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Coupled Thermo-Mechanical Analysis of One-Layered
and Multilayered Isotropic and Composite Shells

S. Brischetto1 and E. Carrera2

Abstract: This work considers the fully coupled thermo-mechanical analysis of
one-layered and multilayered isotropic and composite shells. The temperature is as-
sumed a primary variable as the displacement; it is therefore directly obtained from
the model and this feature permits the temperature field to be evaluated through
the thickness direction. Three problems are analyzed: - static analysis of shells
with imposed temperature on the external surfaces; - static analysis of shells sub-
jected to a mechanical load, with the possibility of considering the temperature
field effects; - a free vibration problem, with the evaluation of the temperature field
effects. In the first problem, imposing a temperature at the top and bottom of the
shells, the static response is given in terms of displacements, stresses and tem-
perature field; the proposed method is very promising if compared to a partially
coupled thermo-mechanical analysis, where the temperature is only considered as
an external load, and the temperature profile must be a priori defined (considering
it linear through the thickness direction or calculating it by solving the Fourier heat
conduction equation). A mechanical load is applied in the second problem. The
fully coupled thermo-mechanical analysis gives smaller displacement values than
those obtained with the pure mechanical analysis; the temperature effect is not con-
sidered in this latter approach. The third problem is the free vibration analysis of
shells. The fully coupled thermo-mechanical models permit the effect of the tem-
perature field to be evaluated: larger frequencies are obtained with respect to the
pure mechanical models. Several refined theories with orders of expansion in the
thickness direction, for displacements and temperature, from linear to fourth-order
are obtained in the framework of Carrera’s Unified Formulation. Both equivalent
single layer and layer wise approaches are considered for the multilayered shells.
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tion; thermo-mechanical coupling; assumed temperature profile; calculated tem-
perature profile; refined two-dimensional theories.

1 Introduction

The effects of heat on the deformation and stresses of solid elastic bodies are con-
sidered by the theory of thermoelasticity. Thermoelasticity is a branch of applied
mechanics, where the conventional theory of isothermal elasticity is extended to
those processes in which deformation and stresses are produced by both mechan-
ical forces and temperature variations. Thermoelastic processes are not totally re-
versible because the elastic part may be reversed (the deformations caused by heat
are theoretically recoverable through cooling), but the thermal part may not be re-
versed because of the dissipation of energy that takes place during heat transfer. It
is well known that a deformation of the body produces changes in its temperature:
the effect of the temperature field on the deformation field is not a one-way phe-
nomenon. These features demonstrate that the mechanical and thermal aspects are
coupled and inseparable [Nowinski (1978)], and this coupling considerably compli-
cates the computational aspect of solving actual thermoelastic problems. A possi-
ble remedy, as suggested in Nowinski’s book [Nowinski (1978)], is to discount the
coupling and to evaluate the temperature and deformation fields, in this order, sep-
arately. The thermoelastic problem, where the temperature and deformation fields
are discounted, is here defined as a partially coupled thermo-mechanical problem.

Partially coupled thermo-mechanical models have extensively been employed in
the analysis of typical aeronautical structures, which are subject to severe ther-
mal environments, such as high temperatures, high gradients and cyclic changes
in temperature. The temperature variations are one of the most important factors
for the stress fields that can cause failure of the structures [Librescu and Marzocca
(2003a); Librescu and Marzocca (2003b); Noor and Burton (1992)]. Because of
these implications, the effects of both high-temperature and mechanical loadings
have to be considered in the design process. An accurate description of local stress
fields in the layers of multilayered plates and shells becomes mandatory to prevent
thermally loaded structure failure mechanisms. Computational models, developed
to study the behavior of high-temperature composite plates and shells, make use of
the partially coupled thermo-mechanical analysis [Noor and Burton (1992)]. The
temperature is only considered as an external load and the temperature profile must
be a priori defined: considering it "a priori" through the thickness direction [Wu
and Chen (2008); Brischetto and Carrera (2009); Bhaskar et al. (1986); Khare et al.
(2003); Khdeir (1996); Birsan (2009); Sladek et al. (2008a); Sladek et al. (2008b)]
or calculating it by solving the Fourier heat conduction equation [Carrera (2000);
Carrera (2002); Rolfes et al. (1999); Brischetto (2009); Brischetto et al. (2008);
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Noorzaei et al. (2009)]. Further works where the temperature profile and/or the
heat flux distribution are analytically calculated are Chao et al. (2009), Chen et al.
(2008), Feng et al. (2009), Liu et al. (2009), Sladek et al. (2008c), Sladek et al.
(2009), Wu et al. (2007) and Zhou et al. (2009). A complete overview, about the
assumed temperature profile and the calculated temperature profile in partially cou-
pled thermo-mechanical models has already been given in Brischetto and Carrera
(2010).

Brischetto and Carrera (2010) have proposed a fully coupled thermoelastic anal-
ysis for plate geometries: both temperature and displacement fields are primary
variables in the thermo-mechanical governing equations. The present companion
paper extends this fully coupled thermoelastic analysis to shell geometries, in order
to investigate the effects of curvature in such problems. This fully coupled analysis
permits several problems, which are of particular interest in the aeronautics and
space fields to be analyzed, in a very efficient and simple way. Therefore, the case
of shells with imposed temperature on the external surfaces is easily solved without
the need to a priori define the temperature profile in the thickness direction. The
temperature is a primary variable of the problem, and the values of temperature at
the top and bottom are directly imposed: the fully coupled thermo-mechanical gov-
erning equations directly give the displacements and the temperature through the
thickness direction. In order to calculate the displacements, the partially coupled
governing equations instead need an a priori temperature profile in the thickness
direction to define the thermal load. The other two possible applications of the
fully-coupled governing equations are: an external applied mechanical load and
the free vibration problem. These two cases are also investigated in this paper, but
a relevant simplification is made: the variation in time of the temperature is not
considered, and this means that these two problems are investigated at equilibrium
conditions. This great simplification will be removed in a future work in order to
investigate the evolution in time of temperature, strain and stress in such problems.

In the open literature, a small amount of work has been devoted to the coupled
thermo-mechanical analysis of structures (both thermoelastic and thermoplastic
analysis), and only few of them give numerical results. Altay and Dökmeci (1996a)
have described the physical behaviour of thermoelastic continuum by means of op-
portune variational principles. The stress equations of motion and the equation of
heat conduction have been written as divergence equations. The strain-mechanical
displacement relations and Fourier’s heat conduction law have been written as gra-
dient equations. The same authors have extended this method to thermopiezoelec-
tric mediums in Altay and Dökmeci (1996b) by simply adding the charge equation
of electrostatics in the divergence equations and the electric field-electric potential
relations in the gradient equations. Das et al. (1983) have avoided the use of the
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thermoelastic potential to solve the general problem of one-dimensional linearized
simultaneous equations of thermoelasticity. Displacement and thermal fields have
been obtained in the Laplace transformation domain. This method could be very
useful in thermoelasticity or other coupled fields.

Some papers about the thermo-mechanical coupling effects in the case of an ap-
plied temperature to the structure are Cannarozzi and Ubertini (2001), Cho and Oh
(2004), Oh and Cho (2004), Ibrahimbegovic et al. (2005), Lee (2006), Tanaka et
al.(1995). Other papers investigate the effects of thermo-mechanical coupling in
structures subjected to mechanical loads, see Carrera et al. (2007), Daneshjoo and
Ramezani (2002), Daneshjoo and Ramezani (2004), Yang et al. (2006), Adam and
Ponthot (2005). Finally, dynamic thermo-mechanical analysis has been consid-
ered in the following papers: Altay and Dökmeci (2001), Givoli and Rand (1994),
Wilms and Cohen (1985), Wauer (1996), Kosinski and Frischmuth (2001), Tra-
jkovski and Cukic (1999), Yeh (2005). A complete overview about the mentioned
papers is given in the companion paper [Brischetto and Carrera (2010)], where they
are discussed further.

In the fully coupled thermo-mechanical analysis here extended to one-layered and
multilayered shells, displacement and temperature fields are approximated in the
thickness direction by several refined two-dimensional theories based on Carrera’s
Unified Formulation [Carrera (1995); Carrera(2003)]. A preliminary analysis, for
only the coupled free vibration problem of layered plates and shells, has already
been proposed by the authors in Carrera and Brischetto (2009). In the case of
multilayered shells, both equivalent single layer (ESL) and layer wise (LW) ap-
proaches have been developed, as secribed in Section 2. The geometrical relations
of the shells, in the case of small deformations and constant radii of curvature, are
given in Section 3. Constitutive equations, for the coupled thermo-mechanical anal-
ysis, have been obtained in Section 4 from thermoelastic enthalpy density, written
in a quadratic form for a linear interaction. The principle of virtual displacements
(PVD) can be extended to both partially and fully coupled thermo-mechanical anal-
ysis, as proposed in Section 5. The multilayered shells are simply supported with
applied harmonic loads, therefore closed-form solutions are obtained in Navier
form, as discussed in Section 6. The results, concerning the applied temperature
case, the imposed mechanical load case and the free vibration problem, are given
in Section 7. Section 8 highlights the main conclusions.

2 Carrera’s Unified Formulation, CUF

Carrera’s Unified Formulation (CUF) [Carrera (1995); Carrera (2003)] permits to
obtain, in a unified manner, a large variety of plate/shell theories. According to
CUF, the governing equations are written in terms of a few fundamental nuclei
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which do not formally depend on the order of expansion N used in the thickness
direction and on the description of variables (equivalent single layer (ESL) or layer
wise (LW)). The application of a two-dimensional method for shells permits the
unknown variables to be expressed as a set of thickness functions that only depend
on the thickness coordinate z and the correspondent variable which depends on
the in-plane coordinates α and β . The generic variable fff (α,β ,z), for instance a
displacement, and its variation δ fff (α,β ,z) are written therefore according to the
following general expansion:

fff (α,β ,z) = Fτ(z) fff τ(α,β ) , δ fff (α,β ,z) = Fs(z)δ fff s(α,β ) , (1)

with τ,s = 1, . . . ,N ,

where the bold letters denote arrays, (α ,β ) are the in-plane curvilinear coordinates
and z the thickness one. The summing convention, with repeated indexes τ and s,
is assumed. The order of expansion N goes from first to fourth-order, and depend-
ing on the used thickness functions, a theory can be: ESL, when the variable is
assumed for the whole multilayer and a Taylor expansion is employed as the thick-
ness functions F(z); LW, when the variable is considered independent in each layer
and a combination of Legendre polynomials are used as the thickness functions
F(z). In the thermo-mechanical models, proposed in this work, displacements can
be modelled in both ESL or LW form, temperature is always considered in LW
form. A two-dimensional thermo-mechanical model is defined therefore as ESL or
LW, depending on the choice made for the displacement vector.

K=1

K=2

K=3

ED1 ED3 LD1 LD3

Figure 1: Equivalent Single Layer (ESL) vs. Layer Wise (LW) theories for a mul-
tilayered shell.
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2.1 Equivalent single layer approach

The displacement uuu = (u,v,w) is described according to equivalent single layer
(ESL) description if the unknowns are the same for the whole multilayered shell
[Reddy (2004)] (see Figure 1). The z expansion is obtained via Taylor polynomials,
that is:

u = F0 u0 + F1 u1 + . . . + FN uN = Fτ uτ ,

v = F0 v0 + F1 v1 + . . . + FN vN = Fτ vτ , (2)

w = F0 w0 + F1 w1 + . . . + FN wN = Fτ wτ ,

with τ = 0,1, . . . ,N; N is the order of expansion that ranges from 1 (linear) to 4:

F0 = z0 = 1, F1 = z1 = z, . . . , FN = zN . (3)

Eq.(2) can be written in a vectorial form:

uuu(α,β ,z) = Fτ(z)uuuτ(α,β ) , δuuu(α,β ,z) = Fs(z)δuuus(α,β ) , (4)

with τ,s = 1, . . . ,N .

Simpler theories, such those which discard the εzz effect, can be obtained from
refined ESL models: it is sufficient to impose that the transverse displacement w
is constant in z. First order Shear Deformation Theory (FSDT) [Mindlin (1951)]
is obtained from an ESL model with linear expansion in the thickness direction
z, by imposing a constant transverse displacement w in z. Classical Lamination
Theory (CLT) [Cauchy (1828); Poisson (1829); Kirchhoff (1850)] is obtained from
FSDT via an opportune penalty technique which imposes an infinite transverse
shear rigidity. All the ESL theories, whit constant or linear transverse displace-
ment w, which means zero or constant transverse normal strain εzz, show Poisson’s
locking phenomena: it can be overcame via plane stress conditions in constitutive
equations [Carrera and Brischetto (2008a); Carrera and Brischetto (2008b)]

2.2 Layer wise approach

When each layer of a multilayered shell is described as independent shells [Reddy
(2004)], a layer wise (LW) approach is accounted for. The displacement uuuk =
(u,v,w)k is described for each layer k, in this way the zigzag form of displace-
ment, in multilayered transverse-anisotropy shells, is easily obtained, as indicated
in Figure 1. The z expansion for displacement components is made for each layer
k:

uk = F0 uk
0 + F1 uk

1 + . . . + FN uk
N = Fτ uk

τ ,

vk = F0 vk
0 + F1 vk

1 + . . . + FN vk
N = Fτ vk

τ , (5)

wk = F0 wk
0 + F1 wk

1 + . . . + FN wk
N = Fτ wk

τ ,
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with τ = 0,1, . . . ,N, N is the order of expansion that ranges from 1 (linear) to 4.
k = 1, . . . ,Nl , where Nl indicates the number of layers. The Eq.(5), written in a
vectorial form, is:

uuuk(α,β ,z) = Fτ(z)uuuk
τ(α,β ) , δuuuk(α,β ,z) = Fs(z)δuuuk

s(α,β ) , (6)

with τ,s = t,b,r and k = 1, . . . ,Nl ,

where t and b indicate the top and bottom of each layer k, respectively; r indicates
the higher orders of expansion in the thickness direction: r = 2, . . . ,N. The thick-
ness functions Fτ(ζk) and Fs(ζk) have now been defined at the k-layer level, they are
a linear combination of Legendre polynomials Pj = Pj(ζk) of the jth-order defined
in ζk-domain (ζk = 2zk

hk
with zk local coordinate and hk thickness, both referred to

kth layer, so −1≤ ζk ≤ 1). The first five Legendre polynomials are:

P0 = 1, P1 = ζk, P2 =
(3ζk

2−1)
2

, P3 =
5ζk

3

2
− 3ζk

2
, P4 =

35ζk
4

8
− 15ζk

2

4
+

3
8

, (7)

their combinations for the thickness functions are:

Ft = F0 =
P0 +P1

2
, Fb = F1 =

P0−P1

2
, Fr = Pr−Pr−2 with r = 2, . . . ,N . (8)

The chosen functions have the following interesting properties:

ζk = 1 : Ft = 1; Fb = 0; Fr = 0 at top , (9)

ζk =−1 : Ft = 0; Fb = 1; Fr = 0 at bottom , (10)

that is interface values of the variables are considered as variable unknowns, see
Figure 1. This feature permits to easily imposing the compatibility conditions for
displacements at each layer interface. In LW models, even if a linear expansion in z
is considered for the transverse displacement w, Poisson’s locking phenomena does
not appear: the transverse normal strain εzz is piece-wise constant in the thickness
direction [Carrera and Brischetto (2008a); Carrera and Brischetto (2008b)].

In the case of thermo-mechanical problems, the primary variables are the displace-
ment vector uuu = (u,v,w) and the scalar sovra-temperature θ (temperature T1 re-
ferred to the reference external room temperature T0, θ = T1−T0). By considering
the higher spatial gradient of the temperature field, the variable θ k is always mod-
elled as LW [Carrera et al. (2007)]:

θ
k(α,β ,z) = Fτ(z)θ k

τ (α,β ) , δθ
k(α,β ,z) = Fs(z)δθ

k
s (α,β ) , (11)

with τ,s = t,b,r and k = 1, . . . ,Nl .
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The thickness functions are a combination of Legendre polynomials as indicated
in Eqs.(7) and (8). The sovra-temperature θ can be considered as an external
load [Brischetto and Carrera (2009); Brischetto (2009)] or as a primary variable
[Brischetto and Carrera (2010); Carrera et al. (2007)]. A two-dimensional model
for thermo-mechanical problems is defined as ESL or LW depending on the choice
made for the displacement vector: the temperature is always considered in LW
form.

h

Figure 2: Reference system for a multilayered cylindrical shell.

3 Geometrical relations

We define a thin shell as a three-dimensional body bounded by two closely spaced
curved surfaces, the distance between the two surfaces must be small in compar-
ison with the other dimensions. The middle surface of the shell is the locus of
points which lie midway between these surfaces. The distance between the sur-
faces measured along the normal to the middle surface is the thickness of the shell
at that point [Leissa (1973)]. Geometry and the reference system are indicated in
Figure 2. The square of an infinitesimal linear segment in the layer, the associated
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infinitesimal area and volume are given by:

ds2
k = Hk

α

2
dα

2
k + Hk

β

2
dβ

2
k +Hk

z
2

dz2
k , (12)

dΩk = Hk
αHk

β
dαk dβk , (13)

dVk = Hk
α Hk

β
Hk

z dαk dβk dzk , (14)

where the metric coefficients are:

Hk
α = Ak(1+ zk/Rk

α), Hk
β

= Bk(1+ zk/Rk
β
), Hk

z = 1 . (15)

k denotes the k-layer of the multilayered shell; Rk
α and Rk

β
are the principal radii of

curvature along the coordinates αk and βk, respectively. Ak and Bk are the coeffi-
cients of the first fundamental form of Ωk (Γk is the Ωk boundary). In this paper,
the attention has been restricted to shells with constant radii of curvature (cylindri-
cal, spherical, toroidal geometries) for which Ak = Bk = 1. Details for shells are
reported in Leissa (1973). The geometrical relations for shells, in case of thermo-
mechanical problems, link the mechanical strains with the displacement vector and
the spatial gradient of temperature with the scalar temperature. The relations split
in in-plane (p) and out-of-plane (n) components are:

εεε
k
pG = [εαα ,εββ ,γαβ ]kT = (DDDk

p +AAAk
p) uuuk , (16)

εεε
k
nG = [γαz,γβ z,εzz]kT = (DDDk

np +DDDk
nz−AAAk

n) uuuk , (17)

ϑϑϑ
k
pG = [ϑα ,ϑβ ]kT =−DDDk

t p θ
k , (18)

ϑϑϑ
k
nG = [ϑz]k =−DDDk

tn θ
k , (19)

εεεk
pG and εεεk

nG are the in-plane and transverse strains, respectively. uuuk = (u,v,w)k is
the displacement vector. ϑϑϑ

k
pG and ϑϑϑ

k
nG are in-plane and transverse spatial gradients

of temperature, respectively. θ k is the scalar temperature referred to the reference
external room temperature. T means the transpose of a vector. The explicit form of
the introduced arrays follows:

DDDk
p =


∂αk
Hk

α

0 0

0
∂βk
Hk

β

0
∂βk
Hk

β

∂αk
Hk

α

0

 , DDDk
np =


0 0

∂αk
Hk

α

0 0
∂βk
Hk

β

0 0 0

 , DDDk
nz =

∂zk 0 0
0 ∂zk 0
0 0 ∂zk

 ,

DDDk
t p =

 ∂αk
Hk

α

∂βk
Hk

β

 , DDDk
tn =

[
∂zk

]
, (20)
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AAAk
p =

0 0 1
Hk

α Rk
α

0 0 1
Hk

β
Rk

β

0 0 0

 , AAAk
n =


1

Hk
α Rk

α

0 0
0 1

Hk
β

Rk
β

0

0 0 0

 . (21)

The symbols in differential operators matrices indicate the partial derivatives ∂αk =
∂

∂αk
, ∂βk = ∂

∂βk
and ∂zk = ∂

∂ zk
. The parameters Hk

α and Hk
β

equal 1 in case of plates
because the radii of curvature Rk

α and Rk
β

are infinite: the pure geometrical con-

tributes AAAk
p and AAAk

n equal zero in case of plate geometry.

4 Constitutive equations

Constitutive equations, for the thermo-mechanical problem, are obtained in accord-
ing to that reported in Carrera et al. (2007) and Carrera et al. (2008). The coupling
between the mechanical and thermal fields can be determined by using thermody-
namical principles and Maxwell’s relations [Altay and Dokmeci (1996a); Altay and
Dokmeci (1996b); Cannarozzi and Ubertini (2001); Altay and Dokmeci (2001)].
For this aim, it is necessary to define a Gibbs free-energy function G and a thermo-
mechanical enthalpy density H [Nowinski (1978); Ikeda (1990)]:

G(εi j,θ) = σi jεi j−ηθ , (22)

H(εi j,θ ,ϑi) = G(εi j,θ)−F(ϑi) , (23)

where σi j and εi j are the stress and strain components. η is the variation of entropy
per unit of volume, and θ the sovra-temperature considered with respect to the
reference temperature T0. The function F(ϑi) is the dissipation function, it depends
by the spatial temperature gradient ϑi:

F(ϑi) =
1
2

κi jϑiϑ j− τ0ḣi , (24)

where κi j is the symmetric, positive semidefinite conductivity tensor. In the second
term, τ0 is a thermal relaxation parameter and ḣi is the temporal derivative of the
heat flux hi. The thermal relaxation parameter is omitted in the present work. Fur-
ther details about the dissipation function F(ϑi) can be found in Altay and Dokmeci
(1996a), Cannarozzi and Ubertini (2001) and Yang et al. (2006).

The thermomechanical enthalpy density H can be expanded in order to obtain a
quadratic form for a linear interaction:

H(εi j,θ ,ϑi) =
1
2

Qi jklεi jεkl−λi jεi jθ −
1
2

χθ
2− 1

2
κi jϑiϑ j , (25)
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where Qi jkl is the elastic coefficients tensor considered for an orthotropic material
in the problem reference system. λi j are the thermo-mechanical coupling coeffi-
cients, χ = ρCv

T0
where ρ is the material density, Cv is the specific heat per unit mass

and T0 is the reference temperature [Carrera et al. (2007)].

The constitutive equations are obtained by considering the following relations:

σi j =
∂H
∂εi j

, η =−∂H
∂θ

, hi =− ∂H
∂ϑi

. (26)

By considering Eqs.(25) and (26), the constitutive equations for the thermo-mechanical
problem are obtained:

σi j = Qi jklεkl−λi jθ , (27)

η = λi jεi j + χθ , (28)

hi = κi jϑ j . (29)

Above equations can be written in single-subscript notation by using the indexes
m = q = 1,2,3,4,5,6 and i = j = 1,2,3:

σm = Qmqεq−λmθ , (30)

η = λqεq + χθ , (31)

hi = κi jϑ j . (32)

From the equations written in single-subscript notations, it is easy to write their
matrix form; the matrices and vectors are indicated in bold. Considering a generic
multilayered shell, Eqs.(30)-(32) are written for a generic layer k in the problem
reference system (α,β ,z) as:

σσσ
k = QQQk

εεε
k−λλλ

k
θ

k , (33)

η
k = λλλ

kT
εεε

k + χ
k
θ

k , (34)

hhhk = κκκ
k
ϑϑϑ

k , (35)

where the sovra-temperature θ k, the term χk and the entropy for unite volume ηk

are scalar variables in each layer k. The (6×1) vectors of stress and strain are:

σσσ
k =



σαα

σββ

σzz

σβ z
σαz

σαβ



k

, εεε
k =



εαα

εββ

εzz

γβ z
γαz

γαβ



k

. (36)
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The (3×1) vectors of heat flux hhhk and spatial gradient of temperature ϑϑϑ
k are:

hhhk =


hα

hβ

hz


k

, ϑϑϑ
k =


ϑα

ϑβ

ϑz


k

. (37)

The (6×1) array of thermo-mechanical coupling coefficients λλλ
k is:

λλλ
k = QQQk

ααα
k =



λ1
λ2
λ3
0
0
λ6



k

, (38)

where the elastic coefficients matrix QQQk of Hooke law, in problem reference system
for an orthotropic material [Reddy (2004)], is:

QQQk =



Q11 Q12 Q13 0 0 Q16
Q12 Q22 Q23 0 0 Q26
Q13 Q23 Q33 0 0 Q36
0 0 0 Q44 Q45 0
0 0 0 Q45 Q55 0

Q16 Q26 Q36 0 0 Q66



k

, (39)

the vector αααk has dimension (6× 1) and it contains the thermal expansion coeffi-
cients:

ααα
k =



α1
α2
α3
0
0
0



k

. (40)

The matrix κκκk of conductivity coefficients has dimension (3×3):

κκκ
k =

 κ11 κ12 0
κ12 κ22 0
0 0 κ33

k

. (41)

In order to use the relations given in Eqs.(33)-(35) in the proposed variational state-
ments, that will be presented in the next section, it is convenient to split them
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in in-plane components (subscript p) and out-of-plane components (subscript n).
Other two new subscripts are introduced: the subscript C for those variables, in the
variational statements, which need the substitution of constitutive equations; the
subscript G for those variables, in constitutive equations, which need the substitu-
tion of geometrical relations (see Section 3). The split stress and strain components
vectors are:

σσσ
k
pC =


σαα

σββ

σαβ


k

, σσσ
k
nC =


σαz

σβ z
σzz


k

, εεε
k
pG =


εαα

εββ

γαβ


k

, εεε
k
nG =


γαz

γβ z
εzz


k

.

(42)

The vectors (3× 1) of heat flux and spatial gradient of the temperature, split in
in-plane and out-of-plane components, are:

hhhk
pC =

{
hα

hβ

}k

, hhhk
nC =

{
hz
}k

, ϑϑϑ
k
pG =

{
ϑα

ϑβ

}k

, ϑϑϑ
k
nG =

{
ϑz
}k

. (43)

By considering Eqs.(42) and (43), the split form of Eqs.(33)-(35) is:

σσσ
k
pC = QQQk

ppεεε
k
pG +QQQk

pnεεε
k
nG−λλλ

k
pθ

k , (44)

σσσ
k
nC = QQQk

npεεε
k
pG +QQQk

nnεεε
k
nG−λλλ

k
nθ

k , (45)

η
k
C = λλλ

kT
p εεε

k
pG +λλλ

kT
n εεε

k
nG + χ

k
θ

k , (46)

hhhk
p = κκκ

k
ppϑϑϑ

k
pG +κκκ

k
pnϑϑϑ

k
nG , (47)

hhhk
n = κκκ

k
npϑϑϑ

k
pG +κκκ

k
nnϑϑϑ

k
nG . (48)

The explicit forms of the split matrices in Eqs.(44)-(48) are:

• Stiffness matrices:

QQQk
pp =

 Q11 Q12 Q16
Q12 Q22 Q26
Q16 Q26 Q66

k

, QQQk
pn =

 0 0 Q13
0 0 Q23
0 0 Q36

k

, (49)

QQQk
np =

 0 0 0
0 0 0

Q13 Q23 Q36

k

, QQQk
nn =

 Q55 Q45 0
Q45 Q44 0
0 0 Q33

k

.

• Thermo-mechanical coupling coefficients:

λλλ
k
p =

 λ1
λ2
λ6

k

, λλλ
k
n =

 0
0
λ3

k

. (50)
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• Conductivity coefficients:

κκκ
k
pp =

[
κ11 κ12
κ12 κ22

]k

, κκκ
k
pn =

[
0
0

]k

, (51)

κκκ
k
np =

[
0 0

]k
, κκκ

k
nn =

[
κ33

]k
.

5 Considered variational statements

In this section two different extensions of the Principle of Virtual Displacements
(PVD) are given: the first is for the partially coupled thermo-mechanical analysis,
the second one is for the fully coupled thermo-mechanical problem. In the case of
a partially coupled analysis the PVD is the same of the mechanical case, but the
stresses are considered as an algebraic addition of the pure mechanical and pure
thermal parts [Brischetto and Carrera (2009); Brischetto (2009)]. For the fully
coupled analysis, the virtual internal thermal work is added to the virtual internal
mechanical one [Carrera et al. (2007); Carrera et al. (2008)].

5.1 PVD for the partially coupled thermo-mechanical case

In the case of the thermal stress analysis of shells, a possible extension of the PVD
considers the temperature as an external load without any coupling between the
mechanical and thermal fields [Carrera (2002)]. In the variational statement ob-
tained in Eq.(54) the stresses are seen as an algebraic addition of mechanical (d)
and thermal (t) contributions:

σσσ
k
pC = σσσ

k
pd−σσσ

k
pt = QQQk

ppεεε
k
pG +QQQk

pnεεε
k
nG−λλλ

k
pθ

k , (52)

σσσ
k
nC = σσσ

k
nd−σσσ

k
nt = QQQk

npεεε
k
pG +QQQk

nnεεε
k
nG−λλλ

k
nθ

k , (53)

where the arrays λλλ p and λλλ n permit the partial coupling between the mechanical
field and the temperature.

By considering a laminate of Nl layers, and the integral on the volume Vk of each
layer k as an integral on the in plane domain Ωk plus the integral in the thickness-
direction domain Ak, it is possible to write:

Nl

∑
k=1

∫
Ωk

∫
Ak

{
δεεε

k
pG

T
(σσσ k

pd−σσσ
k
pt)+δεεε

k
nG

T
(σσσ k

nd−σσσ
k
nt)
}

dΩkdz =
Nl

∑
k=1

δLk
e−

Nl

∑
k=1

δLk
in ,

(54)

where δLk
e and δLk

in are the external and inertial virtual works at the k-layer level,
respectively. By substituting the Eqs.(52) and (53) in the variational statement of
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Eq.(54), and considering the geometrical relations for shells of Section 3, and the
CUF of Section 2, for a generic layer k it is possible to write:

∫
Ωk

∫
Ak

[(
(DDDk

p +AAAk
p) Fsδuuuk

s

)T(
QQQk

pp(DDD
k
p +AAAk

p) Fτuuuk
τ +QQQk

pn(DDD
k
np +DDDk

nz−AAAk
n)Fτuuuk

τ −λλλ
k
pFτθ

k
τ

)
+

(
(DDDk

np +DDDk
nz−AAAk

n)Fsδuuuk
s

)T(
QQQk

np(DDD
k
p +AAAk

p) Fτuuuk
τ +QQQk

nn(DDD
k
np +DDDk

nz−AAAk
n)Fτuuuk

τ

(55)

−λλλ
k
nFτθ

k
τ

)]
dΩkdz = δLk

e−δLk
in .

By using the integration by parts, as given in Brischetto (2009), the governing
equations are written in the following compact form:

δuuuk
s : KKKkτs

uu uuuk
τ = −MMMkτs

uu üuuk
τ −KKKkτs

uθ θ
k
τ + pppk

us , (56)

with related boundary conditions on the layer edge Γk:

ΠΠΠ
kτs
uu uuuk

τ − ΠΠΠ
kτs
uθ θ

k
τ = ΠΠΠ

kτs
uu ūuuk

τ − ΠΠΠ
kτs
uθ θ̄

k
τ , (57)

where (-KKKkτs
uθ

θ k
τ ) is the thermal load pppk

θs, (-MMMkτs
uu üuuk

τ ) is the inertial load and pppk
us is

the external mechanical one. From Eqs.(56) and (57), simply discarding the ther-
mal contribution, it is possible to obtain the governing equations and the boundary
conditions for the pure mechanical case: the variational statement for this case is
obtained from Eq.(54) simply discarding the thermal contribution for the stresses.
MMMkτs

uu is the inertial contribution in term of fundamental nucleus, uuuk
τ is the vector

of the degrees of freedom for the displacements, θ k
τ is the vector of the degrees of

freedom for the sovra-temperature, üuuk
τ is the second temporal derivative of uuuk

τ , KKKkτs
uu

is the fundamental nucleus for the stiffness matrix, KKKkτs
uθ

is the fundamental nucleus
for the thermal load. ΠΠΠ

kτs
uu and ΠΠΠ

kτs
uθ are the fundamental nuclei for the boundary
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conditions. These assume the following form:

KKKkτs
uu =

∫
Ak

[(
−DDDk

p +AAAk
p

)T(
QQQk

pp(DDD
k
p +AAAk

p) +QQQk
pn(DDD

k
np +DDDk

nz−AAAk
n)
)
+ (58)

(
−DDDk

np +DDDk
nz−AAAk

n

)T(
QQQk

np(DDD
k
p +AAAk

p) +QQQk
nn(DDD

k
np +DDDk

nz−AAAk
n)
)]

FsFτHk
αHk

β
dz ,

KKKkτs
uθ =

∫
Ak

[(
−DDDk

p +AAAk
p

)T(
−λλλ

k
p

)
+
(
−DDDk

np +DDDk
nz−AAAk

n

)T(
−λλλ

k
n

)]
FsFτHk

αHk
β

dz ,

(59)

MMMkτs
uu =

∫
Ak

(ρkIII)FsFτHk
αHk

β
dz , (60)

ΠΠΠ
kτs
uu =

∫
Ak

[
IIIkT

p

(
QQQk

pp(DDD
k
p +AAAk

p) +QQQk
pn(DDD

k
np +DDDk

nz−AAAk
n)
)

+ IIIkT
np

(
QQQk

np(DDD
k
p +AAAk

p) +

(61)

QQQk
nn(DDD

k
np +DDDk

nz−AAAk
n)
)]

FsFτHk
αHk

β
dz ,

ΠΠΠ
kτs
uθ =

∫
Ak

[
IIIkT

p

(
−λλλ

k
p

)
+ IIIkT

np

(
−λλλ

k
n

)]
FsFτHk

αHk
β

dz . (62)

ρk is the mass density of the kth layer and III is the (3× 3) identity matrix. IIIk
p and

IIIk
np are (3×3) matrices, to perform the integration by parts, obtained from matrices

DDDk
p and DDDk

np simply replacing the differential operators with 1.

In order to define the thermal load, the temperature profile must be a priori given: by
linearly assuming it in the thickness direction (θa) or by calculating it with solving
the Fourier heat conduction equation (θc).

5.1.1 Assumed temperature profile, θa

If the values of the temperature are known at the top and bottom surfaces of the
shell, an assumed profile θ(z), which varies linearly from the top to the bottom, is
given. The temperature is assumed bi-sinusoidal in the plane (α,β ) at the top and
bottom shell surfaces:

θ(α,β ,z) = θ̂(z)sin(
mπ

a
α)sin(

nπ

b
β ) , (63)

with values θ̂(+h/2) = θt and θ̂(−h/2) = θb. a and b are the shell dimensions. m
and n are the waves number. In the case of assumed temperature profile (θa) a linear
through the thickness distribution is considered from θt to θb. Independently by
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the number of considered layers, the linear profile is always the same as indicated
in Figure 3: here examples of one-layered, two-layered and three-layered shells
are given for a temperature profile which goes from +1.0 at the top to 0.0 at the
bottom. The temperature profile is approximated as displacements in case of the
LW approach:

θ
k(z) = Fτ θ

k
τ with τ = t,b,r and r = 2, . . . ,4 , (64)

t and b indicate the top and bottom of the considered kth layer. The thickness
functions Fτ are a combination of Legendre polynomials (see Section 2.2).

Figure 3: Assumed linear sovra-temperature profile (θa) through the thickness di-
rection of the one-layered, two-layered and three-layered shell, respectively.

If the temperature is assumed linear through the thickness, the values at the top
and bottom surfaces, and therefore Ft and Fb, would be sufficient to describe the
assumed profile via CUF (see Figure 3) [Brischetto and Carrera (2009)].
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5.1.2 Calculated temperature profile, θc

The calculation procedure for the actual temperature profile in case of one or more
layers is given in Carrera (2002), Brischetto (2009) and Brischetto et al. (2008),
in order to obtain the values of θ k

τ for the Eq.(64). The Fourier heat conduction
equation in curvilinear coordinates is:

(
κk

11

Hk
α

2 )
∂ 2θ

∂α2 +(
κk

22

Hk
β

2 )
∂ 2θ

∂β 2 +κ
k
33

∂ 2θ

∂ z2 = 0 , (65)

κk
11, κk

22 and κk
33 are the thermal conductivities along the three shell directions α ,

β and z. Hk
α = (1 + zk/Rk

α) and Hk
β

= (1 + zk/Rk
β
) are the metric coefficients. In

the case of plates the Eq.(65) has Hk
α = Hk

β
= 1 and the coefficients κk

11, κk
22 and

κk
33 are constant. In the case of shells, we can define three new coefficients κ∗k

11 =
κk

11

Hk
α

2 , κ∗k
22 = κk

22

Hk
β

2 and κ∗k
33 = κk

33, that in a generic layer k depend on the thickness

coordinate of the shell:

κ
∗k
11

∂ 2θ

∂α2 +κ
∗k
22

∂ 2θ

∂β 2 +κ
∗k
33

∂ 2θ

∂ z2 = 0 . (66)

The Eq.(66) has not constant coefficients in the layer k because of curvatures. It can
be solved by introducing, for each layer k, a given number of mathematical layers
(Nml). It is solved in the case of shell subjected to a bi-sinusoidal temperature at the
top and at the bottom. The thermal boundary conditions are:

θ = 0 at α = 0,a and β = 0,b ,

θ = θb sin
(mπα

a

)
sin
(

nπβ

b

)
at z =−h

2
with b : bottom , (67)

θ = θt sin
(mπα

a

)
sin
(

nπβ

b

)
at z = +

h
2

with t : top ,

where m and n are the waves number along the two in-plane shell directions (α ,β ).
a and b are the shell dimensions, h is the shell thickness, and θb and θt are the
amplitudes of the temperature at the bottom and top of each layer, respectively.

We compute the temperature θc at different values zN in the thickness of the mul-
tilayered shell by solving the Eq.(66) with the boundary conditions in Eq.(67). By
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solving the system in Eq.(68), we obtain the N values of θ k
τ for the CUF:

θc(z1)
θc(z2)

...

θc(zN)


=



F0(z1) F1(z1) · · · FN(z1)
F0(z2) F1(z2) · · · FN(z2)

...
...

...
...

F0(zN) F1(zN) · · · FN(zN)




θ k

0
θ k

1
...
...

θ k
N

 . (68)

Therefore, if we consider a generic multilayered shell, the temperature profile is
approximated by Eq.(64) and the N values of θ k

τ are given by Eq.(68). The details,
here omitted for sake of brevity, can be found in Carrera (2002), Brischetto (2009)
and Brischetto et al. (2008).

5.2 PVD for the fully coupled thermo-mechanical case

In case of fully coupling between the thermal and mechanical fields, the variational
statement is the PVD with the introduction of the virtual internal thermal work.
This variational statement is:∫

V

(
δεεε

T
pGσσσ pC +δεεε

T
nGσσσnC−δθηC−δϑϑϑ

T
pGhhhpC−δϑϑϑ

T
nGhhhnC

)
dV = δLe−δLin . (69)

By considering a laminate of Nl layers and the volume Vk for each layer k as an
integral on the in-plane surface Ωk and an integral in the thickness direction domain
Ak, the Eq.(69) can be rewritten as:

Nl

∑
k=1

∫
Ωk

∫
Ak

{
δεεε

k
pG

T
σσσ

k
pC +δεεε

k
nG

T
σσσ

k
nC−δθ

k
η

k
C−δϑϑϑ

k
pG

T
hhhk

pC−δϑϑϑ
k
nG

T
hhhk

nC

}
dΩkdz

=
Nl

∑
k=1

δLk
e−

Nl

∑
k=1

δLk
in , (70)

where δLk
e and δLk

in are the external and inertial virtual work at the k-layer level,
respectively.

The governing equations have the following form:

δuuuk
s : KKKkτs

uu uuuk
τ +KKKkτs

uθ θ
k
τ = pppk

us−MMMkτs
uu üuuk

τ (71)

δθ
k
s : KKKkτs

θu uuuk
τ +KKKkτs

θθ θ
k
τ = pppk

θs .

The arrays pppk
us and pppk

θs indicate the variationally consistent mechanical and ther-
mal loadings, respectively. Along with these governing equations the following
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boundary conditions on the edge Γk of the in-plane integration domain Ωk hold:

ΠΠΠ
kτs
uu uuuk

τ +ΠΠΠ
kτs
uθ θ

k
τ = ΠΠΠ

kτs
uu ūuuk

τ +ΠΠΠ
kτs
uθ θ̄

k
τ

ΠΠΠ
kτs
θu uuuk

τ +ΠΠΠ
kτs
θθ θ

k
τ =ΠΠΠ

kτs
θu ūuuk

τ +ΠΠΠ
kτs
θθ θ̄

k
τ . (72)

As indicated in Carrera et al. (2007), the sovra-temperature θ k is a variable of the
problem. The displacements uuuk can be seen in ESL or LW form. Independently by
the choice made for the displacements, the sovra-temperature is always seen in LW
form.

As discussed in Altay and Dokmeci (1996b) and Cannarozzi and Ubertini (2001),
the variational statement includes only the internal thermal work made by the gra-
dient of temperature in the case of applied temperature at the top and bottom of the
structure; it includes only the internal thermal work made by the temperature in the
case of applied mechanical load on the structure or free vibration problem.

5.2.1 Imposed temperature on the top/bottom shell surfaces

In the case of temperature imposed at the top and bottom of the structure, in the
Eq.(70) the term δθ kηk

C is not considered because it does not exist a virtual varia-
tion of temperature. Therefore, the variational statement is:

Nl

∑
k=1

∫
Ωk

∫
Ak

{
δεεε

k
pG

T
σσσ

k
pC +δεεε

k
nG

T
σσσ

k
nC−δϑϑϑ

k
pG

T
hhhk

pC−δϑϑϑ
k
nG

T
hhhk

nC

}
dΩkdz =

Nl

∑
k=1

δLk
e .

(73)

From the constitutive equations, as obtained in Eqs.(44)-(48), simply discarding
the entropy ηk

c :

σσσ
k
pC = QQQk

ppεεε
k
pG +QQQk

pnεεε
k
nG−λλλ

k
pθ

k , (74)

σσσ
k
nC = QQQk

npεεε
k
pG +QQQk

nnεεε
k
nG−λλλ

k
nθ

k , (75)

hhhk
pC = κκκ

k
ppϑϑϑ

k
pG +κκκ

k
pnϑϑϑ

k
nG , (76)

hhhk
nC = κκκ

k
npϑϑϑ

k
pG +κκκ

k
nnϑϑϑ

k
nG . (77)

The geometrical relations for shells have been obtained in Section 3, and Carrera’s
Unified Formulation is described in Section 2. The Eq.(73) is rewritten in the fol-
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lowing form in the case of a generic layer k:∫
Ωk

∫
Ak

[(
(DDDk

p +AAAk
p)Fsδuuuk

s

)T((
QQQk

pp(DDD
k
p +AAAk

p)+QQQk
pn(DDD

k
np+DDDk

nz−AAAk
n)
)
Fτuuuk

τ −λλλ
k
pFτθ

k
τ

)
+(

(DDDk
np +DDDk

nz−AAAk
n)Fsδuuuk

s

)T((
QQQk

np(DDD
k
p +AAAk

p)+QQQk
nn(DDD

k
np+DDDk

nz−AAAk
n)
)
Fτuuuk

τ −λλλ
k
nFτθ

k
τ

)
+(

DDDk
t pFsδθ

k
s

)T((
κκκ

k
pp(−DDDk

t p)+κκκ
k
np(−DDDk

tn)
)
Fτθ

k
τ

)
+
(

DDDk
tnFsδθ

k
s

)T((
κκκ

k
np(−DDDk

t p)+κκκ
k
pp(−DDDk

tn)
)
Fτθ

k
τ

)]
dΩk dz = δLk

e. (78)

Integrating by parts the Eq.(78), as suggested in Carrera (2002) and Brischetto
(2009), the fundamental nuclei are:

KKKkτs
uu =

∫
Ak

[(
−DDDk

p +AAAk
p

)T(
QQQk

pp(DDD
k
p +AAAk

p) +QQQk
pn(DDD

k
np +DDDk

nz−AAAk
n)
)
+

(
−DDDk

np +DDDk
nz−AAAk

n

)T
+
(

QQQk
np(DDD

k
p +AAAk

p) +QQQk
nn(DDD

k
np +DDDk

nz−AAAk
n)
)]

FsFτHk
αHk

β
dz ,

(79)

KKKkτs
uθ =

∫
Ak

[(
−DDDk

p +AAAk
p

)T(
−λλλ

k
p

)
+
(
−DDDk

np +DDDk
nz−AAAk

n

)T(
−λλλ

k
n

)]
FsFτHk

αHk
β

dz ,

(80)

KKKkτs
θu = 0 (81)

KKKkτs
θθ =

∫
Ak

[
DDDkT

t p κκκ
k
ppDDDk

t p +DDDkT
t p κκκ

k
pnDDDk

tn−DDDkT
tn κκκ

k
npDDDk

t p−DDDkT
tn κκκ

k
nnDDDk

tn

]
FsFτHk

αHk
β

dz .

(82)

The fundamental nuclei KKKkτs
uu and KKKkτs

uθ
are the same obtained in Section 5.1 for the

partially coupled problem. The nuclei for boundary conditions on the edge Γk are:

ΠΠΠ
kτs
uu =

∫
Ak

[
IIIkT

p

(
QQQk

pp(DDD
k
p +AAAk

p) +QQQk
pn(DDD

k
np +DDDk

nz−AAAk
n)
)

+ IIIkT
np

(
QQQk

np(DDD
k
p +AAAk

p) +

QQQk
nn(DDD

k
np +DDDk

nz−AAAk
n)
)]

FsFτHk
αHk

β
dz , (83)

ΠΠΠ
kτs
uθ =

∫
Ak

[
IIIkT

p

(
−λλλ

k
p

)
+ IIIkT

np

(
−λλλ

k
n

)]
FsFτHk

αHk
β

dz , (84)

ΠΠΠ
kτs
θu = 0 (85)

ΠΠΠ
kτs
θθ =

∫
Ak

[
IIIkT

t p κκκ
k
pp(−DDDk

t p)+ IIIkT
t p κκκ

k
pn(−DDDk

tn)
]
FsFτHk

αHk
β

dz . (86)
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The fundamental nuclei ΠΠΠ
kτs
uu and ΠΠΠ

kτs
uθ are the same obtained in Section 5.1 for the

partially coupled problem. IIIk
np (2×1) and IIIk

t p (1×1) are matrices, to perform the
integration by parts, obtained from DDDk

np and DDDk
t p simply replacing the differential

operators with 1. Nuclei, given in Eqs.(79)-(82), are introduced in the governing
equations (71) in the case of applied temperature on the shell surfaces. In this case,
in Eq.(71) the inertial contribute and the mechanical load are discarded. The sovra-
temperature is directly imposed in the vector θ k

τ ; therefore, the thermal load pppk
θs is

not considered.

5.2.2 Mechanical load and free vibration analysis

In the case of mechanical load applied on the structure or free vibration analysis, in
the Eq.(70) the terms δϑϑϑ

k
pG

T
hhhk

pC and δϑϑϑ
k
nG

T
hhhk

nC are not considered because it does
not exist a gradient of temperature variation. Therefore, the variational statement
is:

Nl

∑
k=1

∫
Ωk

∫
Ak

{
δεεε

k
pG

T
σσσ

k
pC +δεεε

k
nG

T
σσσ

k
nC−δθ

k
η

k
C

}
dΩkdz =

Nl

∑
k=1

δLk
e−

Nl

∑
k=1

δLk
in . (87)

By considering the constitutive equations as obtained in Eqs.(44)-(48), simply dis-
carding the heat fluxes hhhk

pC and hhhk
nC:

σσσ
k
pC = QQQk

ppεεε
k
pG +QQQk

pnεεε
k
nG−λλλ

k
pθ

k , (88)

σσσ
k
nC = QQQk

npεεε
k
pG +QQQk

nnεεε
k
nG−λλλ

k
nθ

k , (89)

η
k
C = λλλ
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k . (90)

The geometrical relations for shells have been obtained in Section 3, Carrera’s Uni-
fied Formulation has been described in Section 2. The Eq.(87) is rewritten in the
following form for a generic layer k:∫
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(91)

Integrating by parts the Eq.(91), as suggested in Carrera (2002) and Brischetto
(2009), the fundamental nuclei KKKkτs

uu and KKKkτs
uθ

are the same of PVD in Sections 5.1
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and 5.2.1, while nuclei KKKkτs
θu and KKKkτs

θθ
are:

KKKkτs
θu =

∫
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[
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KKKkτsr
θθ =

∫
Ak

[
−χ

k
]
FsFτHk

αHk
β

dz . (93)

Nuclei for boundary conditions on the edge Γk, ΠΠΠ
kτs
uu and ΠΠΠ

kτs
uθ , are the same of PVD

in Sections 5.1 and 5.2.1, while the other two state:

ΠΠΠ
kτs
θu = ΠΠΠ

kτs
θθ = 0 . (94)

Nuclei, here obtained, are introduced in the governing equations (71) in the case
of applied mechanical load on the shell surfaces or free vibration analysis. In this
case, in Eq.(71) the thermal load is discarded. Fundamental nucleus for the inertial
contribute is the same already obtained in Eq.(60) of Section 5.1.

6 Navier solution and assembling procedure

In order to write the explicit form of fundamental nuclei obtained in Sections 5.1
and 5.2, the following integrals in the z-thickness direction must be defined:
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By using the Eqs.(95) and developing the matrices products, the explicit forms of
fundamental nuclei are obtained.

Navier-type closed form solution is obtained via substitution of harmonic expres-
sions for the displacements and temperature as well as considering the following
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material coefficients equal zero: Q16 = Q26 = Q36 = Q45 = 0 and λ6 = κ12 = 0. The
following harmonic assumptions can be made for the variables, which correspond
to simply supported boundary conditions:

uk
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(96)

where Ûk
τ , V̂ k

τ , Ŵ k
τ , θ̂ k

τ are the amplitudes.

Fundamental nucleus KKKkτs
uu , of dimension (3×3), is in common for each considered

case:
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Kuu13 =Qk
55(J

kτzs
β
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Fundamental nucleus KKKkτs
uθ

, of dimension (3× 1), is in common for the partially
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coupled case and for each extension of the fully coupled case:
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(98)

Fundamental nuclei KKKkτs
θu , of dimension (1×3), and KKKkτs

θθ
, of dimension (1×1), for

the fully coupled thermo-mechanical analysis, in the case of applied temperature
on the surfaces, are:

Kθu11 =Kθu12 = Kθu13 = 0 , (99)
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Fundamental nuclei KKKkτs
θu , of dimension (1×3), and KKKkτs

θθ
, of dimension (1×1), for

the fully coupled thermo-mechanical analysis, in the case of applied mechanical
load and free vibration problem, are:
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β

λ
k
1 , Kθu12 = β̄Jkτs

α λ
k
2 , Kθu13 = − 1

Rk
α

Jkτs
β

λ
k
1 −

1
Rk

β

Jkτs
α λ

k
2 − Jkτzs

αβ
λ

k
3 ,

(101)

Kθθ11 = − Jkτs
αβ

χ . (102)

The fundamental nucleus of the inertial matrix MMMkτs
uu , of dimension (3×3), is:

Muu11 =ρ
kJkτs

αβ
, Muu12 = Muu13 = 0 , Muu21 = 0 , Muu22 = ρ

kJkτs
αβ

, Muu23 = 0 ,

Muu31 =Muu32 = 0 , Muu33 = ρ
kJkτs

αβ
. (103)

For each fundamental nucleus, ᾱ = mπ/a and β̄ = nπ/b, where m and n are the
wave numbers in in-plane directions, and a and b the shell dimensions.

By starting from the fundamental nuclei described in this section, matrices can be
obtained for the considered multilayered shells by simply expanding and assem-
bling via the indexes k,τ,s. By expanding via indexes τ,s, the order of expansion
N from 1 to 4 in the thickness direction is considered. The matrices are obtained for
each considered layer, and the index k permits the multilayer assembling procedure,
which can either be ESL or LW.
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6.1 Acronyms

A system of acronyms is here given in order to define the several refined two-
dimensional models developed in this work. The choice made in this paper is that
displacements can be in ESL or LW form, but the temperature is always consid-
ered in LW form. Therefore, a two-dimensional model is defined as ESL or LW,
depending on the choice made for the displacement. ESL models are indicated as
ED1-ED4, where E means the ESL approach, D means that the Principle of Vir-
tual Displacements or their extensions to thermo-mechanical analysis have been
employed; the last digit, from 1 to 4, indicates the order of expansion in the thick-
ness direction for both displacements and temperature. In the case of LW models,
the letter E is replaced by a letter L, therefore the relative models are indicated
as LD1-LD4. In the case of a thermo-mechanical analysis, additional parenthe-
sis are introduced in the acronyms: (θa) is added in the case of partially coupled
thermo-mechanical analysis with a linear assumed temperature profile; (θc) is used
to indicate the case of partially coupled thermo-mechanical analysis with a calcu-
lated temperature profile; (TM) means a fully coupled thermo(T)-mechanical(M)
analysis. No parenthesis are added in the case of a pure mechanical problem.

7 Results

The results proposed in this section, consider three different cases: - shells with im-
posed temperature at the two external surfaces; - shells subjected to a mechanical
load on top surface; - free vibration analysis of shells. The considered cylindri-
cal shell panels are simply supported (see Figure 2). The radius of curvature in
β direction is Rβ = ∞, the radius of curvature in α direction is Rα = 10m with
angle Φ equals π

3 . The in-plane shell dimensions are a = π

3 Rα = 10.47197551m
and b = 1m. The investigated thickness ratios are Rα/h = 5,10,50,100 and 1000,
which means total thickness of the shell h = 2,1,0.2,0.1 and 0.01m, respectively.
Three different layered shells are investigated for each proposed case. The first is
a one-layered isotropic shell in Al2024 with Young’s modulus E = 73GPa, Pois-
son’s ratio ν = 0.3 and mass density ρ = 2800Kg/m3. The thermal properties
are the specific heat per unit mass Cv = 897J/KgK, the thermal expansion coef-
ficient α = 25× 10−6 1/K and the conductivity coefficient κ = 130W/mK. The
two-layered isotropic shell has two layers of thickness h1 = h2 = h/2, the bottom
layer is in Al2024 and the top layer is in Ti22. The mechanical properties of the
Ti22 layer are E = 110GPa, ν = 0.32 and ρ = 4420Kg/m3. Its thermal properties
are Cv = 560J/KgK, α = 8.6×10−6 1/K and κ = 21.9W/mK. The third case is
a three-layered composite (0◦/90◦/0◦) shell where the three layers have the same
thickness h1 = h2 = h3 = h/3. The elastic properties of the embedded carbon fi-
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bre reinforced layers are Young’s longitudinal modulus E1 = 172.72GPa, Young’s
transverse modulus E2 = E3 = 6.909GPa, Poisson’s ratio ν = 0.25, shear mod-
ulus G12 = G13 = 3.45GPa and G23 = 1.38GPa, mass density ρ = 1940Kg/m3.
The thermal properties are the specific heat-per-unit mass Cv = 846J/KgK, lon-
gitudinal thermal expansion coefficient α1 = 0.57× 10−6 1/K, transverse thermal
expansion coefficients α2 = α3 = 35.6× 10−6 1/K, longitudinal conductivity co-
efficient κ11 = 36.42W/mK and transverse conductivity coefficients κ22 = κ33 =
0.96W/mK.

7.1 Imposed temperature on the surfaces

The considered shells have an imposed sovra-temperature at the top θt = 1.0K and
at the bottom θb = 0.0K. The temperature is bi-sinusoidal in the in-plane directions
with wave numbers m = n = 1. The partially coupled models with assumed tem-
perature profile (ED1(θa)-ED4(θa), LD1(θa)-LD4(θa), FSDT(θa)-CLT(θa)), and
those with calculated temperature profile (ED1(θc)-ED4(θc), LD1(θc)-LD4(θc),
FSDT(θc)-CLT(θc)) have been validated extensively in the authors’ previous works
[Brischetto and Carrera (2009); Carrera (2000); Carrera (2002); Brischetto (2009);
Brischetto et al. (2008); Brischetto and Carrera (2010)]. In the partially cou-
pled models, the temperature profile must be a priori defined: - assuming it lin-
ear through the thickness (θa) from θt = 1.0K to θb = 0.0K as shown in Figure
3; - calculating it by solving the Fourier heat conduction equation (θc) where the
thermal boundary conditions are θt = 1.0K at the top θb = 0.0K at the bottom.
The temperature profile permits the thermal load to be obtained for Eq.(56). In the
fully coupled models, the sovra-temperature is directly imposed in the vector θ k

τ

and the displacement and temperature profile are directly obtained by solving the
governing relation in Eq.(71).

Tables 1-2 and Figure 4 consider an isotropic one-layered cylindrical shell. ESL
and LW theories with orders of expansion N = 1÷ 4 are coincident because the
considered shell has only one layer. Table 1 gives the transverse displacement w in
the middle of the shell, Table 2 gives the in-plane displacement u at the top of the
shell. For thick shells the temperature profile is not linear, even when it is isotropic
and one-layered, see Figure 4. Thin shells have a linear temperature profile in the
thickness direction. For thick shells, displacements obtained with partially cou-
pled models (θa) are different from those obtained with partially coupled (θc) or
fully coupled models (TM) (an error due to the assumption of a linear temperature
profile). When the shell is thin, the three models are coincident because the temper-
ature profile is linear, as indicated in the Figure 4. Classical theories, such as CLT
and FSDT, give very large errors for each proposed model (θa, θc and TM), even
when the shell is thin: their degrees of freedom are not sufficient to exhaustively



276 Copyright © 2010 Tech Science Press CMES, vol.56, no.3, pp.249-301, 2010

-1

-0.5

 0

 0.5

 1

 0  0.005  0.01  0.015

z

w[mm]

LD4(θa)
LD4(θc)
LD4(TM)

-1

-0.5

 0

 0.5

 1

 0  0.2  0.4  0.6  0.8  1
z

θ[K]

LD4(θa)
LD4(θc)
LD4(TM)

-0.4

-0.2

 0

 0.2

 0.4

-0.002  0  0.002 0.004 0.006 0.008 0.01 0.012 0.014

z

w[mm]

LD4(θa)
LD4(θc)
LD4(TM)

-0.4

-0.2

 0

 0.2

 0.4

 0  0.2  0.4  0.6  0.8  1

z

θ[K]

LD4(θa)
LD4(θc)
LD4(TM)

-0.1

-0.05

 0

 0.05

 0.1

 0.012  0.014  0.016  0.018  0.02  0.022  0.024

z

w[mm]

LD4(θa)
LD4(θc)
LD4(TM)

-0.1

-0.05

 0

 0.05

 0.1

 0  0.2  0.4  0.6  0.8  1

z

θ[K]

LD4(θa)
LD4(θc)
LD4(TM)

Figure 4: One-layered isotropic shell with applied sovra-temperature on its top
and bottom surfaces. Displacement w and sovra-temperature θ vs. z for Rα/h =
5,10,50 (top, middle and bottom figures, respectively).
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Table 1: One-layered isotropic shell with applied sovra-temperature on its top and
bottom surfaces. Displacement w in [mm] for several two-dimensional theories and
thickness ratios.

Rα/h 5 10 50 100 1000

LD4(θa) w(0) -0.0002 0.0027 0.0193 0.0419 0.1431
LD4(θc) w(0) 0.0007 0.0026 0.0192 0.0418 0.1431
LD4(TM) w(0) 0.0006 0.0025 0.0191 0.0417 0.1431
LD2(θa) w(0) -0.0003 0.0024 0.0192 0.0418 0.1431
LD2(θc) w(0) -0.0004 0.0023 0.0191 0.0417 0.1431
LD2(TM) w(0) -0.0004 0.0023 0.0191 0.0417 0.1431
FSDT(θa) w(0) 0.0028 0.0052 0.0273 0.0589 0.2009
FSDT(θc) w(0) 0.0028 0.0052 0.0273 0.0589 0.2009
FSDT(TM) w(0) 0.0028 0.0052 0.0273 0.0589 0.2009
CLT(θa) w(0) 0.0023 0.0048 0.0270 0.0586 0.2009
CLT(θc) w(0) 0.0023 0.0048 0.0270 0.0586 0.2009
CLT(TM) w(0) 0.0023 0.0048 0.0270 0.0586 0.2009

model the thermal part. LD2 theory gives good results for thin and moderately
thin shells (Rα/h = 50,100,1000). The partially coupled models with calculated
temperature profiles (θc) and the fully coupled models (TM) are almost coincident,
but the solution of Fourier’s heat conduction equation is difficult for thick shells
(Rα/h = 5,10, as illustrated in Figure 4 for the transverse displacement w and the
sovra-temperature profile θ , and in Table 2 for the in-plane displacement u). FSDT
and CLT theories always give the same results because the temperature profile is
linear for θa, θc and TM models. In conclusion, the fully coupled models are a
valid alternative to partially coupled models with calculated temperature profile θc:
they give the same results, but in a simpler way (without solving the Fourier equa-
tion, but directly obtaining both displacements and temperature from the governing
equation).

A two-layered isotropic shell is investigated in Tables 3 and 4, and in Figure 5. The
partially coupled models, with assumed temperature profile (θa), give large errors
for both thick and thin shells: as suggested in Figure 5, the temperature profile is
never linear, even when the shell is thin; in fact, the two layers have different con-
ductivity coefficients and this means linear temperature profiles in each layer but
with different slopes. As in the one-layered case, partially coupled models with
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Figure 5: Two-layered isotropic shell with applied sovra-temperature on its top
and bottom surfaces. Displacement w and sovra-temperature θ vs. z for Rα/h =
5,10,50 (top, middle and bottom figures, respectively).
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Table 2: One-layered isotropic shell with applied sovra-temperature on its top and
bottom surfaces. Displacement u in [10−4m] for several two-dimensional theories
and thickness ratios.

Rα/h 5 10 50 100 1000

LD4(θa) u(h/2) -0.0145 -0.0127 -0.0095 -0.0083 0.0028
LD4(θc) u(h/2) -0.0111 -0.0116 -0.0095 -0.0083 0.0028
LD4(TM) u(h/2) -0.0091 -0.0094 -0.0093 -0.0083 0.0028
LD2(θa) u(h/2) -0.0123 -0.0118 -0.0095 -0.0083 0.0028
LD2(θc) u(h/2) -0.0107 -0.0099 -0.0093 -0.0082 0.0028
LD2(TM) u(h/2) -0.0105 -0.0099 -0.0093 -0.0082 0.0028
FSDT(θa) u(h/2) -0.0131 -0.0136 -0.0131 -0.0116 0.0040
FSDT(θc) u(h/2) -0.0131 -0.0136 -0.0131 -0.0116 0.0040
FSDT(TM) u(h/2) -0.0131 -0.0136 -0.0131 -0.0116 0.0040
CLT(θa) u(h/2) -0.0141 -0.0139 -0.0131 -0.0116 0.0040
CLT(θc) u(h/2) -0.0141 -0.0139 -0.0131 -0.0116 0.0040
CLT(TM) u(h/2) -0.0141 -0.0139 -0.0131 -0.0116 0.0040

a calculated temperature profile (θc) and fully coupled models are almost coinci-
dent, but the solution of Fourier’s heat conduction equation is difficult for thick
shells (Rα/h = 5,10) as shown in Figure 5. The shell is two-layered with a strong
transverse anisotropy, therefore the importance of the kinematics for the displace-
ments approximation can clearly be noticed in Tables 3 and 4 and in Figure 5:
refined theories are preferred to classical theories, such as CLT and FSDT, which
are inadequate for each proposed thermo-mechanical model. LD4, ED4 and ED2
kinematics are coincident for Rα/h = 50,100,1000.

Transverse displacement w in the middle of the three-layered composite shell, and
in-plane displacement u at its top are given in Tables 5 and 6, respectively. Figure
6 shows transverse displacement and sovra-temperature in the thickness direction
z for thick and thin shells. The three layers are made of the same material (carbon
fibre reinforced layers), the only difference is the fibre orientation (0◦ for the bottom
and top layer, and 90◦ for the middle layer). This means that that the conductivity
coefficient κ33 is the same for the three layers, but the in-plane coefficients κ11 and
κ22 are exchanged in the layers (the in-plane dimensions a and b are not the same).
Therefore, the temperature profiles in Figure 6 are easily explained: the profile
is not linear even when the shell is thin. Figure 6 explains the results in Tables
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Figure 6: Three-layered composite shell (0◦/90◦/0◦) with applied sovra-
temperature on its top and bottom surfaces. Displacement w and sovra-temperature
θ vs. z for Rα/h = 5,10,50 (top, middle and bottom figures, respectively).
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Table 3: Two-layered isotropic shell with applied sovra-temperature on its top and
bottom surfaces. Displacement w in [mm] for several two-dimensional theories and
thickness ratios.

Rα/h 5 10 50 100 1000

LD4(θa) w(0) 0.0007 0.0011 0.0048 0.0117 0.0634
LD4(θc) w(0) -0.0001 0.0010 0.0061 0.0129 0.0424
LD4(TM) w(0) 0.0002 0.0010 0.0060 0.0129 0.0424
ED4(θa) w(0) -0.0001 0.0007 0.0047 0.0116 0.0634
ED4(Tc) w(0) -0.0003 0.0009 0.0060 0.0129 0.0424
ED4(TM) w(0) 0.0002 0.0009 0.0060 0.0129 0.0424
LD2(θa) w(0) 0.0006 0.0011 0.0048 0.0117 0.0634
LD2(θc) w(0) 0.0003 0.0010 0.0060 0.0129 0.0424
LD2(TM) w(0) 0.0003 0.0010 0.0060 0.0129 0.0424
FSDT(θa) w(0) 0.0007 0.0012 0.0069 0.0172 0.0916
FSDT(θc) w(0) 0.0010 0.0018 0.0089 0.0189 0.0616
FSDT(TM) w(0) 0.0010 0.0018 0.0089 0.0189 0.0617
CLT(θa) w(0) 0.0004 0.0010 0.0067 0.0170 0.0916
CLT(θc) w(0) 0.0009 0.0017 0.0088 0.0188 0.0617
CLT(TM) w(0) 0.0009 0.0017 0.0088 0.0188 0.0617

5 and 6: for thin and moderately thin shells θc and TM models give the same
results, for thick shells there are some differences because the solution of Fourier’s
heat conduction equation is difficult for thick shells (Rα/h = 5,10). This fact is
confirmed by the in-plane displacement u for Rα/h = 5,10,50 in Table 6. LD4(θa)
theory is correct for very thin shells (Rα/h = 1000). The transverse anisotropy, in
terms of elastic properties, remarks the importance of higher orders of expansion
for the displacement and the inadequacy of CLT and FSDT is confirmed.

For all the three proposed cases, the fully coupled models appear to be the best
solution: they give the same results as the partially coupled θc models, but both the
displacements and temperature are directly obtained from the governing equations.
On the contrary, in the θc model, the temperature profile must be a priori calcu-
lated, by solving the Fourier heat conduction equation, and then introduced into the
governing equation as an external load.
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Table 4: Two-layered isotropic shell with applied sovra-temperature on its top and
bottom surfaces. Displacement u in [10−4m] for several two-dimensional theories
and thickness ratios.

Rα/h 5 10 50 100 1000

LD4(θa) u(h/2) -0.0052 -0.0045 -0.0035 -0.0033 0.0010
LD4(θc) u(h/2) -0.0040 -0.0035 -0.0027 -0.0023 0.0009
LD4(TM) u(h/2) -0.0031 -0.0031 -0.0027 -0.0023 0.0009
ED4(θa) u(h/2) -0.0051 -0.0045 -0.0035 -0.0033 0.0010
ED4(θc) u(h/2) -0.0037 -0.0034 -0.0027 -0.0023 0.0009
ED4(TM) u(h/2) -0.0031 -0.0031 -0.0027 -0.0023 0.0009
LD2(θa) u(h/2) -0.0047 -0.0045 -0.0035 -0.0033 0.0010
LD2(θc) u(h/2) -0.0033 -0.0031 -0.0027 -0.0023 0.0009
LD2(TM) u(h/2) -0.0033 -0.0031 -0.0027 -0.0023 0.0009
FSDT(θa) u(h/2) -0.0046 -0.0048 -0.0050 -0.0047 0.0015
FSDT(θc) u(h/2) -0.0036 -0.0038 -0.0038 -0.0033 0.0013
FSDT(TM) u(h/2) -0.0035 -0.0038 -0.0038 -0.0033 0.0013
CLT(θa) u(h/2) -0.0050 -0.0049 -0.0050 -0.0047 0.0015
CLT(θc) u(h/2) -0.0039 -0.0039 -0.0038 -0.0033 0.0013
CLT(TM) u(h/2) -0.0038 -0.0039 -0.0038 -0.0033 0.0013

7.2 Applied mechanical load

The considered shells are subjected to a mechanical load applied at the top in the z
direction, with amplitude pzt =−200000Pa and harmonic distribution in the plane
(waves number m = n = 1). A comparison is made between the pure mechani-
cal models (see Eq.(56), with inertial contribution and thermal load discarded) and
the fully coupled models (TM) (see Eq.(71), with inertial contribution and thermal
load discarded). In general, when a model considers the thermo-mechanical cou-
pling, smaller displacements are obtained and a temperature profile in the thickness
direction is originated.

The first case considers a one-layered isotropic shell, the correspondent plate case
has already analyzed in Brischetto and Carrera (2010) and Carrera et al. (2007).
Transverse and in-plane displacements are given for the pure mechanical models
and for the fully coupled thermo-mechanical models in Table 7. The pure me-
chanical models give larger displacements than the fully coupled models; in the
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Table 5: Three-layered composite shell (0◦/90◦/0◦) with applied sovra-
temperature on its top and bottom surfaces. Displacement w in [mm] for several
two-dimensional theories and thickness ratios.

Rα/h 5 10 50 100 1000

LD4(θa) w(0) -0.0003 0.0017 0.0092 0.0137 0.0101
LD4(θc) w(0) 0.0003 0.0017 0.0085 0.0131 0.0100
LD4(TM) w(0) 0.0004 0.0016 0.0085 0.0131 0.0100
ED4(θa) w(0) -0.0003 0.0018 0.0091 0.0136 0.0101
ED4(θc) w(0) 0.0001 0.0016 0.0084 0.0131 0.0100
ED4(TM) w(0) 0.0004 0.0016 0.0084 0.0131 0.0100
LD2(θa) w(0) -0.0005 0.0016 0.0091 0.0136 0.0101
LD2(θc) w(0) 0.0004 0.0015 0.0084 0.0130 0.0100
LD2(TM) w(0) 0.0004 0.0015 0.0084 0.0131 0.0100
FSDT(θa) w(0) 0.0017 0.0029 0.0119 0.0181 0.0139
FSDT(θc) w(0) 0.0011 0.0022 0.0110 0.0174 0.0139
FSDT(TM) w(0) 0.0011 0.0021 0.0110 0.0173 0.0139
CLT(θa) w(0) 0.0013 0.0026 0.0119 0.0182 0.0139
CLT(θc) w(0) 0.0010 0.0021 0.0111 0.0175 0.0139
CLT(TM) w(0) 0.0010 0.0021 0.0111 0.0175 0.0139

latter, the deformation field produces a change in temperature in the considered
body. The differences in displacements, as suggested in Nowinski’s book [Nowin-
ski (1978)] for a general structure, and then confirmed in Carrera et al. (2007) and
in Brischetto and Carrera (2010) for the plate case, is about 0.5%÷ 1% for each
thickness ratio and each proposed two-dimensional theory. CLT and FSDT the-
ories properly work only for thin shells (Rα/h = 1000) in the case of mechanical
model. LD4 and LD4(TM) models are compared in Figure 7, in terms of transverse
displacement, for a moderately thin shell. Through the thickness z, the transverse
displacement obtained with the pure mechanical model is always larger than that
obtained with the fully coupled model. This happens because, when a mechanical
load is applied, a small part of the work done by this load, is used to develop an
increment in temperature (the maximum value is about 0.01K ). The temperature
values are remarkably small because of the small coupling effect between the ther-
mal and mechanical fields. The bending problem, as described in Figure 7, leads to
an increment in temperature for the compressed part of the shell and a decrease in
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Table 6: Three-layered composite shell (0◦/90◦/0◦) with applied sovra-
temperature on its top and bottom surfaces. Displacement u in [10−4m] for several
two-dimensional theories and thickness ratios.

Rα/h 5 10 50 100 1000

LD4(θa) u(h/2) 0.0049 0.0013 -0.0005 0.0033 0.0021
LD4(θc) u(h/2) 0.0025 0.0011 0.0009 0.0036 0.0021
LD4(TM) u(h/2) 0.0016 0.0010 0.0011 0.0037 0.0021
ED4(θa) u(h/2) 0.0048 0.0006 -0.0006 0.0032 0.0021
ED4(θc) u(h/2) 0.0025 0.0007 0.0008 0.0036 0.0021
ED4(TM) u(h/2) 0.0017 0.0006 0.0009 0.0037 0.0021
LD2(θa) u(h/2) 0.0053 0.0012 -0.0005 0.0032 0.0021
LD2(θc) u(h/2) 0.0019 0.0009 0.0010 0.0037 0.0021
LD2(TM) u(h/2) 0.0018 0.0009 0.0010 0.0037 0.0021
FSDT(θa) u(h/2) -0.0104 -0.0098 -0.0023 0.0034 0.0026
FSDT(θc) u(h/2) -0.0045 -0.0044 -0.0003 0.0040 0.0026
FSDT(TM) u(h/2) -0.0043 -0.0040 -0.0001 0.0040 0.0026
CLT(θa) u(h/2) -0.0116 -0.0102 -0.0023 0.0035 0.0026
CLT(θc) u(h/2) -0.0050 -0.0045 -0.0002 0.0041 0.0026
CLT(TM) u(h/2) -0.0048 -0.0041 0.0000 0.0041 0.0026

temperature for the enlarged part of the shell.
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Figure 7: One-layered isotropic shell with applied mechanical load pz =
−200000 Pa at the top. Displacement w and sovra-temperature θ vs. z for
Rα/h = 50.
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Table 7: One-layered isotropic shell with applied mechanical load pz =
−200000 Pa at the top. Displacements u and w in [10−6m] for several two-
dimensional theories and thickness ratios.

Rα/h 5 10 50 100 1000

LD4(TM) w(0) -0.2108 -0.9692 -40.241 -277.03 -25410
LD4 w(0) -0.2117 -0.9740 -40.596 -279.50 -25549
LD4(TM) u(h/2) 0.0272 0.0418 0.7926 2.0995 -137.65
LD4 u(h/2) 0.0286 0.0433 0.8020 2.1252 -137.89
LD2(TM) w(0) -0.2158 -0.8897 -39.757 -276.19 -25410
LD2 w(0) -0.2154 -0.8933 -40.107 -278.66 -25548
LD2(TM) u(h/2) 0.0001 0.0216 0.7813 2.0928 -137.65
LD2 u(h/2) 0.0012 0.0230 0.7906 2.1184 -137.89
FSDT(TM) w(0) -0.4332 -1.0588 -39.832 -274.65 -25277
FSDT w(0) -0.4340 -1.0647 -40.518 -279.55 -25552
FSDT(TM) u(h/2) 0.0088 0.0378 0.8038 2.0961 -137.41
FSDT u(h/2) 0.0091 0.0386 0.8211 2.1463 -137.90
CLT(TM) w(0) -0.0408 -0.3109 -36.412 -268.80 -25276
CLT w(0) -0.0416 -0.3168 -37.100 -273.71 -25551
CLT(TM) u(h/2) 0.0111 0.0428 0.8302 2.1461 -137.40
CLT u(h/2) 0.0113 0.0436 0.8473 2.1960 -137.89
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Figure 8: Two-layered isotropic shell with applied mechanical load pz =
−200000 Pa at the top. Displacement w and sovra-temperature θ vs. z for
Rα/h = 50.
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Table 8: Two-layered isotropic shell with applied mechanical load pz =
−200000 Pa at the top. Displacements u and w in [10−6m] for several two-
dimensional theories and thickness ratios.

Rα/h 5 10 50 100 1000

LD4(TM) w(0) -0.1967 -0.8159 -33.052 -226.16 -20294
LD4 w(0) -0.1969 -0.8173 -33.203 -227.09 -20325
LD4(TM) u(h/2) 0.0198 0.0324 0.5641 1.3758 -113.57
LD4 u(h/2) 0.0199 0.0326 0.5659 1.3781 -113.60
ED4(TM) w(0) -0.1277 -0.7851 -33.011 -226.09 -20294
ED4 w(0) -0.1278 -0.7863 -33.162 -227.02 -20325
ED4(TM) u(h/2) 0.0181 0.0315 0.5638 1.3758 -113.57
ED4 u(h/2) 0.0183 0.0317 0.5656 1.3781 -113.60
LD2(TM) w(0) -0.1610 -0.7921 -33.023 -226.11 -20295
LD2 w(0) -0.1613 -0.7936 -33.174 -227.04 -20325
LD2(TM) u(h/2) 0.0100 0.0296 0.5636 1.3755 -113.57
LD2 u(h/2) 0.0102 0.0298 0.5654 1.3778 -113.60
FSDT(TM) w(0) -0.3484 -0.8567 -32.686 -224.97 -20265
FSDT w(0) -0.3487 -0.8596 -32.996 -226.88 -20328
FSDT(TM) u(h/2) 0.0062 0.0272 0.5705 1.3837 -113.54
FSDT u(h/2) 0.0062 0.0274 0.5741 1.3887 -113.60
CLT(TM) w(0) -0.0340 -0.2569 -29.942 -220.30 -20264
CLT w(0) -0.0344 -0.2600 -30.258 -222.22 -20327
CLT(TM) u(h/2) 0.0081 0.0314 0.5916 1.4231 -113.53
CLT u(h/2) 0.0082 0.0316 0.5952 1.4280 -113.59

The case of the two-layered isotropic shell has been investigated in Table 8 and in
Figure 8. The differences in displacements are small, as for the one-layered case:
less than 0.5% for both displacement components, and for each thickness ratio
and each proposed two-dimensional theory. This small coupling effect is also con-
firmed in Figure 8, where maximum increment in temperature, of about 0.005K, is
obtained for a moderately thin shell. The two layers have different thermal prop-
erties, therefore the obtained temperature profile has different slopes in the two
considered layers (see Figure 8). The transverse anisotropy, in terms of elastic
properties, shows the importance of higher orders of expansion and the inadequacy
of CLT and FSDT theories.
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Table 9: Three-layered composite shell (0◦/90◦/0◦) with applied mechanical load
pz = −200000 Pa at the top. Displacements u and w in [10−6m] for several two-
dimensional theories and thickness ratios.

Rα/h 5 10 50 100 1000

LD4(TM) w(0) -3.6017 -11.130 -231.54 -1050.7 -22017
LD4 w(0) -3.6011 -11.134 -231.68 -1051.2 -22019
LD4(TM) u(h/2) -0.6829 -0.8937 -12.795 -68.657 -1709.5
LD4 u(h/2) -0.6835 -0.8940 -12.801 -68.683 -1709.5
ED4(TM) w(0) -3.0467 -10.722 -229.62 -1048.8 -22017
ED4 w(0) -3.0460 -10.727 -229.76 -1049.3 -22018
ED4(TM) u(h/2) -0.7651 -0.8897 -12.563 -68.437 -1709.4
ED4 u(h/2) -0.7658 -0.8899 -12.569 -68.464 -1709.5
LD2(TM) w(0) -3.4768 -10.866 -229.17 -1048.5 -22017
LD2 w(0) -3.4761 -10.870 -229.31 -1048.9 -22019
LD2(TM) u(h/2) -0.7197 -0.8822 -12.664 -68.509 -1709.5
LD2 u(h/2) -0.7203 -0.8824 -12.670 -68.535 -1709.5
FSDT(TM) w(0) -5.3746 -11.548 -226.46 -1046.3 -22019
FSDT w(0) -5.3749 -11.550 -226.66 -1047.0 -22021
FSDT(TM) u(h/2) -0.2143 -0.3783 -12.026 -67.974 -1709.4
FSDT u(h/2) -0.2142 -0.3781 -12.034 -68.014 -1709.5
CLT(TM) w(0) -0.2568 -1.9381 -194.08 -1018.0 -22019
CLT w(0) -0.2571 -1.9406 -194.30 -1018.7 -22021
CLT(TM) u(h/2) 0.0480 0.1177 -0.0973 -65.708 -1709.4
CLT u(h/2) 0.0481 0.1179 -0.0974 -65.751 -1709.4

A three-layered composite shell is investigated in Table 9 and in Figure 9. The
small coupling effect is here confirmed by the differences in terms of displacements
(less than 0.1%) and the maximum increment in temperature (about 0.01K for a
moderately thin shell). According to these results, the coupling effect in composite
materials seems less pronounced than those in isotropic metallic materials. The
temperature profile, given in Figure 9, has a less marked zigzag form than the two-
layered isotropic shell, because the thermal expansion coefficient α3 is the same for
the three layers, and only the α1 and α2 coefficients are exchanged in the embedded
layers. The importance of refined theories is clearly shown in Table 9, however CLT
and FSDT theories give good results for thin shells (Rα/h = 1000).
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Table 10: One-layered isotropic shell, free vibrations problem. Fundamental fre-
quency f in Hz for several two-dimensional theories and thickness ratios. Waves
number m = n = 1. The full coupling problem is indicated with (TM)* in case of
imposed temperature conditions and (TM) in case of free temperature conditions.

Rα/h 5 10 50 100 1000

LD4(TM) 1415.3 1238.0 467.78 254.75 84.388
LD4(TM)* 1414.3 1237.0 467.18 254.43 84.365
LD4 1413.5 1235.3 465.79 253.64 84.160
LD2(TM) 1484.8 1284.5 470.43 255.13 84.388
LD2(TM)* 1483.6 1281.9 468.45 254.06 84.323
LD2 1483.5 1281.9 468.42 254.01 84.160
FSDT(TM) 1485.6 1286.0 472.42 256.27 84.617
FSDT 1483.1 1281.0 468.38 254.02 84.161
CLT(TM) 1590.4 1590.4 492.78 259.00 84.618
CLT 1590.4 1590.4 488.19 256.67 84.161
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Figure 9: Three-layered composite shell (0◦/90◦/0◦) with applied mechanical load
pz = −200000 Pa at the top. Displacement w and sovra-temperature θ vs. z for
Rα/h = 50.

In conclusion, the thermo-mechanical coupling effect is very small in the consid-
ered shells and can be discarded as already proposed for the plate case given in
Brischetto and Carrera (2010). However, fully coupled thermo-mechanical models
could be used for future applications, such as thermography investigations [Spiess-
berger et al. (2008); Fantoni et al. (2008); Ibarra-Castanedo et al. (2008)]: the
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Figure 10: One-layered isotropic shell, free vibrations problem. Modes in terms
of displacements and sovra-temperature for the fundamental frequency: m = n =
1 and Rα/h = 10. LD4 theory for free temperature conditions (top figures) and
imposed temperature conditions (bottom figures).

increment in temperature is experimentally measured to determine the strains and
stresses which have generated it.

7.3 Free vibrations analysis

Free vibration analysis is investigated for the three proposed simply supported
shells. Imposing the wave numbers (m = n = 1) in the plane, results are given
in terms of fundamental frequency f in Hz. In this dynamic case, the pure mechan-
ical models give smaller frequencies than those obtained with the fully coupled
thermo-mechanical models. Table 10 gives the fundamental frequencies for a one-
layered isotropic shell, Table 11 for a two-layered isotropic shell, and finally, Table
12 presents results for a three-layered composite shell. The pure mechanical model
uses the governing equation (56) and discards the thermal and mechanical loads,
while the fully coupled thermo-mechanical model considers the governing equa-
tions (71) by discarding the thermal and mechanical loads. In the case of fully
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Figure 11: Two-layered isotropic shell, free vibrations problem. Modes in terms
of displacements and sovra-temperature for the fundamental frequency: m = n =
1 and Rα/h = 10. LD4 theory for free temperature conditions (top figures) and
imposed temperature conditions (bottom figures).

coupled models, the external surfaces of the plate can have imposed conditions
on the sovra-temperature (θt = θb = 0, which means the temperature on the exter-
nal surfaces equals the external room temperature), or no conditions on the sovra-
temperature are applied. The first case is here indicated as (TM)*, the second as
(TM).

The differences in Table 10 between the pure mechanical fundamental frequency
and the fully coupled fundamental frequency are about 0.5% for each investigated
thickness ratio and for each proposed two-dimensional theory. The frequencies ob-
tained with the thermo-mechanical models are larger because, when the thermal
effect is included, the rigidity matrix undergoes a sort of increase in rigidity. Fre-
quencies obtained with the thermo-mechanical models with imposed thermal con-
ditions (TM)* are smaller than those obtained with free thermal conditions (TM).
For classical theories, such as CLT and FSDT, the (TM)* case cannot be consid-
ered, because the employed degrees of freedom are not sufficient to impose such
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Figure 12: Three-layered composite shell (0◦/90◦/0◦), free vibrations problem.
Modes in terms of displacements and sovra-temperature for the fundamental fre-
quency: m = n = 1 and Rα/h = 10. LD4 theory for free temperature conditions
(top figures) and imposed temperature conditions (bottom figures).

conditions. CLT and FSDT give good results for thin shells (Rα/h = 1000), but
CLT(TM) and FSDT(TM) do not properly model the thermal part. Fundamental
frequency modes, are given in Figure 10 for both free and imposed thermal condi-
tions, in terms of displacements and temperature, for a thick shell. The first mode
is a bending mode, therefore the temperature increases in the compressed part and
decreases in the enlarged part of the shell; when the imposed thermal conditions are
considered, the sovra-temperature is zero at the top and bottom of the plate. The
values given by the modes have only a qualitative sense and they are normalized
with the maximum values.

Table 11 proposes the same results as Table 10, but for a two-layered shell. The
same conclusions can be drawn: the differences between pure mechanical funda-
mental frequency and the fully coupled fundamental frequency are less than 0.5%.
The importance of refined theories is clearly indicated for thick and moderately
thick shells, CLT and FSDT give good results for thin shells (Rα/h = 1000), but
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Table 11: Two-layered isotropic shell, free vibrations problem. Fundamental fre-
quency f in Hz for several two-dimensional theories and thickness ratios. Waves
number m = n = 1. The full coupling problem is indicated with (TM)* in case of
imposed temperature conditions and (TM) in case of free temperature conditions.

Rα/h 5 10 50 100 1000

LD4(TM) 1372.5 1202.4 455.28 248.41 83.160
LD4(TM)* 1372.3 1202.2 455.15 248.34 83.157
LD4 1371.8 1201.1 454.22 247.89 83.096
ED4(TM) 1378.8 1206.3 455.50 248.44 83.161
ED4(TM)* 1378.7 1206.1 455.37 248.37 83.158
ED4 1378.2 1205.0 454.44 247.93 83.098
LD2(TM) 1395.3 1209.5 455.46 248.43 83.159
LD2(TM)* 1394.8 1208.8 455.06 248.24 83.151
LD2 1394.6 1208.2 454.40 247.92 83.096
FSDT(TM) 1556.3 1257.0 459.28 249.35 83.227
FSDT 1556.3 1254.0 457.10 248.30 83.097
CLT(TM) 1557.6 1559.3 478.65 251.94 83.227
CLT 1557.6 1559.2 476.14 250.84 83.098

they do not properly model the thermal part (see CLT(TM) and FSDT(TM)). The
modes, in terms of displacement and temperature, are given in Figure 11 for a thick
shell (Rα/h = 10); in this case, the transverse anisotropy due to the two different
layers is clearly indicated.

A three-layered composite shell is investigated in Table 12 and in Figure 12; the
coupling effect is less pronounced than in the other two cases (less than 0.1%) and
it disappears for very thin shells (Rα/h = 1000). The small coupling is confirmed
by the same results obtained with (TM) and (TM)* models. CLT and FSDT give
correct results for thin shells (Rα/h = 1000). The modes plotted in Figure 12 are
for a thick shell (Rα/h = 10) and they confirm the transverse anisotropy in a three-
layered composite shell. In order to obtain correct values of frequencies for thick
shells, higher orders of expansion are necessary.

In conclusion, for the free vibration analysis, the thermo-mechanical coupling ef-
fect is very small and it can be discarded. However, fully coupled models are very
interesting because they give the modes in terms of displacements and tempera-
ture. A possible application could be thermography investigations, as suggested in
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Table 12: Three-layered composite shell (0◦/90◦/0◦), free vibrations problem.
Fundamental frequency f in Hz for several two-dimensional theories and thick-
ness ratios. Waves number m = n = 1. The full coupling problem is indicated
with (TM)* in case of imposed temperature conditions and (TM) in case of free
temperature conditions.

Rα/h 5 10 50 100 1000

LD4(TM) 478.76 452.38 234.37 156.77 108.58
LD4(TM)* 478.75 452.37 234.36 156.77 108.58
LD4 478.67 452.28 234.30 156.74 108.57
ED4(TM) 489.68 457.35 235.36 156.92 108.58
ED4(TM)* 489.67 457.34 235.35 156.91 108.58
ED4 489.57 457.24 235.29 156.88 108.57
LD2(TM) 482.96 458.04 235.59 156.94 108.58
LD2(TM)* 482.92 458.01 235.57 156.93 108.58
LD2 482.87 457.94 235.52 156.91 108.57
FSDT(TM) 513.44 479.34 237.81 157.28 108.58
FSDT 513.42 479.28 237.70 157.22 108.57
CLT(TM) 761.77 759.92 255.58 159.39 108.58
CLT 761.76 759.00 255.44 159.33 108.57

Spiessberger et al. (2008), Fantoni et al. (2008) and Ibarra-Castanedo et al. (2008).

8 Conclusions

A fully coupled thermo-mechanical analysis has been proposed for one-layered and
multilayered shells, in analogy with the companion paper [Brischetto and Carrera
(2010)], where the same analysis has been performed for plate geometry. The in-
troduction of curvatures for shell geometry, does not add further comments in the
conclusions already obtained for the plate case. Both displacements and tempera-
ture are considered as primary variables of the problem, and they can be directly
obtained from the solution of the governing equations. These features lead to some
advantages:

• in the case of an applied temperature to the external surfaces of the shell,
the fully coupled analysis permits such values to be easily imposed in the
governing equations, and the relative displacements and temperature profile
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are directly obtained from the solutions of such equations. The advantages,
with respect to a partially coupled thermo-mechanical analysis, have been
clearly indicated. In this latter case, in fact, the temperature profile must be
a priori defined (assuming it linear in the thickness direction or calculating
it by solving the Fourier heat conduction equation) to determine the thermal
load;

• in the case of an applied mechanical load to the structure, the fully coupled
thermo-mechanical analysis permits the displacement and the temperature
generated by the strains to be evaluated. The effect of the thermo-mechanical
coupling has been evaluated through comparisons with pure mechanical anal-
ysis. The coupling effect is very small and it can therefore be discarded in
such an analysis. However, thermo-mechanical coupling could be used for
thermography investigations;

• the effect of the thermo-mechanical coupling has also been evaluated for free
vibration analysis; the fully coupled thermo-mechanical analysis permits the
frequency values and the vibration modes to be evaluated in terms of the
displacement and temperature. The effect of thermo-mechanical coupling
has also been evaluated for the dynamic case through comparisons with pure
mechanical analysis. The coupling effect is very small and it can therefore be
discarded in a free vibration analysis. However, thermo-mechanical coupling
could be used for thermography investigations, as already suggested for the
static case.

Future works will consider the effect of the time evolution of the heat flux, it could
be added in the relaxation term to analyze the transient regime of the proposed
cases (both plate and shell geometries).
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