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Error Analysis of Various Basis Functions Used in BEM
Solution of Acoustic Scattering
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Abstract: In this work, various basis functions used in the Method of Moments
or Boundary Element (MoM/BEM) solution of acoustic scattering problems are
compared with each other for their performance. Single layer formulation of the
rigid bodies is considered in comparison of the solutions. Geometry of a scatterer
is descritized using triangular patch modeling and basis functions are defined on
triangular patches, edges and nodes for three different solutions. Far field scattering
cross sections for different frequencies of incident acoustic wave are compared with
the closed form solutions. Also, the errors of the solutions using these three types of
basis functions are computed and plotted. Finally important conclusions are drawn
and future work defined.
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1 Introduction

With the increase in complexity of geometries like the shape and size, it becomes
necessary to invent new methods to compute the acoustic fields around a scattering
object faster. Though there is significant growth in the computational speeds of
the computer hardware, the industry always demands solutions for larger problems
which require not only the high speed processors but also the efficient and faster
algorithms. Examples of the computationally large size problems include, geome-
tries having intricate shapes like air crafts, very thin bodies like space craft wings,
geometries having too many small details like engine bodies.

In a numerical method, the mathematical formulation along with the boundary con-
ditions and geometry are descritized in order to solve the problem. The acoustic
scattering problems can be solved using the numerical methods like Finite Ele-
ment Method (FEM) [Frank (1998)], Boundary Element Method (BEM) [Mallardo
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(1998), Yang (2004), Qian, Han, Ufimtsev & Atluri (2004), Yan, Cui & Hung
(2005)] or method of moments solution (MoM) [Harrington (1968); Raju, Rao, &
Sun (1991); Rao & Raju (1989); Rao & Sridhara (1991); Rao, Raju, & Sun (1992);
and Sun & Rao (1992)], Finite Difference Method [Christopher & Ju (2009)], Mesh
less Methods [Atluri (2009)] etc. Of all the numerical methods available to solve
the acoustic scattering problem, Boundary Element Method (BEM) is based on in-
tegral equation formulation and the advantage of this method is reduction in dimen-
sionality of problem. In BEM, only surface of the three dimensional object needs to
be descritized compared to FEM, in which the whole volume of the domain around
the scattering object is descritized. Another advantage of BEM is, radiation bound-
ary condition is automatically implied in the formulation. BEM is also treated as
one of the variants of MoM solution, which is popularly used in Electromagnetic
scattering [Gibson (2007)]. Other applications of BEM can be found in ref [Tan,
Shiah & Lin (2009), Soares & Vinagre (2008), Mantia & Dabnichki (2008) and
Wang & Yao (2008)].

Although BEM is very popular, two major drawbacks it has are listed below. The
first one being the final moment matrices becomes dense and the second one being
the presence of singular, strongly singular and hyper singular kernels [De Klerk
(2005)] in the boundary integral equations. To overcome the problem of dense
matrices there has been a great deal of research work going on using different
approaches [He, Lim & Lim (2008), Liu & Nishimura (2006), Phillips & White
(1997)]. The treatment of strongly singular and hyper singular kernels has been
given a great importance by the researchers to implement it numerically. Notable
among them are: calculation techniques of hyper singular integrals [Yan, Hung
& Zheng (2003) and Yan, Cui & Hung (2005)], derivation of non-hypersingular
boundary integral equations [Qian, Han, Ufimtsev & Atluri (2004), and Qian, Han
& Atluri (2004)], derivation of weekly singular and regular integrals [Han & Atluri
(2007) and Sanz, Solis & Dominguez (2007)] and usage simple vector calculus
operators to circumvent the hyper singularity [Chandrasekhar & Rao (2008), and
Chandrasekhar (2008)] in integral equations.

In BEM, the surface of the scattering object is descritized using triangular patch
modeling and it results in three types of geometric entities, namely; triangular
patches, edges and nodes. The MoM/BEM solution technique has a versatile fea-
ture which allows the unknown basis functions to be defined on any of these geo-
metric entities. The accuracy and speed of solution depends upon where the basis
functions are defined. For the sake of simplicity, in this work, constant basis func-
tions are used to compare the accuracies of the MoM/BEM solutions when the basis
functions are defined on patches, edges and nodes. Rao, Raju, Sridhara, and Sun
[Raju, Rao, & Sun (1991); Rao & Raju (1989); Rao & Sridhara (1991); Rao, Raju,
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& Sun (1992); Sun & Rao (1992)] have used patch based constant basis functions
to compute the acoustic far fields. Chandrasekhar and Rao [Chandrasekhar & Rao
(2004a)] have used edge based basis functions to solve the double layer formulation
since the patch based basis functions were not sufficient enough to incorporate into
the solution of double layer formulation. Chandrasekhar [Chandrasekhar (2005)]
developed node based basis function and advantage of using node based basis func-
tions is it results in smallest size of moment matrix compared to edge based and
patches based MoM/BEM solutions.

In this work, accuracies of the solutions based on defining the basis functions on
these three geometric entities are analyzed. Comparisons are made among the so-
lutions and the errors are computed for the cases where closed form solutions are
available. Since there is no known solution available for the double layer formu-
lation and combined layer formulation based on patch based basis function, single
layer formulation is chosen for comparing the accuracies and errors of MoM/BEM
solutions based on different basis functions.

2 Mathematical Formulation

Let,(
pi,ui

)
: Pressure and Velocity of the incident wave on a three-dimensional arbi-

trarily shaped rigid body placed in a source free homogeneous medium of density
ρ and speed of sound c through the medium. Here, we note that, incident fields are
defined in the absence of the scattering body,

(ps,us) : Pressure and Velocity of the scattered wave and these two values depend
up on the boundary condition on the scattering surface and shape of the scattering
surface,

Φ : Velocity potential satisfying the Helmholtz differential equation ∇2Φ+k2Φ = 0
for the time harmonic waves present in the region exterior to the surface S of the
scattering body. The pressure and velocity fields of acoustic wave is related to the
scalar velocity potential Φ as u = −∇Φ and p = jωρΦ.

Using the potential theory and the free space Green’ s function, the scattered ve-
locity potential Φs for the single layer formulation may be defined as

Φ
s =

∫
s
σ
(
r′
)

G
(
r,r′
)

ds′ (1)

Where
Φs is the scattered velocity potential,
σ is the source density function independent of r over the surface of the body,
r is the position vectors of observation point with respect to a global co-ordinate
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system O,
r′ is the position vectors of source point with respect to a global co-ordinate system
O,
G(r,r′) is Free space Green’s function, given by,

G
(
r,r′
)

=
e− jk|r−r′|

4π |r− r′|
. (2)

G(r,r′) is the solution of the Helmholtz equation with a point source inhomogeneity(
∇

2 + k2) G(r,r′) = −δ
(
r− r′

)
. (3)

For a rigid body, the normal derivative of total velocity potential, which is the sum
of incident and scattered velocity potential, with respect to the observation point on
the surface of the body vanishes. That is

∂
(
Φi +Φs

)
∂n

= 0 (4)

∂Φs

∂n
= −∂Φi

∂n
. (5)

where Φi is the incident velocity potential.

Substituting Eq. 1 into Eq. 5,

∂

∂n

∫
s
σ
(
r′
)

G
(
r,r′
)

ds′ =−∂Φi

∂n
. (6)

Eq. 6 can also be re-written as

σ (r′)
2
−
∫

s
σ
(
r′
)∂G(r,r′)

∂n
ds′ =

∂Φi

∂n
. (7)

The second term in the above equation is the integration over the surface excluding
the principal value term i.e. r = r′. We note that, this integral is a well behaved in-
tegral, although rapidly varying, which can be evaluated using standard integration
algorithms.

3 Numerical Solution

Per MoM/BEM solution procedure [Harrington (1968); Chandrasekhar & Rao (2004)],
Testing Eq. 7 with a testing function wm, results in〈

wm,
σ (r′)

2

〉
−
〈

wm,
∫

s
σ
(
r′
)∂G(r,r′)

∂n
ds′
〉

=
〈

wm,
∂Φi

∂n

〉
. (8)
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Using the inner product definition, Eq. 8 can be written as

1
2

∫
s
wmσ

(
r′
)

ds−
∫

s
wm

∫
s
σ
(
r′
)∂G(r,r′)

∂n
ds′ ds =

∫
s
wm

∂Φi

∂n
ds. (9)

The testing functions wm are defined on the geometric entity as similar to that of ba-
sis functions. Fig. 1 shows different geometric entities of triangular patch modeling
of a geometry and basis functions are defined on each of these geometric entities in
following paragraphs.

 

Triangular 
Patch 

Edge 

Node 

Figure 1: Triangular Patches on a Geometry

The relation between the number of patches N f , number of edges Ne and number of
nodes Nn resulted in triangular patch modeling of a closed body is Nn−Ne +N f = 2
and N f = 2Ne/3 [Oneill (1966)]. For example, if a closed body has 300 edges, then
there will be 200 triangular patches and 102 nodes. By defining the basis functions
on edges, patches and nodes, respective numerical solutions will result in moment
matrices of size 300 X 300, 200 X 200 and 102 X 102.

3.1 Patch Based Basis Functions

In this case, constant basis functions are defined on the patch. Fig. 2 shows the
patch Tn on which basis function is defined.

The basis function may be defined as follows:

fn
(
r′
)

=

{
1, r′ ∈ Tn

0, Otherwise
(10)
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Tn 

Figure 2: Triangular Patch on which Patch Basis Function Defined

The source density function σ over the surface of the scattering object is approxi-
mated by

σ
(
r′
)
≈

N f

∑
n=1

βn fn (11)

where βn represent the unknown coefficients to be determined. In the numerical
solution of Eq. 9, Galarkin’s approach is used by defining the testing function in
the same manner as it is defined for the basis function.

wm =

{
1, r ∈ Tm

0, Otherwise
(12)

Substituting Eq. 12 in Eq. 9 and approximating the integrations at the centroids of
triangles, Eq. 9 becomes

σ (r′)
2

Am−Am

∫
s
σ
(
r′
)∂G(rm,r′)

∂nm
ds′ = Am

∂Φi

∂nm
(13)

Where
Am : area of triangle m,
rm : Centroid of triangle m, and
nm : Unit normal vector of triangle m.

Substituting Eq. 11 in Eq. 13, it results in a system of linear equations, which can
be represented in the matrix form as

ZPXP = YP (14)
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where ZP is the moment matrix of the single layer formulation of size N f X N f ,
XP and YP are the column vectors of size N f . The elements of ZP and YP are given
below.

Zmn
P =

{
1
2 Am, f or m = n,

−Am
∫

s
∂G(rm,rn)

∂nm
ds′ Otherwise

(15)

and

Y m
P = Am

∂Φi

∂nm
(16)

Once the elements of the moment matrix ZP and the forcing vector YP are deter-
mined, one may solve the linear system of equations, Eq. 14, for the unknown
vector XP.

3.2 Edge Based Basis Functions

In this case, basis functions are defined on the edges of the triangular patch mod-
eling. For this, each triangular patch Tn is divided into three equal parts by joining
the vertices or nodes to the centroids of triangles. For each edge n, there are two
sub triangles, S+

n and S−n , attached as shown in Fig. 3.

 
 

Edge n

+
nT

−
nT

+
nS

−
nS

Figure 3: Adjacent Sub-Triangles on which Edge Basis Function Defined

The basis function may be defined as follows:

fn
(
r′
)

=

{
1, r′ ∈ S±n
0, Otherwise

(17)
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Following the similar procedure as discussed in previous section (Patch Based Ba-
sis Functions), the linear system of equations are derived as

ZEXE = YE (18)

where ZE is the moment matrix of the single layer formulation of size Ne X Ne , XE

and YE are the column vectors of size Ne and the elements of ZE and YE are given
below.

Zmn
E =


1
2

[
A+

m+A−m
3

]
+Ω+

mm + Ω−mm, f or m = n,

−
[

A+
mΩ+

mn
3 + A−mΩ−mn

3

]
, f or m 6= n

(19)

Y m
E =

[
A+

m

3
n+ +

A−m
3

n−
]
•∇Φ(rm) (20)

where

Ω
±
mn =

∫
S+

n

∂G(r±m ,r±n )
∂n±m

ds′+
∫

S−n

∂G(r±m ,r±n )
∂n±m

ds′ . (21)

For more details about the derivations reader may consult ref [Chandrasekhar &
Rao (2004b)].

3.3 Node Based Basis Functions
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Figure 4: Cluster of Sub-Triangles on which Node Basis Function Defined
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In this case, basis functions are defined on the nodes, i.e. on all the sub-triangles
surrounding the node n. Sub triangles are formed by joining nodes with the mid
points of opposite edges as shown in Fig 4. All the sub triangles surrounding the
node n are grouped into a cluster and the basis function is defined on the cluster.
Let there are u number of sub triangles around field node m and v number of sub
triangles around the source node n. In this paper, index x is used to represent the sub
triangle attached to the field node and index y is used to represent the sub triangle
attached to the source node. Let Sn represent the region of cluster on which basis
function is defined. The node based basis function may be defined as

fn
(
r′
)

=

{
1 r′ ∈ Sn

0 Otherwise
(22)

Following the procedures described in previous sections, the linear system of equa-
tions are derived as

ZNXN = YN (23)

where ZN is the moment matrix of the single layer formulation of size Nn X Nn , XN

and YN are the column vectors of size Nn. The elements of ZN and YN are given
below.

Zmn
N =


1
2

u
∑

x=1
Ax

m f or m = nand x = y

−
u
∑

x=1

v
∑

y=1
Ax

m
∫

s
∂G(rcx

m ,rcy
n )

∂nx
m

ds′ otherwise
(24)

and

Y m
N =

u

∑
x=1

Ax
m

∂Φi

∂nx
m

(25)

where Ax
m is the area of sub-triangle attached to the field node m, rcx

m is the position
vector to the centroid of xth sub-triangle attached to field node m, rcy

n is the position
vector to the centroid of yth sub-triangle attached to source node n, ∂G/∂nx

m is the
normal derivative of Green’s function at the centroid of xth sub-triangle attached
to field node m, and nx

m is the unit normal vector of xth sub-triangle attached to
the field node m. For more details about the derivations reader may consult ref
[Chandrasekhar (2005) and (2008)].

Once the elements of the impedance matrices ZP, ZE and ZN ; and the forcing vector
YP,YE and YN are determined, one may solve the linear system of equations, Eqs.
14, 18 and 23, for the unknown vectors XP,XE and XN , respectively.
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For a plane wave incidence, we set

Φ
i = e jkk̂•r (26)

where the propagation vector k̂ is given by,

k̂ = sinθ0 cosφ0 ax + sinθ0 sinφ0 ay + cosθ0 az (27)

(θ0,φ0) define the angles of arrival of the plane wave in the conventional spherical
co-ordinate system and ax, ay and az are the unit vectors along the x,y and z axes,
respectively.

The normal derivative of the incident field may be written as

∂Φi

∂n
=n•∇Φ

i

= jk n• k̂ e jkk̂•r.

(28)

Here we note that, when the frequency of the incident wave is in the close vicinity
of the characteristic frequency related to Dirichlet problem, the moment matrices
ZP, ZE and ZN becomes highly ill-conditioned and the solution vectors XP,XE and
XN turns out to be spurious resulting in unphysical values of source distribution σ .
One may consult ref [Chandrasekhar (2004b) and (2008)] to address the resonance
problem and in this work, it is only the intention to show comparison between
performances of different basis functions.

4 Error Measure

The error in the acoustic scattering problem solutions based on numerical methods
may arise from many sources. It can be due to triangular patch modeling or the
numerical method. The size of the triangular patches generated in approximating
the surface of the scatterer has an impact on the error. Higher the size of patches
or lower the mesh density, higher the error, especially for geometries having cur-
vatures. Similarly the number of triangular patches used per wavelength also plays
an important role in the amount of error.

Errors in the numerical solutions also arise from the integral equation formula-
tions like Helmholtz Integral Equation Formulation [Burton and Miller (1971)] and
Layer Formulations [Chandrasekhar and Rao (2004b)], testing and basis functions,
type and order of the basis functions. Since the quadrature rules are used in the so-
lutions of integral equation formulations, the kind of rules used also contribute the
error. Finally the linear system solution algorithms used, either iterative of direct
solvers, may also impact the magnitude of error.
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The error can also come from scatterer smoothness, fictitious internal resonances,
angle of incidence, types of final numerical result like scattered field, total field,
scattering cross section.

In this work, only the scattering cross sections are computed for canonical shapes
which have exact solutions available. And the following relation is used in com-
puting the error. Let S and Ŝ be the scattering cross section based on closed form
solution and numerical solution respectively. The error can be estimated as

Error =
S− Ŝ

S
. (29)

There are other forms of error measurements apart from Eq. 29 for MoM/BEM
based solutions and reader may refer [Warnik and Chew (2004)] for more details.
The Acoustic far field scattering cross section may be expressed by the relation

S = 4π

∣∣∣∣Φs

Φi

∣∣∣∣2 (30)

For a canonical shaped geometries, the far field scattering cross section S based on
closed form solution may be computed from the ref [Bowmen, Senior & Uslenghi
(1964)], where as for the numerical solutions based on the type of basis functions
used viz. Patch, Edge and Node based basis functions, the scattering cross section
may be expressed as:

ŜP ≈
1

4π

∣∣∣∣∣ N f

∑
n=1

βn

[
Annn • rne jknn•rn

]∣∣∣∣∣
2

(31)

for patch based basis functions,

ŜE ≈
1

4π

∣∣∣∣∣ Ne

∑
n=1

βn

[
2

∑
y=1

Ay
n

3
ny

n • ry
ne jkny

n•ry
n

]∣∣∣∣∣
2

(32)

for edge based basis functions,

ŜN ≈
1

4π

∣∣∣∣∣ Nn

∑
n=1

βn

[
v

∑
y=1

Ay
nny

n • ry
ne jkny

n•ry
n

]∣∣∣∣∣
2

(33)

for node based basis functions.

While many or all the sources of errors listed in the previous paragraphs are inher-
ent in the numerical solutions, it is the intent of this research article to compare the
numerical solutions by using different types of basis functions only.
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5 Numerical Results

In this section, numerical results for the case of a sphere are presented since the
closed form solution is available. The numerical results based on patch, edge and
node based basis functions are compared with the closed form solution and the er-
rors are computed for different scattering directions. To begin with, a sphere of
radius 1m is approximated with triangular patch modeling which results in geo-
metric entities like triangular 352 patches, 528 edges and 178 nodes. The number
of triangular patches on the surface of sphere is chosen in such way that there are
at least 10 patches per unit wavelength of the incident wave. Numerical results are
plotted for the same approximated geometry but by varying the frequency of the
incident acoustic wave. In all cases, incident acoustic wave travels in –Z direction
and center of the sphere is located at the origin of the coordinate system.

In case of edge based solution, since the basis functions are defined on edges, it
results in a moment matrix of size 528 X 528. Similarly, for patch based and
node based solution, the sizes of moment matrix are 352 X 352 and 178 X 178,
respectively. It is clear that, computational cost of inverting moment matrix is
least for the case of node based basis functions and is most for edge based basis
functions.

Figs. 5 through 9 show the scattering cross section of rigid sphere of radius 1m
for k = 1rad/m through k = 5rad/m for the polar angles 0 to 180◦. By care fully
studying the plots, it can be concluded qualitatively that solutions based on edge
based basis functions are more accurate compared to patch and node based solu-
tions; and patch based solutions are more accurate than node based solutions and
less accurate than edge based solutions. The reason for this kind of behavior is,
since constant basis functions are defined on edges, patches and nodes, variation
of source density function on the surface of the scatterer can be better represented
with edge based basis functions compared to the other two as number of defined
basis functions are more in this case. Similarly, since the number of patches is al-
most equal to two times the number of nodes, patch based basis function represent
better variation of source density function on the surface of the scatterer compared
to node based basis functions.

Similarly quantitative measurements of errors are plotted in Figs. 10 through 14
and it can be concluded that overall, edge based solutions have better accuracy
compared to the rest two.

It can be concluded that edge based solutions are the best in terms of accuracy com-
pared to the other two as the variation of the source density function on the surface
of scatterer can be better represented due to more number of defined basis func-
tions. However, the computational cost involved in the solution of linear system of
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Figure 5: Scattering cross section versus polar angle for an acoustically rigid sphere
of radius 1m, subjected to an axially incident plane wave of k = 1rad/m.
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Figure 6: Scattering cross section versus polar angle for an acoustically rigid sphere
of radius 1m, subjected to an axially incident plane wave of k = 2rad/m.
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Figure 7: Scattering cross section versus polar angle for an acoustically rigid sphere
of radius 1m, subjected to an axially incident plane wave of k = 3rad/m.
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Figure 8: Scattering cross section versus polar angle for an acoustically rigid sphere
of radius 1m, subjected to an axially incident plane wave of k = 4rad/m.
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Figure 9: Scattering cross section versus polar angle for an acoustically rigid sphere
of radius 1m, subjected to an axially incident plane wave of k = 5rad/m.
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Figure 10: Back scattering amplitude error versus polar angle for an acousti-
cally rigid sphere of radius 1m, subjected to an axially incident plane wave of
k = 1rad/m.
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Figure 11: Back scattering amplitude error versus polar angle for an acousti-
cally rigid sphere of radius 1m, subjected to an axially incident plane wave of
k = 2rad/m.
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Figure 12: Back scattering amplitude error versus polar angle for an acousti-
cally rigid sphere of radius 1m, subjected to an axially incident plane wave of
k = 3rad/m.
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Figure 13: Back scattering amplitude error versus polar angle for an acousti-
cally rigid sphere of radius 1m, subjected to an axially incident plane wave of
k = 4rad/m.
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Figure 14: Back scattering amplitude error versus polar angle for an acousti-
cally rigid sphere of radius 1m, subjected to an axially incident plane wave of
k = 5rad/m.

equations is least in case node based solutions. To exploit the benefits of both less
computational cost and better accuracy, one can choose the patch based solutions.

6 Conclusions

In this work, the error measurements are made for numerical solutions based on
patch, edge and node based solutions. Also, the matrix equations are presented
along with the size of the moment matrices generated in the solutions. It is con-
cluded that edge based solutions are the best in terms of accuracy compared to the
other two as the variation of the source density function on the surface of scatterer
can be better represented due to more number of defined basis functions. How-
ever, the computational cost involved in the solution of linear system of equations
is least in case node based solutions. To exploit the benefits of both less compu-
tational cost and better accuracy, one can choose the patch based solutions. But,
the problem that exists with the patch based basis functions are, there is no known
numerical solution available to solve the double layer formulation which is nec-
essary to ensure a unique solution. Next level in this research work would be to
develop numerical procedures to solve double layer formulation based on defining
basis functions on patches.
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