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The Lie-Group Shooting Method for Computing the
Generalized Sturm-Liouville Problems

Chein-Shan Liu1

Abstract: We propose a novel technique, transforming the generalized Sturm-
Liouville problem: w′′+q(x,λ )w = 0, a1(λ )w(0)+a2(λ )w′(0) = 0, b1(λ )w(1)+
b2(λ )w′(1) = 0 into a canonical one: y′′ = f , y(0) = y(1) = c(λ ). Then we can
construct a very effective Lie-group shooting method (LGSM) to compute eigen-
values and eigenfunctions, since both the left-boundary conditions y(0) = c(λ ) and
y′(0) = A(λ ) can be expressed explicitly in terms of the eigen-parameter λ . Hence,
the eigenvalues and eigenfunctions can be easily calculated with better accuracy,
by a finer adjusting of λ to match the right-boundary condition y(1) = c(λ ). Nu-
merical examples are examined to show that the LGSM possesses a significantly
improved performance. When comparing with exact solutions, we find that the
LGSM can has accuracy up to the order of 10−10.

Keywords: Generalized Sturm-Liouville problem, Eigenvalue, Eigenfunction, Lie-
group shooting method, Eigen-parameter dependence boundary condition

1 Introduction

In this paper we propose a new Lie-group shooting method (LGSM) for computing
the eigenvalues and eigenfunctions of the following generalized Sturm-Liouville
problem:

d2w(x)
dx2 +q(x,λ )w(x) = 0, 0 < x < 1, (1)

a1(λ )w(0)+a2(λ )w′(0) = 0, (2)

b1(λ )w(1)+b2(λ )w′(1) = 0. (3)

The problem is that for the given q(x,λ ), a1(λ ), a2(λ ), b1(λ ) and b2(λ ) we need
to calculate the eigenvalue λ and the eigenfunction w(x). In the above we suppose
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that q(x,λ ) > 0 can be arbitrarily nonlinear function of x and λ . In the latter sense,
Eqs. (1)-(3) constitute a nonlinear Sturm-Liouville problem. When the interval is
not in the range of x ∈ [0,1] we can easily transform it into that interval by scaling
the variable x.

The Sturm-Liouville problem has been of considerable physical interest and is
rather important in many fields. In most cases, it is not possible to obtain all the
eigenvalues of Sturm-Liouville problem analytically. For the special case of prob-
lem (1)-(3) with q(x,λ ) = λq1(x) + q2(x) and a1, a2, b1 and b2 being constants,
there are various numerical methods to approximate it. Pryce (1993) has provided
a comprehensive review of the mathematical background of Sturm-Liouville prob-
lems and their numerical solutions, as well as a detailed discussion of applications.
He summarized examples of Sturm-Liouville problems that have been considered
by numerous authors.

There is a continuous interest in the numerical solution of Sturm-Liouville prob-
lems and associated Schrödinger equations with the aim to improve convergence
rates and ease of numerical implementations of different algorithms. In order to
obtain more efficient numerical results, several numerical methods have been devel-
oped in the past many years, e.g., Andrew (1994, 2000a, 2000b), Andrew and Paine
(1985, 1986), Celik (2005a, 2005b), Celik and Gokmen (2005), Condon (1999),
Ghelardoni (1997), Ghelardoni, Gheri and Marletta (2001, 2006), Vanden Berghe
and De Meyer (1991, 1995, 2007), and Yücel (2006).

Liu (2006a, 2006b, 2006c) has expanded the group-preserving scheme (GPS) de-
veloped by Liu (2001) for ODEs to solve the nonlinear boundary value problems
(BVPs), and the numerical results reveal that the Lie-group shooting method is
a rather promising method to effectively solve the two-point BVPs. In the con-
struction of the Lie-group method for the calculations of BVPs, Liu (2006a) has
introduced the ideas of one-step GPS by utilizing the closure property of the Lie
group and a universal mapping between two points on the cone, and hence, the new
shooting method has been named the Lie-group shooting method (LGSM). At there
a very important Lie-group shooting equation has been established.

Recently, Liu (2008a) could solve an inverse Sturm-Liouville problem by using a
Lie group method to find the potential function q(x) with high accuracy for the
classical case. Moreover, the method LGSM has been modified by Liu (2008b) for
the Sturm-Liouville problem, which is very effective to calculate all the eigenvalues
for the classical Sturm-Liouville problems. Some applications of the LGSM can be
found in Chang, Liu and Chang (2007, 2009), Liu (2008c, 2008d, 2008e, 2008f,
2008g, 2008h, 2008i), Chang, Chang and Liu (2008), Liu and Chang (2008), Liu,
Chang and Chang (2008), Liu (2009), and Yeih and Liu (2009).
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When the coefficient q(x,λ ) depends on the eigen-parameter λ in an arbitrarily
nonlinear manner, we have a generalized Sturm-Liouville problem. This also con-
cerns the problems with eigen-parameter dependence boundary conditions [Aliyev
and Kerimov (2008); Chanane (2005, 2008); Reutskiy (2008)]. This class of prob-
lems in Eqs. (1)-(3) essentially differs from the classical one, and so far no reg-
ular method has been proposed for solving the generalized Sturm-Liouville prob-
lems. However, methods for computing the eigenvalues of the problems with eigen-
parameter dependence boundary conditions have been developed by some authors
[Annaby and Tharwat (2006); Aliyev and Kerimov (2008); Chanane (2005, 2007,
2008); Reutskiy (2008, 2010)]. The method presented in this paper is based on the
Lie-group shooting method (LGSM), which is an extension of the previous work
by Liu (2008b) to a great extent by developing a suitable LGSM to the generalized
Sturm-Liouville problems.

The remaining part of this paper is arranged as follows. In Section 2 we pro-
pose a novel technique to transform the generalized Sturm-Liouville problem into
a canonical form. Section 3 devotes to the construction of a one-step group pre-
serving scheme. Based on the results in the previous two sections, we derive a
Lie-group shooting equation in Section 4. Section 5 develops a closed-form solu-
tion of the unknown slope. Then the techniques of computing the eigenvalues and
eigenfunctions are given in Sections 6 and 7, respectively. Numerical examples are
given in Section 8. Finally, we draw some conclusions in Section 9.

2 Transformation into a canonical form

By letting

y(x) = [a1w(x)+a2w′(x)](1− x)+ [b1w(x)+b2w′(x)]x+ x(1− x)+ c, (4)

we are going to transform Eqs. (1)-(3) into a canonical form:

d2y(x)
dx2 = f (x,y,y′(x),λ ), 0 < x < 1, (5)

y(0) = c, y(1) = c, (6)

where f is to be given below, and c(λ ) > 0 is given in Section 6.

Taking the derivative of Eq. (4) with respect to x we have

y′ = (b1−a1)w+[b2−a2 +b1x+a1(1− x)]w′+[b2x+a2(1− x)]w′′+1−2x, (7)

where for simplicity we omit the function variables.
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Inserting Eq. (1) for w′′ into the above equation, leads to

y′ = {b1−a1− [b2x+a2(1− x)]q}w+[b2−a2 +b1x+a1(1− x)]w′+1−2x. (8)

From Eqs. (4) and (8) we can solve w and w′ in terms of y and y′ as follows:

w =
1

D1
[B2(y− x+ x2− c)−A2(y′+2x−1)], (9)

w′ =
1

D1
[A1(y′+2x−1)−B1(y− x+ x2− c)], (10)

where

A1(x,λ ) := a1 +(b1−a1)x,
A2(x,λ ) := a2 +(b2−a2)x,
B1(x,λ ) := b1−a1−qA2,

B2(x,λ ) := b2−a2 +A1,

D1(x,λ ) := A1B2−A2B1 = A2
1 +qA2

2 +a1b2−a2b1. (11)

The term D1 can be guaranteed to be positive. If a1b2−a2b1 < 0, we can multiply
Eq. (2) or Eq. (3) by−1, which does not change the boundary conditions, such that
−[a1b2−a2b1] > 0, and hence, D1 > 0.

Further taking the derivative of Eq. (10) with respect to x we have

w′′ =
1

D1
[A1(y′′+2)+(b1−a1)(y′+2x−1)−B3(y− x+ x2− c)−B1(y′+2x−1)]

− D2

D2
1
[A1(y′+2x−1)−B1(y− x+ x2− c)], (12)

where

D2(x,λ ) :=
∂D1

∂x
= 2A1(b1−a1)+2qA2(b2−a2)+qxA2

2,

B3(x,λ ) :=
∂B1

∂x
=−qxA2− (b2−a2)q, (13)

with qx denoting ∂q(x,λ )/∂x.

From Eqs. (1), (9) and (12) it follows that

y′′ =
D2

D1
(y′+2x−1)− 1

A1

[
B1D2

D1
+qB2−B3

]
(y− x+ x2− c)−2, (14)

which is just our desired form in Eq. (5).
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We can transform Eqs. (14) and (6) into an equivalent first-order ODEs’ system:

u′1 = u2,

u′2 = f (x,u1,u2,λ ),
u1(0) = c, u1(1) = c, (15)

where u1 = y and u2 = y′, and

f (x,u1,u2,λ ) :=
D2

D1
(u2 +2x−1)− 1

A1

[
B1D2

D1
+qB2−B3

]
(u1− x+ x2− c)−2.

(16)

The advantage by adjusting the original very complex boundary conditions equal
to u1(0) = u1(1) = c > 0 will be demonstrated in Section 4, and the advantage by
adding an extra term x(1− x) in Eq. (4) will be explained in Section 5.

If a1 = 0, then A1 = 0 when x = 0. For this case we need to use

f (x = 0,u1,u2,λ ) :=
D2

D1
(u2−1)+

1
b1

[
B1D2

D1
+qB2−B3

]
−2 (17)

for the initial value of f .

The present approach of generalized Sturm-Liouville problem is based on the group
preserving scheme (GPS) developed by Liu (2001) for the integration of initial
value problems (IVPs). The GPS method is very effective to deal with ordinary
differential equations (ODEs) endowing with special structures as shown by Liu
(2005) for stiff equations, and by Liu (2006d) for ODEs with constraints.

The stepping techniques developed for IVPs require both the initial conditions of u1
and u2 for two first-order ODEs. If the initial value of u2 is available, then we can
numerically integrate the following IVP step-by-step in a forward direction from
x = 0 to x = 1:

u′1 = u2, (18)

u′2 = f (x,u1,u2,λ ), (19)

u1(0) = c, (20)

u2(0) = A. (21)

The shooting technique is simply finding a suitable A, such that the solution of
u1(x) can also match the right-boundary condition u1(1) = c. In Section 6 we can
derive explicit forms of A and c in terms of the eigen-parameter λ .
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3 One-step GPS

3.1 The GPS

Let us write Eqs. (18) and (19) in a vector form:

u′ = f(x,u,λ ), (22)

where

u :=
[

u1
u2

]
, f :=

[
u2

f (x,u1,u2,λ )

]
. (23)

Liu (2001) has embedded Eq. (22) into an augmented system:

X′ :=
d
dx

[
u
‖u‖

]
=

 02×2
f(x,u,λ )
‖u‖

fT(x,u,λ )
‖u‖ 0

[ u
‖u‖

]
:= AX, (24)

where A is an element of the Lie algebra so(2,1) satisfying

ATg+gA = 0 (25)

with

g =
[

I2 02×1
01×2 −1

]
(26)

a Minkowski metric. Here, I2 is an identity matrix, and the superscript T stands for
the transpose.

The augmented vector X satisfies the cone condition:

XTgX = u ·u−‖u‖2 = 0. (27)

To preserve it, Liu (2001) has developed a group-preserving scheme (GPS):

Xk+1 = G(k)Xk, (28)

where Xk denotes the numerical value of X at the discrete xk, and G(k) ∈ SOo(2,1)
satisfies

GTgG = g, (29)

det G = 1, (30)

G0
0 > 0, (31)
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where G0
0 is the 00th component of G.

The main contribution of Liu (2001) is given a general ODE three sructures: a ge-
ometric structure of cone, a Lie-algebra structure, and a Lie-group structure. There
are many Lie-group integrators which can be developed for Eq. (24) to preserve the
above three structures; see, for example, Liu (2007), and Lee and Liu (2009).

3.2 Generalized mid-point rule

Applying scheme (28) to Eq. (24) with a specified initial condition X(0) = X0
we can compute the solution X(x) by GPS. Assuming that the stepsize used in
GPS is ∆x = 1/K, and starting from an initial augmented condition X0 = X(0) =
(uT

0 ,‖u0‖)T we can calculate the value X(1) = (uT(1),‖u(1)‖)T at x = 1 by

X f = GK(∆x) · · ·G1(∆x)X0. (32)

However, let us recall that each Gi, i = 1, . . . ,K, is an element of the Lie group
SOo(2,1), and by the closure property of the Lie group, GK(∆x) · · ·G1(∆x) is also
a Lie group denoted by G. Hence, we have

X f = GX0. (33)

This is a one-step Lie-group transformation from X0 to X f .

Usually it is very hard to obtain an exact solution of G. To be an approximation,
we can calculate G by a generalized mid-point rule, which is obtained from an
exponential mapping of A by taking the values of the argument variables of A at
a generalized mid-point. The Lie group generated from this constant A ∈ so(2,1)
admits a closed-form representation:

G =

 I2 + (a−1)
‖f̂‖2 f̂f̂T bf̂

‖f̂‖

bf̂T
‖f̂‖ a

 , (34)

where

û = ru0 +(1− r)u f , (35)

f̂ = f(x̂, û,λ ), (36)

a = cosh

(
‖f̂‖
‖û‖

)
, (37)

b = sinh

(
‖f̂‖
‖û‖

)
. (38)
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Here, we use the initial u0 and the final u f through a suitable weighting factor r to
calculate G, where 0 < r < 1 is a parameter and x̂ = r. The above method employed
a generalized mid-point rule to calculate G, and the resultant is a single-parameter
Lie group element G(r).

3.3 A Lie group mapping between two points on the cone

Let us define a new vector

F :=
f̂
‖û‖

, (39)

such that Eqs. (34), (37) and (38) can also be expressed as

G =

 I2 + a−1
‖F‖2 FFT bF

‖F‖

bFT
‖F‖ a

 , (40)

a = cosh(‖F‖), (41)

b = sinh(‖F‖). (42)

From Eqs. (33) and (40) it follows that

u f = u0 +ηF, (43)

‖u f ‖= a‖u0‖+b
F ·u0

‖F‖
, (44)

where

η :=
(a−1)F ·u0 +b‖u0‖‖F‖

‖F‖2 . (45)

Substituting

F =
1
η

(u f −u0) (46)

into Eq. (44) we obtain

‖u f ‖
‖u0‖

= a+b
(u f −u0) ·u0

‖u f −u0‖‖u0‖
, (47)
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where

a = cosh
(
‖u f −u0‖

η

)
, (48)

b = sinh
(
‖u f −u0‖

η

)
(49)

are obtained by inserting Eq. (46) for F into Eqs. (41) and (42).

Let

cosθ :=
[u f −u0] ·u0

‖u f −u0‖‖u0‖
, (50)

S := ‖u f −u0‖, (51)

and from Eqs. (47)-(49) it follows that

‖u f ‖
‖u0‖

= cosh
(

S
η

)
+ cosθ sinh

(
S
η

)
. (52)

By defining

Z := exp
(

S
η

)
, (53)

from Eq. (52) we can obtain a quadratic equation for Z:

(1+ cosθ)Z2−
2‖u f ‖
‖u0‖

Z +1− cosθ = 0. (54)

The solution is found to be

Z =

‖u f ‖
‖u0‖ +

√(
‖u f ‖
‖u0‖

)2
−1+ cos2 θ

1+ cosθ
, (55)

and then from Eqs. (53) and (51) we obtain

η =
‖u f −u0‖

lnZ
. (56)

Therefore, between any two points (u0,‖u0‖) and (u f ,‖u f ‖) on the cone, there ex-
ists a Lie group element G ∈ SOo(2,1) mapping (u0,‖u0‖) onto (u f ,‖u f ‖), which
is given by[

u f

‖u f ‖

]
= G

[
u0
‖u0‖

]
, (57)

where G is uniquely determined by u0 and u f through Eqs. (40)-(42), (46) and (56).
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4 The Lie-group shooting method

The generalized Sturm-Liouville problem considered in Section 1 requires both the
information at the initial point x = 0 and at the terminal point x = 1. However, the
usual stepping scheme requires a complete information at the starting point x = 0.
Some effort is then required to reconcile the stepping scheme for the integration of
Sturm-Liouville problem presented by Eqs. (5) and (6).

From Eqs. (18)-(21) it follows that

u′1 = u2, (58)

u′2 = f (x,u1,u2,λ ), (59)

u1(0) = c, u1(1) = c, (60)

u2(0) = A, u2(1) = B, (61)

where A and B are two supplemented unknowns, and c > 0 is given below.

From Eqs. (46), (60) and (61) it follows that

F :=
[

F1
F2

]
=

1
η

[
0

B−A

]
. (62)

By inserting Eq. (23) for u into Eqs. (56), (55) and (50) we can obtain

η =

√
(A−B)2

lnZ
, (63)

Z =

√
c2+B2√
c2+A2 +

√
c2+B2

c2+A2 −1+ cos2 θ

1+ cosθ
, (64)

cosθ =
A(B−A)√

(A−B)2
√

c2 +A2
. (65)

When compare Eq. (62) with Eq. (39), and with the aid of Eqs. (35), (36) and
(58)-(61) we obtain

rA+(1− r)B = 0, (66)

A−B+
η

ξ
f̂ = 0, (67)

where

f̂ := f (r,c,rA+(1− r)B,λ ) = f (r,c,0,λ ), (68)

ξ :=
√

c2 +[rA+(1− r)B]2 = c, (69)
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because of û1 = c and û2 = rA+(1− r)B = 0.

Eq. (66) is a crucial result for the further development of a closed-form formula
about A. This equation is obtained by using the two identical boundary values of
u1 = y in Eq. (15). From the above equations we can see that the advantage by
adjusting the two boundary values in Eq. (15) to be equal is that we can derive
Eq. (66), and that a closed-form solution of A will be available in the next section.

5 The solution of A

From Eqs. (66)-(68), (16), and (69) we can obtain an algebraic equation for A:

Ac+η0 f1 = 0, (70)

where

f1(r) = f (r,c,0,λ ), (71)

Z =

√
c2 +B2 +

√
B2

√
c2 +A2−

√
A2

, (72)

η0 =

√
A2

lnZ
. (73)

Here, B = rA/(r−1) has a different sign from A because of 0 < r < 1.

Eq. (70) can be used to solve A for a given r. If A is available, we can return to
integrate Eqs. (18)-(21) by a suitable forward IVP solver.

Without adding an extra term x(1− x) in Eq. (4), the three terms 2x−1, x2− x and
−2 will disappear from Eq. (16), which in turns make f̂ = 0 by viewing Eqs. (16)
and (68), because of û1 = c and û2 = 0. Under this condition we only have A = 0
by Eq. (70), because of f1 = 0 and c > 0. Therefore, we have added an extra term
x(1− x) in Eq. (4) to avoid f̂ = 0.

More interestingly, Eq. (70) can be solved analytically for A. Here we consider
only the case of A > 0. For this case inserting Eq. (73) for η0 into Eq. (70) we can
obtain

lnZ =
− f1

c
. (74)

Upon defining

f2(r) := exp
(
− f1(r)

c

)
, (75)
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and substituting Eq. (72) for Z into Eq. (74) we obtain
√

c2 +B2 +
√

B2
√

c2 +A2−
√

A2
= f2. (76)

Eq. (76) can be written as

f2A−B = f2

√
c2 +A2−

√
c2 +B2 (77)

by using A > 0 and B < 0. Squaring the above equation and cancelling the common
terms we can rearrange it to

2 f2

√
c2 +B2

√
c2 +A2 = (1+ f 2

2 )c2 +2 f2AB. (78)

Squaring again and cancelling the common term and factor we can get

4 f 2
2 (A2 +B2)−4 f2(1+ f 2

2 )AB = (1− f 2
2 )2c2. (79)

Inserting B = rA/(r−1) and through some algebraic manipulations we eventually
obtain:

4 f2

(r−1)2 [ f2− (1− f2)2r2 +(1− f2)2r]A2 = (1− f 2
2 )2c2. (80)

If the following condition holds

f3(r) := f2− (1− f2)2r2 +(1− f2)2r > 0, (81)

then A has a positive solution:

A =

√
(r−1)2(1− f 2

2 )2c2

4 f2 f3
. (82)

6 Computing eigenvalues

In the previous section we have derived a closed-form solution to calculate the slope
A for each r in its admissible range. If A is available, then we can apply the fourth-
order Runge-Kutta method (RK4) to integrate Eqs. (18)-(21). Up to this point we
should note that the Lie-group shooting method is an exact technique without mak-
ing any assumption of the approximation in the derivations of all required formulae.

In principle, if there exists one solution w of Eqs. (1) and (2), there are many solu-
tions of the type αw, α ∈R. Assume that one of these solutions has a slope w′(0) 6=
0 at the left-end, then there are many different solutions with slopes αw′(0), α ∈R.
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It means that the slope A can be an arbitrary value. So the factor r in Eq. (82) can
be any value in the interval of r ∈ (0,1). Hence, we can fix r = 1/2, and then we
come to the following equation for A:

A =

√
(1− f 2

4 )2c2

4(1+ f 2
4 )2 f4

, (83)

where

f4(λ ) := exp
(

2
c

− 1
4cA1(1/2,λ )

[
B1(1/2,λ )D2(1/2,λ )

D1(1/2,λ )
+q(1/2,λ )B2(1/2,λ )−B3(1/2,λ )

])
.

(84)

Here A is only dependent on λ . In order to avoid f4 to be a tiny value in the
calculation of large eigenvalues, we can take

c =
∣∣∣∣2− 1

4A1(1/2,λ )

[
B1(1/2,λ )D2(1/2,λ )

D1(1/2,λ )
+q(1/2,λ )B2(1/2,λ )−B3(1/2,λ )

]∣∣∣∣ ,
(85)

such that f4 = exp(±1) dependent on the sign of the argument.

In order to calculate the eigenvalues we can let λ run in a selected interval we are
interesting, and then insert λ into Eqs. (83) and (85) we can obtain A and c. When
c and A are given, we can calculate y(1) by integrating Eqs. (18)-(21). Therefore,
we can plot a curve of the variation of y(1)−c with respect to λ , namely the eigen-
values curve, of which the intersecting points with the zero line give the values of
the required eigenvalues. In order to obtain more accurate eigenvalue we can adjust
the λ nearby the marked one until y(1) satisfies |y(1)−c|< ε1, where ε1 is a given
tolerance of error of mismatching the right-boundary condition y(1) = c.

7 Calculating eigenfunctions and identification of accuracy

When the eigenvalue λ is calculated in the previous section by the LGSM, we can
insert it into Eq. (85) to calculate c, and then into Eq. (83) to calculate A. After
that we are easily calculate u1 and u2 in the whole interval by a suitable numerical
integration method, say, the RK4, to integrate Eqs. (18)-(21).
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If u1 and u2 are available we can calculate the eigenfunction w(x) and its first two
derivatives by

w =
1

D1
[B2(u1− x+ x2− c)−A2(u2 +2x−1)], (86)

w′ =
1

D1
[A1(u2 +2x−1)−B1(u1− x+ x2− c)], (87)

w′′ =
1

D1
[A1{ f (x,u1,u2,λ )+ x}+(b1−a1)(u2 +2x−1)−B3(u1− x+ x2− c)

−B1(u2 +2x−1)]− D2

D2
1
[A1(u2 +2x−1)−B1(u1− x+ x2− c)]. (88)

In order to check the accuracy of the obtained eigenvalue and eigenfunction, we
use the following three criteria to investigate the performance of the LGSM:

Equation Error := |w′′(x)+qw(x)|, (89)

Left Boundary Error := |a1w(0)+a2w′(0)|, (90)

Right Boundary Error := |b1w(1)+b2w′(1)|. (91)

Below we will use the LGSM to find eigenvalues and corresponding eigenfunctions
for some examples appeared in the literature.

8 Numerical examples

8.1 Example 1

For a first and simple test example inspired by Aliyev and Kerimov (2008) we
consider the eigen-parameter dependence boundary condition of a Sturm-Liouville
eigenvalues problem with a1 = 0, a2 = 1, b1 = λ −λ 2/π2, b2 = 1 and q = λ :

−w′′(x) = λw(x), 0 < x < 1, (92)

w′(0) = 0,

(
λ − λ 2

π2

)
w(1)+w′(1) = 0. (93)

We apply the Lie-group shooting method (LGSM) in Section 6 to calculate the
eigenvalues in a range of 0 < λ < 25. From Fig. 1(a) it can be seen that the curve
of y(1)− c is intersected with the zero line at five points. In this calculation the
stepsize used in the RK4 is ∆x = 0.001. We will fix this stepsize for all later calcu-
lations by using the RK4.
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Figure 1: For Example 1: (a) plotting the eigenvalues curve, and (b) the two curves 
determine the eigenvalues. 
 
 

Figure 1: For Example 1: (a) plotting the eigenvalues curve, and (b) the two curves
determine the eigenvalues.

As demonstrated by Aliyev and Kerimov (2008), λ = 0 is a double eigenvalue,
λ = π2 is a simple eigenvalue and all other simple eigenvalues are the roots of the
following equation:

tan
√

λ =
√

λ

(
1− λ 2

π2

)
. (94)

Therefore, for comparison purpose we also plot the curves of the above two func-
tions in Fig. 1(b) by the dotted points, whose intersecting points are the roots. The
results are coincident with the zero points in Fig. 1(a). However, it is very inter-
esting that the second and the fourth zero points as marked by black solid points in
Fig. 1(a) are not the intersecting points in Fig. 1(b). These two points are excep-
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tional from Eq. (94).

In order check our algorithm for the generation of the second exceptional point, we
use the following two criteria to investigate the accuracy of the LGSM:

Equation Error := |w′′(x)+λw(x)|, (95)

Right Boundary Error :=
∣∣∣∣(λ − λ 2

π2

)
w(1)+w′(1)

∣∣∣∣ . (96)

When we found the eigenvalue λ = 11.6924379 by the LGSM, the corresponding
eigenfunction w(x) can be calculated by Eq. (86), and the first two derivatives by
Eqs. (87) and (88).

We find that the Right Boundary Error is very small in the order of 4.7×10−9, and
the Equation Error is plotted in Fig. 2. Very accurately, the error is in the order of
10−17.
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Figure 2: Showing the Equation Error for the third eigenvalue of Example 1. 
 
 
 
 
 
 

Figure 2: Showing the Equation Error for the fourth eigenvalue of Example 1.
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8.2 Example 2

The following test example is taken from Binding and Browne (1997), and Chanane
(2005):

w′′(x)+λw(x) = 0, 0 < x < 1, (97)

w(0)+(λ −4π
2)w′(0) = 0, w(1)−λw′(1) = 0. (98)

Here we have a1 = 1, a2 = λ −4π2, b1 = 1, b2 =−λ , and q = λ .

When we apply the LGSM to calculate the eigenvalues in a range of 0 < λ < 160,
we can see that the curve of [y(1)− c]/|y(1)− c| is intersected with the zero line at
many points as shown in Fig. 3. But, in Table 3.1 of the paper by Chanane (2005),
only three eigenvalues are reported.
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Figure 3: Displaying the eigenvalue curve for Example 2. 
 
 
 
 
 
 
 
 

Figure 3: Displaying the eigenvalue curve for Example 2.

When we found the first eigenvalue λ = 9.7308865 by the LGSM, the correspond-
ing eigenfunction w(x) can be calculated by Eq. (86), and the first two derivatives
by Eqs. (87) and (88). We find that the Left Boundary Error is very small in the
order of 2.17×10−19, and the Right Boundary Error is in the order of 6.3×10−10.
The Equation Error is plotted in Fig. 4(a), which is very accurate with the error
in the order of 10−18. We also plotted the corresponding eigenfunction w(x) in
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Figure 4: For Example 2: (a) plotting the Equation Errors, and the eigenfunctions 
corresponding to (b) the first eigenvalue, and (c) the second eigenvalue. 
 
 

Figure 4: For Example 2: (a) plotting the Equation Errors, and the eigenfunctions
corresponding to (b) the first eigenvalue, and (c) the second eigenvalue.

Fig. 4(b). The second eigenvalue is λ = 15.20906425. The Equation Error is plot-
ted in Fig. 4(a) by the dashed line, which is very accurate with the error in the order
of 10−20, and the corresponding eigenfunction w(x) is also plotted in Fig. 4(c).

In order to pick up the eigenvalues more precisely, we can plot the eigenvalue curve
of [y(1)−c]/|y(1)−c| in a finer range, as shown in Fig. 5(a) in the range of [38,45].
It can be seen that the distribution of eigenvalues is very complex. When we found
one eigenvalue λ = 44.70035341243 by the LGSM, the Left Boundary Error is
zero, and the Right Boundary Error is in the order of 3.3× 10−10. The Equation
Error is plotted in Fig. 5(b), which is very accurate with the error in the order of
10−12. The corresponding eigenfunction w(x) is plotted in Fig. 5(c), which is very
different from the one plotted in Fig. 4(b).
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Figure 5: For Example 2: (a) displaying the eigenvalue curve, (b) plotting the 
Equation Error, and (c) the eigenfunction for a certain eigenvalue. 
 
 
 

Figure 5: For Example 2: (a) displaying the eigenvalue curve, (b) plotting the
Equation Error, and (c) the eigenfunction for a certain eigenvalue.

Remark: Chanane (2005) by using the sampling method only found three eigen-
values in the range of [0,160], and indeed, the first eigenvalue he gave in the above
paper is not accurate than the present one when comparing with the exact eigen-
value. The LGSM shows that for this example the distribution of eigenvalues is
very complex. With a refined tunning of the parameter λ to match the right bound-
ary condition y(1) = c(λ ), we can find very accurate results.
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8.3 Example 3

The following example is taken from Chanane (2005) and Reutskiy (2008):

w′′(x)+(λ − ex)w(x) = 0, 0 < x < 1, (99)

w(0) = 0, −
√

λ sin
√

λw(1)+ cos
√

λw′(1) = 0. (100)

So we have a1 = 1, a2 = 0, b1 =−
√

λ sin
√

λ , b2 = cos
√

λ , and q = λ − ex.

When we apply the LGSM to calculate the eigenvalues in a range of 0 < λ < 80,
we can see that the curve of [y(1)− c]/|y(1)− c| is intersected with the zero line
at many points as shown in Fig. 6(a). But, in Table 3.4 of the paper by Chanane
(2005), and in Table 5 of the paper by Reutskiy (2008) only six eigenvalues are
reported.

For the eigenvalue λ = 0.519996736312803 obtained by the LGSM, the Right
Boundary Error has error in the order of 1.4× 10−12, and the Equation Error is
plotted in Fig. 6(b), which is very accurate with the error in the order of 10−13. The
corresponding eigenfunction w(x) is plotted in Fig. 6(c). This eigenfunction has a
sharp variation near the right-end, and is almost zero in the range of [0,0.948].
The above two papers are all given the first eigenvalue near to 0.92906. However,
we find that it is the second eigenvalue with λ2 = 0.92906202858. We identify that
the Right Boundary Error is in the order of 1.2×10−12, and the Equation Error as
plotted in Fig. 6(b) by the dashed line is in the order of 10−16. The corresponding
eigenfunction w(x) is plotted in Fig. 6(c) by the dashed line, which is very different
from the the first one. As compared with the result obtained by Chanane (2005),
the accuracy in the finding of eigenvalue is raised from 6.75×10−9 to 10−12.

8.4 Example 4

The following example is taken from Reutskiy (2008, 2010):

w′′(x)+
w(x)

(λ + x2)2 = 0, 0 < x < 1, (101)

w(0) = w(1) = 0. (102)

Here q = 1/(λ + x2)2 is a nonlinear function of the eigen-parameter λ .

When we apply the LGSM to calculate the eigenvalues in a range of 0 < λ < 0.2,
we can see that the curve of [y(1)− c]/|y(1)− c| is intersected with the zero line at
ten points as shown in Fig. 7(a), of which the number of eigenvalues is coincident
with that obtained by Reutskiy (2008, 2010).
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Figure 6: For Example 3: (a) displaying the eigenvalue curve, (b) plotting the 
Equation Errors, and (c) the eigenfunctions for two certain eigenvalues. 
 

Figure 6: For Example 3: (a) displaying the eigenvalue curve, (b) plotting the
Equation Errors, and (c) the eigenfunctions for two certain eigenvalues.

For the first eigenvalue λ = 0.0010636506102 and the fifth eigenvalue λ = 0.006301140338
we plot the corresponding eigenfunctions in Figs. 7(b) and 7(c), respectively. The
eigenvalues we calculate have the accuracy over 10−10, which are better than that
calculated by Reutskiy (2008, 2010). The eigenfunctions w(x) as plotted in Fig. 7
have different scales and oscillatory behaviors for different modes.
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Figure 7: For Example 4: (a) displaying the eigenvalue curve, (b) plotting the fifth 
eigenfunction, and (c) plotting the first eigenfunction. 
 

Figure 7: For Example 4: (a) displaying the eigenvalue curve, (b) plotting the fifth
eigenfunction, and (c) plotting the first eigenfunction.

8.5 Example 5

The following example is taken from Reutskiy (2010):

w′′(x)+
w(x)

(λ + x)2 = 0, 0 < x < 1, (103)

w(0) = w(1) = 0. (104)
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Figure 8: For Example 5: (a) displaying the eigenvalue curve, (b) plotting the  
eigenfunction corresponding to n=-1, and (c) plotting the eigenfunction corresponding 
to n=1. 
 

Figure 8: For Example 5: (a) displaying the eigenvalue curve, (b) plotting the eigen-
function corresponding to n =−1, and (c) plotting the eigenfunction corresponding
to n = 1.

This problem has closed-form solutions:

w = const×
(

1+
x
λ

)1/2
sin
[

π

γ
ln
(

1+
x
λ

)]
, (105)

λn =
1

exp(γn)−1
, γ =

2π√
3
. (106)

Table 1 shows the results for n =−1 and n = 1, which are compared with the results
obtained by Reutskiy (2010).

When we apply the LGSM to calculate the eigenvalues in a range of −1.2 < λ <
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Table 1: Comparing the eigenvalues for Example 5 with those of Reutskiy (2010)

n Reutskiy Present Exact
-1 −1.0272981 −1.027305717791 −1.027305717634675
1 0.02729809 0.02730571779926 0.027305717634675

0.03, we can see that the curve of [y(1)− c]/|y(1)− c| is intersected with the zero
line at many points as shown in Fig. 8(a).

For the eigenvalues λ = −1.027305717791 and λ = 0.02730571779926 we plot
the corresponding eigenfunctions in Figs. 8(b) and 8(c), respectively. The eigen-
values we calculate have the accuracy in the order of 10−10, which are better than
those calculated by Reutskiy (2010).

9 Conclusions

The key point to succeed the Lie-group shooting method (LGSM) for the gen-
eralized Sturm-Liouville problem is the variable transformation given in Eq. (4),
which is a novel transformation, including both w and w′ on the right-hand side.
The LGSM developed here can easily calculate the eigenvalues and eigenfunctions
of generalized Sturm-Liouville problems, which is due to the relations y(0) = c(λ )
and y′(0) = A(λ ) given in Eqs. (85) and (83). Five numerical examples with eigen-
parameter dependence boundary conditions and nonlinear potential functions were
given to confirm the efficiency and accuracy of the present Lie-group shooting ap-
proach, which is much easy to implement with low computational cost than the
numerical methods appeared in other literature. Moreover, the accuracy assessed
by the Equation Error and Boundary Errors are improved significiantly. Because
our method is very effective, many eigenvalues, which were not found previously
by other methods, could be delicately detected by the LGSM in the present paper.

Acknowledgement: Taiwan’s National Science Council Project NSC-97-2221-
E-002-264-MY3 granted to the author is highly appreciated.
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