1)
1 , ψ

(1)
3 and ψ

(2)
3 such that

only one of these parameters is nonzero. It is seen that with such residual stresses,
the plots are again straight lines with a constant slope. The only difference is that
the graphs slightly shift toward positive η13 when ψ

(1)
3 = ψ

(2)
3 = 0, ψ

(1)
1 =5·10−4 and

toward negative η13 when ψ
(1)
3 =5·10−4, ψ

(2)
3 = ψ

(1)
1 = 0 §Ú ψ

(1)
3 = 0, ψ

(2)
3 =5·10−4,

ψ
(1)
1 = 0. It appears that the velocity of the quasi-shear wave is most affected by

the combination of the stresses σ
0(2)
33 and σ

0(2)
11 .

For the other two relative velocities, the pattern is similar. Additional residual stress
components cause the graphs to shift vertically. Sensitivity to one stress component
or another is manifested differently under different conditions and should be ana-
lyzed under specific conditions.

Figure 12 shows η as a function of ψ
(1)
3 for ψ

(2)
3 = ψ

(1)
1 = 0, ψ

(2)
1 =5·10−4, and q=

0.5. This dependence can be obtained by rotating the curves for a pre-stress-free
material with very small values of q(practically horizontal lines) about the origin
through the angle corresponding to the chosen value of q(Fig. 10) and then translat-
ing them along the vertical axis (Fig. 11). Thus, having a table of angles of rotation
corresponding to different values of qand a table of translations corresponding to
different combinations and values of residual stress components, we can easily plot
η versus ψ . Conversely, if we have these tabulated data and results of, say, acous-
tic tests, it will be possible to assess the level and type of residual stresses and to
identify the internal pattern for the multilayered structure.

Similar analyses were performed for the other groups of multilayered structures
from Table 2. Figures 13-16 present typical results for a representative of group II
- the composition C6 (bronze plus EP-PS).

Figure 13 shows the relative velocities of quasi-compressional, quasi-shear, and
purely shear waves as functions of the layer thickness ratio qfor ψ

(1)
1 = 0, ψ

(2)
1 =

ψ
(1)
3 = ψ

(2)
3 =5 ·10 - 4. With such a distribution of pre-stresses, the velocities η13

and η11 monotonically increase, with η11 rapidly reaching saturation. The velocity
η12 is always negative, rapidly decreasing at small q and meeting its saturated value
of 0.1·10−2.

The behaviour of relative velocities is qualitatively the same for ψ
(1)
3 = ψ

(2)
3 = ψ

(1)
1

= 5·10− 4, ψ
(2)
1 = 0 (see Fig. 14). The only observable difference is that η11 is non-

monotonic and does not meet its saturated value up to the q = 0.5. The maximum
in the η11 vs q dependence is reached at q ≈ 0.75·10−1. Then the relative velocity
of the quasi-compressional wave decreases with the constant slope but does not
become a zero in the considered range of q variations. Thus, the behaviour of the
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Figure 13: Normalized relative veloc-
ities of plane waves propagating along
the Oz1-axis as a function of the thick-
ness ratio of layers q in a multilay-
ered structure with C6 composition for
ψ
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Figure 14: Normalized relative veloc-
ities of plane waves propagating along
the Oz1-axis as a function of the thick-
ness ratio of layers q in a multilay-
ered structure with C6 composition for
ψ
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Figure 15: Effect of different levels of
the pre-stress ψ
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Figure 16: Normalized relative veloc-
ity η13 as a function of ψ

(1)
1 for ψ

(1)
3 =

ψ
(2)
3 = ψ

(2)
1 = 0, q = 0.01 and 0.5 for C6

composition
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Figure 17: Normalized relative veloc-
ities of plane waves propagating along
the Oz1-axis as a function of qfor ψ
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Figure 18: Relative velocity η13 as a
function of ψ

(2)
3 for q= 0.5 and differ-

ent combinations of ψ
(1)
1 , ψ

(2)
1 and ψ

(1)
3

for C8 combination

curves depends on which residual stress components are nonzero.

Figure 15 shows the dependence of the relative velocities of plane waves on the
level of normalised residual stresses for ψ

(1)
3 = ψ

(2)
3 = ψ

(2)
1 = ψ0, ψ

(1)
1 = 0. The

values of ψ0 are indicated near the curves. Changes in ψ0 affect only the level of
the curves, not their behaviour.

The behaviour of the graphs of η versus ψ
( j)
i is qualitative similar to what was

observed for the C1 composition. They are straight lines in all cases. Changes in
qcause them to shift along the vertical axis. As an example, Fig. 16 shows η13 as a
function of ψ

(1)
1 for ψ

(1)
3 = ψ

(2)
3 = ψ

(2)
1 = 0 and the values of q equal to 0.01 and

0.5.

Further analysis reveals that the behaviour of the relative velocities of plane waves
in nanocomposites of group III depends on ψ

( j)
i and qin a similar manner as in

the composites of groups I and II. Typical results for the C8 composition (brass
+ PMMA) are presented in Figs. 17 and 18. Figure 17 shows η as a function of
qfor ψ

(1)
3 = ψ

(2)
1 =5·10−4, ψ

(2)
3 = ψ

(1)
1 = 0, and Fig. 18 shows η13 as a function

of ψ
(2)
3 for q= 0.5 and different combinations of ψ

(1)
1 , ψ

(2)
1 and ψ

(1)
3 . In all cases,

the behaviour of curves is similar to that observed above for composites of other
groups.
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6 Concluding remarks

Following the analysis of numerical results, we can establish qualitative and quan-
titative patterns for stationary plane waves propagating along the layers in a mul-
tilayered structure in the presence of residual stresses. The relative velocities of
quasi-compressional, quasi-shear, and purely shear waves are almost linearly de-
pendent on residual stresses over the entire range examined. These velocities may
be different in different multilayered structures. Residual stresses result in shift of
the straight lines plotted for a structure without residual stresses along the vertical
axis. For certain combination of residual stress components, a change in the thick-
ness ratio of the layers, q, causes the originally horizontal line of η versus ψ

( j)
i for

a homogeneous material to rotate about the origin of coordinates.

On the other hand, the dependence of the velocities of plane waves on the thick-
ness ratio q may be both monotonic and non-monotonic and its behaviour depends
on the combination of residual stress components. The analysis of numerical re-
sults has revealed that for some multilayered structures there exists a thickness
ratio, q, such that the velocity of a wave does not depend on the residual stresses
and remains equal to the wave velocity in the corresponding multilayered structure
without residual stresses.

The sign of residual stresses does not influence the behaviour of the curves of wave
velocities versus the magnitude of this stress, but affects significantly the depen-
dence of the velocity on the thickness ratio of the layers.

The relationships established here can be used in combination with the ultrasonic
non-destructive methods [Guz, Zhuk, Makhort (1976); Guz (2001); Babich, Glu-
chov, Guz (2008a); Babich, Gluchov, Guz (2008b)] to assess the stress-strain state
of multilayered structures for MEMS applications by processing experimental data.
First, we need to know, according to [Guz (2001)], the density and the elastic mod-
uli of the second and third orders of the materials of layers. Then, manufacturing-
induced residual stresses can be estimated by measuring the difference in the ve-
locities of longitudinal or transverse waves. Using a table of angles of rotation
corresponding to different values of qand a table of translations corresponding to
different combinations and levels of residual stress components, one can determine
the level and type of residual stresses based on ultrasonic test data. The approach
developed within the framework of continuum mechanics is applicable to the class
of multilayered structures examined here owing to the use of the long-wave ap-
proximation in wave-propagation problems (i.e. a wave must be much longer than
the typical length scale of the internal structure of the material). This fact can
significantly simplify design of testing equipment, specimen preparation and ex-
perimental procedure.
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Work is currently underway to examine the effect of diffusion processes on wave
propagation in multilayered structures for MEMS applications. Interfaces between
neighbouring materials are often subjected to diffusion processes which cause lay-
ers having gradually varying mechanical properties perpendicular to the interface.
In contrast to previous work done in this field in which diffusion effects are gen-
erally considered as undesirable phenomena, studies [Kashtalyan, Menshykova
(2007); Kashtalyan, Menshykova (2009a); Kashtalyan, Menshykova (2009b); Kash-
talyan, Menshykova, Guz (2009);] have shown that presence of the layers with
gradually varying material properties can significantly improve bonding in multi-
layered structures.
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