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Dynamic Stress Intensity Factors of Mode I Crack
Problem for Functionally Graded Layered Structures

Sheng-Hu Ding1,2, Xing Li2 and Yue-Ting Zhou2,3

Abstract: In this paper, the crack-tip fields in bonded functionally graded finite
strips are studied. Different layers may have different nonhomogeneity properties
in the structure. A bi-parameter exponential function was introduced to simulate
the continuous variation of material properties. The problem was reduced as a sys-
tem of Cauchy singular integral equations of the first kind by Laplace and Fourier
integral transforms. Various internal cracks and edge crack and crack crossing the
interface configurations are investigated, respectively. The asymptotic stress field
near the tip of a crack crossing the interface is examined and it is shown that, un-
like the corresponding stress field in piecewise homogeneous materials, in this case
the "kink" in material property at the interface does not introduce any singularity.
The influences of geometrical and physical parameters and crack interactions on
the dynamic stress intensity factors were illustrated and discussed.

Keywords: Functionally graded layered structures; Collinear cracks; Singular
integral equation; Dynamic stress intensity factor

1 Introduction

Functionally graded materials (FGMs) for high temperature applications are special
composites usually made from ceramics and metals so as to achieve high toughness
at high temperatures. Due to their continuously varying features of physical and
mechanical properties, FGMs are quite effective to reduce the thermal and residual
stresses and enhance the bonding strength.

The knowledge of the crack growth in FGMs is important in order to evaluate their
integrity. Considerable investigations [Ching et al. (2001); Atluri and Shen (2002);
Hsueh and Leeb (2003); Sladek et al. (2003, 2005); Han et al (2006); Zhou et al
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(2007); Wen et al. (2008); Oyekoya et al. (2008); Zhou et al. (2009)] have been
made in understanding the behavior of FGMs subjected to thermal or mechanical
loading conditions. To establish the fundamental relationship between material
gradation and thermomechanical properties of FGMs, extensive studies have been
carried out of the effective properties [Aboudi et al. (1994); Zuiker and Dvorak
(1994)] the investigations of thermal properties [Ching et al. (2006); Sladek et al.
(2008)] and fracture in functionally graded materials [Delale and Erdogan (1988);
Erdogan and Wu (1996); Chen and Erdogan (1996); Jin and Batra (1996); Erdogan
and Wu (1997); Dag and Erdogan (2002); Guo et al. (2004a,b); Kubair and Bhanu-
Chandar (2007); Guo and Noda (2008); Choi and Paulino (2008)]. [Delale and
Erdogan (1983)] investigated the crack problem of an infinite nonhomogeneous
plate with the elastic properties varying in the direction parallel to the crack. They
found that the effect of the Poisson’s ratio on the stress intensity factors can be
ignored. [Erdogan and Wu (1996, 1997)] studied a single functionally graded strip
with an internal or edge crack. [Guo et al. (2004a)] analyzed the surface crack
problem of a functionally graded orthotropic plate.

It should be mentioned that most FGMs will be used in critical situations, such as
dynamic loading. But the dynamic fracture behavior of FGMs has received little
attention from the scientific community. [Atkinson (1975)] first studied the crack
propagation in media with spatially varying elastic properties. [Li et al. (2001)]
studied the dynamic response of a finite crack in an unbounded FGM subjected to
an antiplane shear loading. The variation of the shear modulus of the functionally
graded material was modeled by a quadratic increase along the direction perpen-
dicular to the crack surface. [Li and Weng (2001)] investigated the dynamic stress
intensity factor of a cylindrical interface crack located between two coaxial dissim-
ilar homogeneous cylinders that are bonded with a functionally graded interlayer
and subjected to a torsional impact loading. The transient response of a function-
ally graded coating-substrate system with an internal or edge crack perpendicular
to the interface has been studied under an in-plane impact [Guo et al. (2004b)].
Recently, [Wang and Mai (2006)] considered a periodic array of cracks in an infi-
nite functionally graded material under transient mechanical loading. [Ding and Li
(2008a)] studied a periodic array of cracks between a functionally graded material
and an elastic substrate under antiplane shear loads. The dynamic fracture problem
of the weak-discontinuous interface between a FGM coating and a FGM substrate
have been studied by [Li et al. (2006, 2008a)].

In the foregoing studies, the functionally graded layered structures with a crack
(or cracks) paralleling or perpendicular to the interface or free surface have been
studied. However, there are also some other kinds of researches. By means of the
Schmidt method, [Ma et al. (2005)] investigated the dynamic behavior of a finite
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crack in the functionally graded materials subjected to the normally incident elastic
time harmonic waves. The impact response of an inclined edge crack in a layered
medium with a functionally graded interfacial zone is investigated under the state of
antiplane deformation [Choi (2007a,b)]. The mixed-mode fracture problem of non-
homogeneous materials are studied by using finite element method and meshless
method [So et al. (2004); Sladek et al. (2007); Liu and Yu (2008); Yu and Huang
(2008); Liu et al. (2009); Minutolo et al. (2009); Sethuraman and Rajesh (2009);
Shin et al. (2009)].

So many investigations have been conducted on the crack problems in function-
ally graded structures. However, the material properties such as shear modulus of
FGMs are always assumed to be in the single-parameter exponential form. In fact,
the single-parameter exponential function can only simulate special variations of
material properties. A new bi-parameter exponential function was introduced to
simulate the continuous variation of material properties for a weak-discontinuous
interface in a symmetrical functionally gradient composite strip [Li et al. (2008b)].
The focus of the present paper is, therefore, to provide a bi-parameter exponen-
tial functions model for two collinear cracks in bonded dissimilar FGM materials
under an in-plane impact. In a bi-FGM structure, both the two FGMs might have
cracks along the direction of material gradient, and these cracks are parallel to one
another. For these cracks, the most dangerous is a special case that there are two
collinear cracks on the two sides of and perpendicular to the bi-FGM interface. The
problem was reduced as a system of Cauchy singular integral equations of the first
kind by Laplace and Fourier integral transforms [Ding and Li (2008b,c); Zhou et al
(2008); Li (2008)]. The variations of the dynamic stress intensity factors (DSIFs)
with the nonhomogeneity constants have also been depicted when the crack cross-
ing the interface of functionally graded structures. The influences of geometrical
and physical parameters on the dynamic stress intensity factor were analyzed. The
present model can be reduced to a functionally graded coating-substrate structure
with a crack in the coating or the homogeneous substrate or intersecting the inter-
face, which can be used to study many kinds of problems and may be significant
for the fracture mechanics analysis and design of functionally graded structures.

2 Formulation of the problem

Illustrated is a functionally graded layered structure with two collinear cracks, as
shown in Fig.1. The superscript k indicates the FGM strips 1 and 2, which referred
to as FGMI and FGMII respectively. Both of two layers may be nonhomogeneous
and the mechanical properties are continuous across the interface. The layers are
infinite in the y direction. By adjusting the thickness, h1 and h2, of layered struc-
ture, the model in Fig.1 can be generalized to represent a FGM coating with finite
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thickness bonded to a FGM substrate with finite or infinite thickness, or two bonded
functionally gradient half planes.

Figure 1: Geometry of collinear cracks of a FGM coating bonded to a FGM sub-
strate

The constitutive relation of the plane problem of the functionally gradient elastic
material is as follows

σxx =
µ(x)
κ−1

[(1+κ)
∂u(x,y)

∂x
+(3−κ)

∂v(x,y)
∂y

],

σyy =
µ(x)
κ−1

[(3−κ)
∂u(x,y)

∂x
+(1+κ)

∂v(x,y)
∂y

],

τxy = µ(x)[
∂u(x,y)

∂y
+

∂v(x,y)
∂x

],

(1)

where µ(x) is shear moduli of the nonhomogeneous materials, τxy,σxx and σyy are
stress components. u(x,y) and v(x,y) are the displacement components in the x-
direction and y-direction, κ = 3− 4ν for plane strain, κ = (3− ν)/(1 + ν) for
plane stress, and ν is the Poisson’s ratio.
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In existing papers, properties such as shear modulus of FGMs are always assumed
to be in the single-parameter exponential form [Guo et al. (2004b); Wang and Mai
(2006); Guo and Noda (2008); Li et al. (2008a)], which can be shown as

µ(x) = µ0eβx, ρ(x) = ρ0eβx, (2)

where µ0 and ρ0 are the shear modulus and mass density at the interface, β is the
non-homogeneity parameter and x is the coordinate.

In fact, the single-parameter exponential function in Eq.(2) can only simulate spe-
cial variations of material properties. In order to simulate more general variations
of them, the following bi-parameter exponential functions are introduced here to
express the continuous variations of the shear modulus of both FGM layers in Fig.1,

µ1(x) = µ0α
β1x
1 , ρ1(x) = ρ0α

β1x
1 , µ2(x) = µ0α

β2x
2 , ρ2(x) = ρ0α

β2x
2 , (3)

where β1 and β2 are two nonhomogeneous constants, and α1 and α2 are additional
dimensionless non-homogeneity parameters. The shear modulus µ0 and mass den-
sity ρ0 are assigned at the interface.

The motion equations of the functionally gradient elastic material are

∂σxx

∂x
+

∂τxy

∂y
= ρ0α

βkx
k

∂ 2u
∂ t2 ,

∂σyy

∂y
+

∂τxy

∂x
= ρ0α

βkx
k

∂ 2v
∂ t2 . (4)

Introducing Laplace transform pair as follows

f̂ (p) =
∫

∞

0
f (τ)exp(−pτ)dτ, f (τ) =

1
2πi

∫
Br

f̂ (p)exp(pτ)d p, (5)

in which Br stands for the Bromwich path of integration.

Using (1), (4) and (5) we obtain

(1+κ)
∂ 2û(k)

∂x2 +(κ−1)
∂ 2û(k)

∂y2 +2
∂ 2v̂(k)

∂x∂y
+βk lnαk(1+κ)

∂ û(k)

∂x

+βk lnαk(3−κ)
∂ v̂(k)

∂y
=

ρ0 p2ûk(κ−1)
µ0

,

(κ−1)
∂ 2v(k)

∂x2 +(1+κ)
∂ 2v̂(k)

∂y2 +2
∂ 2û(k)

∂x∂y
+βk lnαk(κ−1)

∂ v̂(k)

∂x

+βk lnαk(κ−1)
∂ û(k)

∂y
=

ρ0 p2v̂k(κ−1)
µ0

,

(6)



48 Copyright © 2010 Tech Science Press CMES, vol.56, no.1, pp.43-84, 2010

where

û(k)(x,y, p) =
∫

∞

0
u(k)(x,y, t)exp(−pt)dt,

v̂(k)(x,y, p) =
∫

∞

0
v(k)(x,y, t)exp(−pt)dt.

(7)

Here, the index k in the parentheses stand for the strips 1 and 2.

The boundary and continuity conditions are written as

σ
(1)
xx (−h1,y, t) = 0, τ

(1)
xy (−h1,y, t) = 0, 0 < y < ∞, (8)

σ
(1)
xx (0,y, t) = σ

(2)
xx (0,y, t), τ

(1)
xy (0,y, t) = τ

(2)
xy (0,y, t), 0 < y < ∞, (9)

u(1)(0,y, t) = u(2)(0,y, t), v(1)(0,y, t) = v(2)(0,y, t), 0 < y < ∞, (10)

σ
(2)
xx (h2,y, t) = 0, τ

(2)
xy (h2,y, t) = 0, 0 < y < ∞, (11)

τ
(1)
xy (x,0, t) = 0, −h1 < x < 0, (12)

τ
(2)
xy (x,0, t) = 0, 0 < x < h2, (13)

v(1)(x,0, t) = 0, −h1 < x <−b1, −a1 < x < 0, (14)

v(1)(x,0, t) = 0, 0 < x < a2, b2 < x < h2, (15)

σ
(1)
yy (x,0, t) = σ1H(t), −b1 < x <−a1, (16)

σ
(2)
yy (x,0, t) = σ2H(t), a2 < x < b2. (17)

The σ1H(t) and σ2H(t) are the negative of dynamic normal stress and shear stress
at the crack plane under external loading in an uncracked specimen. H(t) is the
Heaviside function of time t. When t < 0, H(t) = 0, and when t ≥ 0, H(t) = 1.

3 Method of solutions

For the symmetry of the structure in Fig.1, it is enough to only analyze the left
half part (y > 0). Employing the Fourier transform on Eq.(6), the the displacement
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components can be expressed as

û(k)(x,y, p) =
1

2π

∫
∞

−∞

2

∑
j=1

mk j(s, p)Ak j(s, p)enk jye−isx ds

+
2
π

∫
∞

0

4

∑
j=1

qk j(α, p)Bk j(α, p)epk jx cosαydα,

v̂(k)(x,y, p) =
1

2π

∫
∞

−∞

2

∑
j=1

Ak j(s, p)enk jye−isx ds

+
2
π

∫
∞

0

4

∑
j=1

Bk j(α, p)epk jx sinαydα,

(18)

where mk j(s, p), nk j, qk j(s, p) and pk j (k = 1,2, j = 1−4) can be found in Appendix
A. Ak j(s, p), Bk j(α, p) (k = 1,2, j = 1−4) are unknowns to be solved.

Substituting (18) into (1), the stress components are obtained as

σ̂
(k)
xx (x,y, p) = α

βkx
k

(
1

2π

∫
∞

−∞

2

∑
j=1

ck j(s, p)Ak j(s, p)enk jye−isx ds

+
2
π

∫
∞

0

4

∑
j=1

c(k+2) j(α, p)Bk j(α, p)epk jx cosαydα

)
,

(19)

σ̂
(k)
yy (x,y, p) = α

βkx
k

(
1

2π

∫
∞

−∞

2

∑
j=1

dk j(s, p)Ak j(s, p)enk jye−isx ds

+
2
π

∫
∞

0

4

∑
j=1

d(k+2) j(α, p)Bk j(α, p)epk jx cosαydα

)
,

(20)

τ̂
(k)
xy (x,y, p) = α

βkx
k

(
1

2π

∫
∞

−∞

2

∑
j=1

ek j(s, p)Ak j(s, p)enk jye−isx ds

+
2
π

∫
∞

0

4

∑
j=1

e(k+2) j(α, p)Bk j(α, p)epk jx sinαydα

)
,

(21)

where

σ̂
(k)
xx (x,y, p) =

∫
∞

0
σ

(k)
xx (x,y, t)exp(−pt)dt,

σ̂
(k)
yy (x,y, p) =

∫
∞

0
σ

(k)
yy (x,y, t)exp(−pt)dt,

τ̂
(k)
xy (x,y, p) =

∫
∞

0
τ

(k)
xy (x,y, t)exp(−pt)dt.

(22)
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Here, ck j, dk j and ek j(k = 1,2, j = 1−4) are known expressions shown in Appendix
A.

Now, we define the following new unknown functions

ĝ1(x1, p) =
∂ v̂(1)(x1,0, p)

∂x1
, −b1 < x1 <−a1,

ĝ2(x2, p) =
∂ v̂(2)(x2,0, p)

∂x2
, a2 < x2 < b2,

(23)

where x = x1 for x < 0, and x = x2 for x > 0.

From (12-15), and then substituting (23) into (18), we obtain

A11(s, p) = f11(s, p)
∫ −a1

−b1

ĝ1(t1, p)eist1 dt1,

A12(s, p) = f12(s, p)
∫ −a1

−b1

ĝ1(t1, p)eist1 dt1,
(24)

A21(s, p) = f21(s, p)
∫ b2

a2

ĝ2(t2, p)eist2 dt2,

A22(s, p) = f22(s, p)
∫ b2

a2

ĝ2(t2, p)eist2 dt2,
(25)

where

f11(s, p) =− m12n12− is
m11n11−m12n12

i
s
, f12(s, p) =− m11n11− is

m11n11−m12n12

i
s
,

f21(s, p) =− m22n22− is
m21n21−m22n22

i
s
, f22(s, p) =− m21n21− is

m21n21−m22n22

i
s
.

(26)

By using the boundary and continuity conditions (8-11), B1 j and B2 j( j = 1− 4)
can be found according to ĝ1(x1, p) and ĝ2(x2, p)

B1 j(α, p) =
∫ −a1

−b1

Ĉ j(t1,α, p)ĝ1(t1, p)dt1 +
∫ b2

a2

D̂ j(t2,α, p)ĝ2(t2, p)dt2, (27)

B2 j(α, p) =
∫ −a1

−b1

Ĉ j+4(t1,α, p)ĝ1(t1, p)dt1 +
∫ b2

a2

D̂ j+4(t2,α, p)ĝ2(t2, p)dt2, (28)

where Ĉ j and D̂ j ( j = 1−8) can be seen in Appendix B.
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Using (16) and (17), the following equations can be obtained∫ −a1

−b1

K11(x1, t1, p)ĝ1(t1, p)dt1 +
∫ −a1

−b1

K12(x1, t1, p)ĝ1(t1, p)dt1

+
∫ b2

a2

K13(x1, t2, p)ĝ2(t2, p)dt2 = α
−β1x1
1 σ1/p,∫ b2

a2

K21(x2, t2, p)ĝ2(t2, p)dt2 +
∫ −a1

−b1

K22(x2, t1, p)ĝ1(t1, p)dt1

+
∫ b2

a2

K23(x2, t2, p)ĝ2(t2, p)dt2 = α
−β2x2
2 σ2/p,

(29)

where

K11(x1, t1, p) = lim
y→0

1
2π

∫
∞

−∞

k11(y,s, p)eis(t1−x1) ds,

K12(x1, t1, p) = lim
y→0

2
π

∫
∞

0
k12(α,x1, t1, p)cosαydα,

K13(x1, t2, p) = lim
y→0

2
π

∫
∞

0
k13(α,x1, t2, p)cosαydα,

(30)

K21(x2, t2, p) = lim
y→0

1
2π

∫
∞

−∞

k21(y,s, p)eis(t2−x2) ds,

K22(x2, t1, p) = lim
y→0

2
π

∫
∞

0
k22(α,x2, t1, p)cosαydα,

K23(x2, t2, p) = lim
y→0

2
π

∫
∞

0
k23(α,x2, t2, p)cosαydα,

(31)

where k11(y,s, p), k12(α,x1, t1, p), k13(α,x1, t2, p), k21(y,s, p), k22(α,x2, t1, p) and
k23(α,x2, t2, p) are given in Appendix C.

To derive the singular integral equation, one of the most important jobs is to conduct
an asymptotic analysis. When s→ ∞, after lengthy manipulations the asymptotic
form of k11(0,s, p) and k21(0,s, p)(y = 0) can be obtained as

k11∞(0,s, p) =−|s|
s

4µ0i
1+κ

+
1
s

2β1 lnα1µ0

1+κ
+O(

1
s2 ), (32)

k21∞(0,s, p) =−|s|
s

4µ0i
1+κ

+
1
s

2β2 lnα2µ0

1+κ
+O(

1
s2 ). (33)

For internal cracks (−h1 <−b1 <−a1 < 0 < a2 < b2 < h2), k12(α,x1, t1, p), k13(α,x1, t2, p),
k22(α,x2, t1, p), k23(α,x2, t2, p) are bounded at the interval −b1 ≤ x1 ≤ −a1 and
a2 ≤ x2 ≤ b2, but k12(α,x1, t1, p), k13(α,x1, t2, p), k22(α,x2, t1, p), k23(α,x2, t2, p)
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would include singular terms for edge crack (b1 = h1 or b2 = h2) or crack termi-
nating at the interface (a1 = 0 or a2 = 0). After lengthy analysis, when α → ∞, we
obain

k12∞(α,x1, t1, p)∼= (b11α +b12)eα (t1+x1) +(b21α
2 +b22α +b23)e−α (2h1+t1+x1),

(34)

k13∞(α,x1, t2, p)∼= (b31α +b32)eα (x1−t2), (35)

k22∞(α,x2, t1, p)∼= (b41α +b42)e−α (x2−t1), (36)

k23∞(α,x1, t1, p)∼= (b51α +b52)e−α (t2+x2) +(b61α
2 +b62α +b63)e−α (2h2−t2−x2),

(37)

where b11, ...,b63 are very complicated expressions, and can be found in [Ding
(2009)].

From (32-37), Eq.(29) can be expressed as

1
π

∫ −a1

−b1

ĝ1(t1, p)
t1− x1

dt1 +
∫ −a1

−b1

H11(x1, t1, p)ĝ1(t1, p)dt1

+
∫ b2

a2

H12(x1, t2, p)ĝ2(t2, p)dt2 =
1+κ

4µ0
σ1(x1)α

−β1x1
1 /p,

(38)

1
π

∫ b2

a2

ĝ2(t2, p)
t2− x2

dt2 +
∫ −a1

−b1

H21(x2, t1, p)ĝ1(t1, p)dt1

+
∫ b2

a2

H22(x2, t2, p)ĝ2(t2, p)dt2 =
1+κ

4µ0
σ2(x2)α

−β2x2
2 /p,

(39)

where Hi j(i = 1,2, j = 1,2) can be found in Appendix C.

4 Evaluation of singularities and expression for dynamic stress intensity fac-
tors

With the knowledge of the possible singular kernels obtained in the Section 3, we
can now evaluate the singularities of the unknown kernel functions for different
crack configurations.

4.1 Internal crack problem

Consider two collinear internal cracks in a FGM coating bonded to a FGM sub-

strate (Fig.1). For this case, note that the singular term
1

t− x
is associated with
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two embedded cracks in two materials and leads to the standard square-root sin-
gularity for the unknown function ĝ1(t1, p) and ĝ2(t2, p) . It may easily be shown
that for −b1 > −h1 and −a1 < 0, and a2 > 0 and b2 < h2, Ki j(i = 1,2, j = 1− 3)
remain bounded in the closed interval −b1 ≤ (x1, t1)≤−a1 and a2 ≤ (x2, t2)≤ b2,
respectively.

We define dimensionless quantities

t1 = u1(b1−a1)/2− (b1 +a1)/2, x1 = r1(b1−a1)/2− (b1 +a1)/2,

t2 = u2(b2−a2)/2+(b2 +a2)/2, x2 = r2(b2−a2)/2+(b2 +a2)/2.
(40)

The solutions of the singular integral equations Eqs.(38) and (39) with the Cauchy
type kernel are [Erdogan (1973)]

ĝ1(u1, p) = G1(u1, p)/
√

1−u2
1, ĝ2(u2, p) = G2(u2, p)/

√
1−u2

2, (41)

where G1(u1, p) and G2(u2, p) are bounded functions, which can be expressed as

G1(u1, p) =
∞

∑
n=0

AnTn(u1), G2(u2, p) =
∞

∑
n=0

BnTn(u2). (42)

Here, Tn is the Chebyshev polynomial of the first kind and An and Bn are unknown
constants. G1(u1, p) and G2(u2, p) must fulfill the following single-valuedness as

∫ 1

−1
G1(u1, p)/

√
1−u2

1 du1 = 0,
∫ 1

−1
G2(u2, p)/

√
1−u2

2 du2 = 0. (43)

The stress intensity factors in Laplace domain can be defined as

K̂I(−b1, p) =
4µ0α

−β1b1
1

1+κ

√
(b1−a1)/2G1(−1, p),

K̂I(−a1, p) =−
4µ0α

−β1a1
1

1+κ

√
(b1−a1)/2G1(1, p),

(44)

K̂I(a2, p) =
4µ0α

β2a2
2

1+κ

√
(b2−a2)/2G2(−1, p),

K̂I(b2, p) =−
4µ0α

β2b2
2

1+κ

√
(b2−a2)/2G2(1, p).

(45)
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Figure 2: The model of an edge crack in the nonhomogeneous material.

4.2 Surface crack problem

Consider an edge crack in the nonhomogeneous material shown in Fig.2. For the
edge crack problem (b1 = h1 or b2 = h2), we define dimensionless quantities

t1 = u1(h1−a1)/2− (h1 +a1)/2, x1 = r1(h1−a1)/2− (h1 +a1)/2,

t2 = u2(h2−a2)/2+(h2 +a2)/2, x2 = r2(h2−a2)/2+(h2 +a2)/2.
(46)

The solution of Eqs.(38) and (39) may be written as [Erdogan (1973)]

ĝ(u1, p) = G1(u1, p)/
√

1−u1, ĝ(u2, p) = G2(u2, p)/
√

1−u2. (47)

where G1(u1, p) and G2(u2, p) are bounded functions, which can be expressed as

G1(u1, p) =
∞

∑
n=0

CnTn(u1), G2(u2, p) =
∞

∑
n=0

DnTn(u2). (48)

It should be noted that there is no single valuedness condition for the case of the
edge crack. We need to choose collocation points to obtain an system of algebraic
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equations. After Cn and Dn are obtained, the stress intensity factor of the edge crack
tip in Laplace domain can be expressed as

K̂I(−a1, p)=−
4µ0α

−β1a1
1

1+κ

√
h1−a1G1(1, p), K̂I(a2, p)=

4µ0α
β2a2
2

1+κ

√
h2−a2G2(1, p).

(49)

Figure 3: The geometry of crack passing through interface.

4.3 Crack passing interface problem

Since the fracture problems of FGMs with a crack crossing the interface have been
scarcely studied in the past, the present work will be significant for the fracture
mechanics analysis and design of functionally graded layered structures. Consider
an internal crack crossing the interface shown in Fig.3. For the case of crack passing
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interface problem (i.e., a1 = 0 and a2 = 0), Eq. (38) and (39) becomes

1
π

∫ 0

−b1

ĝ1(t1, p)
t1− x1

dt1 +
∫ 0

−b1

H11(x1, t1, p)ĝ1(t1, p)dt1

+
∫ b2

0
H12(x1, t2, p)ĝ2(t2, p)dt2 =

1+κ

4µ0
σ1(x1)α

−β1x1
1 /p,

(50)

1
π

∫ b2

0

ĝ2(t2, p)
t2− x2

dt2 +
∫ 0

−b1

H21(x2, t1, p)ĝ1(t1, p)dt1

+
∫ b2

0
H22(x2, t2, p)ĝ2(t2, p)dt2 =

1+κ

4µ0
σ2(x2)α

−β2x2
2 /p.

(51)

From (32-37), Fredholm kernels H11(x1, t1, p), H22(x2, t2, p) do not contain any
singular terms. However, H12(x1, t2, p), H21(x2, t1, p) do include singular terms as
the coupling terms. After some analysis, the singular terms are expressed as

H12s(x1, t2, p) =
1

t2− x1
, −h1 < x1 < 0, 0 < t2 < h2,

H21s(x2, t1, p) =
1

t1− x2
, −h1 < t1 < 0, 0 < x2 < h2,

(52)

where x1, t1 are always negative while x2, t2 are always positive. Hence H12s(x1, t2, p)
is singular only when both x1 and t2 go to zero. Similarly, H21s(x2, t1, p) is singular
only when both x2 and t1 go to zero.

Putting all the bounded parts to the right hand side, Eqs.(50) and (51) becomes

1
π

∫ 0

−b1

ĝ1(t1, p)
t1− x1

dt1 +
∫ b2

0

ĝ2(t2, p)
t2− x1

dt2 = Φ1(x1, p),

1
π

∫ b2

0

ĝ2(t2, p)
t2− x2

dt2 +
∫ 0

−b1

ĝ1(t1, p)
t1− x2

dt1 = Φ2(x2, p).
(53)

Here, Φ1(x1, p) and Φ2(x2, p) represent the bounded terms. To examine the singu-
larity, we let

ĝ1(t1, p) =
g1(t1, p)

(t1 +b1)ω1(−t1)ς1
, ĝ2(t2, p) =

g2(t2, p)
(t2)ω2(b2− t2)ς2

, (54)

where g1(t1, p) and g2(t2, p) are Hölder continuous on−b1 < t1 < 0 and 0 < t2 < b2,
respectively. It should be noted that at zero there can be only one irregular point.
Therefore, ς1 = ω2.

After lengthy manipulations it can be shown that [Muskhelishvili (1953)]

cos(πω1) = 0, cos(πς2) = 0, ς1 = 0, ω2 = 0, (55)
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giving ω1 = ς2 = 1
2 . The result ς1 = 0 implies that there is no power singularity

at the interface. There is a possibility of a logarithmic singularity. It has been
verified that, the logarithmic singularity is square integrable and will not affect the
singular nature of the integral equations [Erdogan et al. (1991)]. We can concluded
that there is no irregular point at the interface, which is different from the case of
nonsquare-root singularity for the crack touching interface between two homoge-
neous materials [Cook and Erdogan (1972)].

Since there is no singularity at the interface, we can pose Eqs.(50) and (51) as one
singular integral equation as

1
π

∫ b2

−b1

ĝ(t, p)
t− x

dt +
∫ b2

−b1

H(x, t, p)ĝ(t, p)dt =
1+κ

4µ0
σ(x, p), (56)

where

ĝ(t, p) =
{

ĝ1(t, p), t < 0,
ĝ2(t, p), t > 0,

(57)

H(x, t, p) =


H11(x, t, p), (x, t) < 0,

H12(x, t, p)− 1
t−x , x < 0, t > 0,

H21(x, t, p)− 1
t−x , x > 0, t < 0,

H22(x, t, p), (x, t) > 0,

(58)

σ(x, p) =

{
σ1(x)α

−β1x
1 /p, x < 0,

σ2(x)α
−β2x
2 /p, x > 0.

(59)

It should be noted that the only irregular points are x =−b1 and x = b2. Therefore,
we can write

ĝ(t, p) = G(t, p)/
√

(t +b1)(b2− t), (60)

where G(t, p) is bounded function.

We defining the normalized quantities

t = u(b1 +b2)/2+(b2−b1)/2, x = r(b1 +b2)/2+(b2−b1)/2. (61)

The solution of Eq.(56) can be expressed as [Erdogan (1973)]

ĝ(u, p) = G(u, p)/
√

1−u2, (62)

where G(u, p) is bounded function, which can be expressed as

G(u, p) =
∞

∑
n=0

EnTn(u). (63)
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We can write the stress intensity factors as

K̂I(−b1, p) =
4µ0α

−β1b1
1

1+κ

√
(b1 +b2)/2G(−1, p),

K̂I(b2, p) =−
4µ0α

β2b2
2

1+κ

√
(b1 +b2)/2G(1, p).

(64)

5 Results and discussion

The following analysis of DSIFs will be conducted, respectively, for two internal
cracks and an edge crack and a internal crack crossing the interface. The sur-
face of the two cracks loaded by σ10H(t) and σ20H(t) respectively, where σ10
and σ20 are constant tractions. Plane strain state is considered here. The DSIFs
are normalized by k10 = σ10

√
a01 and k20 = σ20

√
a02 for two internal cracks and

by k10 = σ10
√

h1−a1 and k20 = σ10
√

h2−a2 for the edge crack, where a01 =
(b1−a1)/2 and a02 = (b2−a2)/2. When a internal crack passing through the in-
terface, the DSIFs are normalized by k30 = σ10

√
a01, where a01 = (b1 +b2)/2. The

x-coordinate of the crack center is defined as d1 = (a1 +b1)/2 and d2 = (a2 +b2)/2
for two internal cracks, and d1 = (a1 + h1)/2 and d2 = (a2 + h2)/2 for the edge
crack. Poisson’s ratio is taken as ν = 0.3.

5.1 Single parameter exponential model

To verify the validity of the analytical solution procedure, we firstly restrict our
attention to a functionally graded strip with a central crack vertical to the interface
bonded to a homogeneous strip under static load (i.e. a02 = 0, p→ 0 or t → ∞).
The corresponding static problem was studied by [Guo et al. (2004b)]. The non-
homogeneous parameter α1 and α2 are assumed to be equal to e. From Fig.4, it’s
observed that the present results coincide well with those of [Guo et al. (2004b)].

Subsequently, let us consider single crack or two collinear cracks problem. First,
there was no crack in the FGMII . Then a crack ranging from 0.4h1 to 0.6h1 is
placed in the FGMII . And then a longer crack ranging from 0.3h1 to 0.7h1 is placed.
Fig.5 shows the influence of a02/h2 on the normalized DSIFs when β2/β1=-1.0. It
can be seen that the peak value and the corresponding static value of the normalized
DSIFs are minimum for single crack.

Figs.6 and 7 show the influence of nonhomogeneous parameter ratio β1/β2 on the
normalized DSIFs when the two collinear cracks both exist in the layered structure.
It can be observed that both the peak and static values of KI(−b1, t)/k10 decrease
with an increase of β1/β2. The peak and static values of KI(−a1, t)/k10 increase
with an increase of β1/β2. When β1/β2 > 0, the peak and corresponding static
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Figure 4: Influences on normalized static SIF for a central internal crack in
FGM coating bonded to a homogeneous substrate ( h2/h1 = 1,d1/h1 = 0.5,a02 =
0.0,β2 = 0.0)
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Figure 5: Influences on DSIFs for a single crack two collinear cracks in different
FGMs (h2/h1 = 1,d1/h1 = 0.5,d2/h2 = 0.5,β1 =−ln2.0,β2 = ln2.0)
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Figure 6: Influences of the ratio between the two nonhomogeneity parameters
on the stress intensity factor of collinear cracks (h2/h1 = 1,d1/h1 = 0.5,d2/h2 =
0.5,β2 = ln2.0,a02/h2 = 0.2)
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Figure 7: Influences of the ratio between the two nonhomogeneity parameters
on the stress intensity factor of collinear cracks (h2/h1 = 1,d1/h1 = 0.5,d2/h2 =
0.5,β2 = ln2.0,a02/h2 = 0.2)
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Figure 8: Influences of d1 on DSIFs for two collinear cracks in different FGMs
(h2/h1 = 1,d2/h2 = 0.5,β1 =−ln2.0,β2 = ln2.0,a02/h2 = 0.2)

values of KI(−b1, t)/k10 are less than those of KI(−a1, t)/k10 and when β1/β2 < 0,
the reverse is true. Therefore, we conclude from Figs.6 and 7 that the peak and
corresponding static values of the normalized DSIFs are larger for the crack tip
lying in the relatively stiffer layer.

Fig.8 depicts the variations of the normalized DSIFs with d1/h1 when the two
cracks both exist in the layered structure. It can be found that, both the peak and
static values of KI(−b1, t)/k10 are greater that those of KI(−a1, t)/k10. The peak
and corresponding static values of KI(−b1, t)/k10 and KI(−a1, t)/k10 increase with
an increase of d1/h1, which shown that the crack tips are sensitive to the free sur-
face of the coating when the crack center is far from the interface.

5.2 Bi-parameter exponential model

5.2.1 Internal cracks case

Figs.9 and 10 show the influence of nonhomogeneous parameter ratio β1/β2 on
normalized DSIFs when α1 = α2=2.0 and α1 = α2=0.5, respectively. When α1 =
α2=0.5, the peak and corresponding static values of KI(−b1, t)/k10 are less than
those of KI(−a1, t)/k10. For KI(−b1, t)/k10, it can be found that both the peak and
static values increase with an increase of β1/β2. For KI(−a1, t)/k10, however, the
peak and the static values decrease with an increase of β1/β2. When α1 = α2=2.0
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this feature is just opposite.
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Figure 9: Influences of the ratio between the two nonhomogeneity parameters
on the stress intensity factor of collinear cracks (h2/h1 = 1,d1/h1 = 0.5,d2/h2 =
0.5,β2 = ln2.0,a02/h2 = 0.2,α1 = α2 = 2.0)

Figs.11 and 12 illustrate the influences of different thickness ratioes h2/h1 on nor-
malized DSIFs when β1 =−β2. It can be found that the influence of h2/h1 on the
peak value of DSIFs is not obvious. On the other hand, the static values of DSIFs
decrease with an increase of h2/h1.

Assuming that ζ2 is fixed, it can be found from Figs.13-15 that, when the non-
homogeneity parameter of FGM, β1 and β2, are fixed, the effect of another nonho-
mogeneity parameter of FGM, α1, on the values of DSIFs of crack. When β1 = β2,
for KI(−b1, t)/k10, it can be seen that both the peak and static values decrease with
the increasing of α1. For KI(−a1, t)/k10, however, the peak and the static values in-
crease with the increasing of α1. Furthermore, for α1 < 1.0 (such as α1=0.1 or 0.5),
the peak and static values of KI(−b1, t)/k10 are greater than those of KI(−a1, t)/k10.
For α1 > 1.0 (such as α1=2.0 or e), the peak and static values of KI(−b1, t)/k10 are
less than those of KI(−a1, t)/k10. When β1 = −β2 just means the opposite case.
From Fig.15, the peak value of KI(a2, t)/k20 and KI(b2, t)/k20 have no obvious
variations with the increasing of α1. However, the corresponding static values of
KI(a2, t)/k20 and KI(b2, t)/k20 increase with an increase of α1.
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Figure 10: Influences of the ratio between the two nonhomogeneity parameters
on the stress intensity factor of collinear cracks (h2/h1 = 1,d1/h1 = 0.5,d2/h2 =
0.5,β2 = ln2.0,a02/h2 = 0.2,α1 = α2 = 0.5)
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Figure 11: Influences of h2/h1 on DSIFs for collinear cracks ( d1/h1 = 0.5,d2/h2 =
0.5,β1 =−ln2.0,β2 = ln2.0,α1 = α2 = 2.0)
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Figure 12: Influences of h2/h1 on DSIFs for collinear cracks ( d1/h1 = 0.5,d2/h2 =
0.5,β1 =−ln2.0,β2 = ln2.0,α1 = α2 = 0.5)
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Figure 13: Influences of α1 on DSIFs for collinear cracks ( h2/h1 = 1,d1/h1 =
0.5,d2/h2 = 0.5,β1 = β2 = ln2.0,α2 = e)
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Figure 14: Influences of α1 on DSIFs for collinear cracks ( h2/h1 = 1,d1/h1 =
0.5,d2/h2 = 0.5,β1 =−ln2.0,β2 = ln2.0,α2 = e)
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Figure 15: Influences of α1 on DSIFs for collinear cracks ( h2/h1 = 1,d1/h1 =
0.5,d2/h2 = 0.5,β1 = β2 = ln2.0,α2 = e)
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5.2.2 Surface crack case

It can be found from Figs.16 and 17 that, when the non-homogeneity parameter of
FGMII , β2, is fixed, with the nonhomogeneity parameter of FGMI , β1h1, increasing
from ln0.1 to ln2.0, the peak values of normalized DSIFs increase for α1 = α2=2.0,
and decrease for α1 = α2=0.5. By comparing the results for the edge crack problem
with those for the internal crack problem, we found that: for the internal crack the
DSIFs increase quickly with time and then keep approximately stable after reaching
a peak, while the DSIFs for the edge crack also increase quickly with time but then
exhibit a more obvious oscillation after reaching a peak. It is for the reason that
the strip with an edge crack, compared with the structure with a central crack, loses
symmetry, and the interaction between the waves and the finite boundaries would
be stronger.
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Figure 16: The effect of nonhomogeneity parameter on the DSIFs under the case
of surface crack ( h2/h1 = 1,β2 = ln2.0,a02 = 0.0,α1 = α2 = 0.5)

By assuming that α2 is fixed, Fig.18 shows the influence of α1 on DSIFs when
β1 =−β2. It can be seen that the peak of KI(−a1, t)/k10 decrease with an increase
of α1. However, the corresponding static values of KI(−a1, t)/k10 increase with an
increase of of α1.
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Figure 17: The effect of nonhomogeneity parameter on the DSIFs under the case
of surface crack ( h2/h1 = 1,β2 = ln2.0,a02 = 0.0,α1 = α2 = 2.0)

5.2.3 Internal cracks crossing interface case

Figs.19 and 20 illustrates the variation of crack length a01/h1 on normalized DSIFs
when α1 = α2=2.0 and α1 = α2=0.5, respectively. It can be found that both the
peak and static values of DSIFs increase with the increasing of a01/h1 regardless
of the variation of nonhomogeneous parameters. Meanwhile, it can be seen that, as
the relative crack length a01/h1 increases, the peak value of DSIFs occurs at a later
time. Undoubtedly, this is due to the interaction between the scattered waves from
the crack and the reflected waves from the boundaries.

Figs.21 and 22 show the influence of β1h1 on normalized DSIFs when α1 = α2=2.0
and α1 = α2=0.5, respectively. Similar to internal crack and edge crack problems,
the variation of DSIFs is opposite with an changing of β1h1 when α1 = α2=2.0 and
α1 = α2=0.5, respectively.

Assuming that α2 is fixed, Fig.23 show the influence of another nonhomogeneous
parameter α1 on DSIFs. It can be found that the peak value of KI(−b1, t)/k10
increase with an increase of α1.

6 Condusion

In this paper, the crack-tip fields in bonded functionally graded finite strips are
studied. A new bi-parameter exponential function was introduced to simulate the



68 Copyright © 2010 Tech Science Press CMES, vol.56, no.1, pp.43-84, 2010

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

c
2
t/a

01

K I(−
a 1,t)

/ k
10

α
1
= 0.1 

α
1
= 0.5 

α
1
= 2.0 

α
1
=  e 

Figure 18: The effect of α1 on the DSIFs under the case of surface crack ( h2/h1 =
1,β1 =−ln2.0,β2 = ln2.0,a02 = 0.0,α2 = e)
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Figure 19: Influences of crack length on the DSIFs under the case of an internal
crack crossing the interface ( h2/h1 = 1,β1 = β2 = ln(1.455),α1 = α2 = 2.0)
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Figure 20: Influences of crack length on the DSIFs under the case of an internal
crack crossing the interface ( h2/h1 = 1,β1 = β2 = ln(1.455),α1 = α2 = 0.5)
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Figure 21: Influences of nonhomogeneity parameter on the DSIFs under the case
of an internal crack crossing the interface ( h2/h1 = 1,β2 = ln0.2,α1 = α2 = 2.0)
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Figure 22: Influences of nonhomogeneity parameter on the DSIFs under the case
of an internal crack crossing the interface ( h2/h1 = 1,β2 = ln0.2,α1 = α2 = 0.5)
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Figure 23: Influences of nonhomogeneity parameter on the DSIFs under the case of
an internal crack crossing the interface ( h2/h1 = 1,β1 =−ln2.0,β2 = ln2.0,α2 = e)
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continuous variation of material properties. The singular integral equation for solv-
ing the problem and the corresponding asymptotic expression of the singular kernel
are obtained. Various internal cracks and edge crack and crack crossing the inter-
face configurations are investigated, respectively. The following conclusions could
be made

• The asymptotic stress field near the tip of a crack crossing the interface was
obtained which has the conventional square root singularity and the same
angular distribution structure as that of mode I crack in elastic homogeneous
material.

• Consider the single crack and two collinear cracks problem. As the liga-
ment between the crack shortens in length, the effect is more pronounced on
DSIFs.

• Compared to internal crack, for an edge crack, it is observed that the curves
of DSIFs oscillate more obviously with the increasing of nonhomogeneity
constant, and the occurring time for the peak value decreases with the in-
creasing of nonhomogeneity constant.

• In the case of α1 > 1 and α2 > 1 (such as α1 = α2=2.0), the variation of both
peak and static values of DSIFs with changing of nonhomogeneous parame-
ters is opposite to the case of α1 < 1 and α2 < 1 (such as α1 = α2=0.5).

• To increase the rigidity of the FGM strip where the crack is located will
increase the DSIFs. However, when the material in one side of the interface
is more rigid, the DSIFs of the interface-perpendicular crack in the other side
will be reduced.

Acknowledgement: This work was supported by the National Natural Science
Foundation of China (10962008) and the Ningxia University Science Foundation
((E)ndzr09-8, ZR200805).

Appendix A

The expressions of mk j(s, p), nk j, qk j(s, p) and pk j (k = 1,2, j = 1− 4) are given
by

nk j(s, p) =±1/2

√√√√4Λ11
2 +Λ12

2±4

√
Λ11

2
Λ12

2 +
p4ρ0

µ02 (κ +1)2 , (A1)
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mk j(s, p) =
(κ−1)µ0s(s+ iβk lnαk)−mu0(κ +1)n2

k j +(κ−1)p2ρ0

µ0(βk lnαk(κ−1)−2is)nk j
, (A2)

pk j(α, p) =−1/2βk lnαk±1/2

√
4α2 +(βk lnαk)

2 +
4κ p2ρ0±4Ωk

µ0(κ +1)
, (A3)

qk j(α, p) =
−(κ +1)µ0α2 +(κ−1)(βk lnαkµ0 pk j + µ0 p2

k j− p2ρ0)

µ0((κ−1)βk lnαk +2pk j)α
, (A4)

Ωk =
√

α2(βk lnαk)
2
µ02κ2−2α2(βk lnαk)

2
µ02κ−3α2(βk lnαk)2µ02 + p4ρ02.

(A5)

The expressions of ck j, dk j, and ek j(k = 1,2, j = 1−4) are given by

c1 j =
µ0

κ−1
((3−κ)n1 j− (κ +1)m1 jis), c2 j =

µ0

κ−1
((3−κ)n2 j− (κ +1)m2 jis),

(A6)

c3 j =
µ0

κ−1
((3−κ)α +(κ +1)q1 j p1 j), c4 j =

µ0

κ−1
((3−κ)α +(κ +1)q2 j p2 j),

(A7)

d1 j =
µ0

κ−1
((1+κ)n1 j− (3−κ)m1 jis), d2 j =

µ0

κ−1
((1+κ)n2 j− (3−κ)m2 jis),

(A8)

d3 j =
µ0

κ−1
((1+κ)α +(3−κ)q1 j p1 j), d4 j =

µ0

κ−1
((1+κ)α +(3−κ)q2 j p2 j),

(A9)

e1 j = µ0(m1 jn1 j− is), e2 j = µ0(m2 jn2 j− is),
e3 j = µ0(p1 j−q1 jα), e4 j = µ0(p2 j−q2 jα).

(A10)

Appendix B

Ĉ j and D̂ j ( j = 1−8) can be given by

Ĉ j(t1,α, p) =
8

∑
k=1

b jk(α, p)R̂k1(α, p), j = 1−8, (B1)
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D̂ j(t2,α, p) =
8

∑
k=1

b jk(α, p)R̂k2(α, p), j = 1−8, (B2)

where

R̂11(α, p) = R11(α, p)e−p13(t1+h1) +R12(α, p)e−p14(t1+h1) +R13(α, p), (B3)

R̂21(α, p) = R21(α, p)e−p13(t1+h1) +R22(α, p)e−p14(t1+h1) +R23(α, p), (B4)

R̂12(α, p) = 0, R̂22(α, p) = 0, (B5)

R̂31(α, p) = R311(α, p)e−p11t1 +R312(α, p)e−p12t1 +R313(α, p), (B6)

R̂32(α, p) = R321(α, p)e−p23t2 +R322(α, p)e−p24t2 +R323(α, p), (B7)

R̂41(α, p) = R411(α, p)e−p11t1 +R412(α, p)e−p12t1 +R413(α, p), (B8)

R̂42(α, p) = R421(α, p)e−p23t2 +R422(α, p)e−p24t2 +R423(α, p), (B9)

R̂51(α, p) = 0, R̂61(α, p) = 0, (B10)

R̂52(α, p) = R51(α, p)e−p21(t2−h2) +R52(α, p)e−p22(t2−h2) +R53(α, p), (B11)

R̂62(α, p) = R61(α, p)e−p21(t2−h2) +R62(α, p)e−p22(t2−h2) +R63(α, p), (B12)

R̂71(α, p) = R711(α, p)e−p11t1 +R712(α, p)e−p12t1 +R713(α, p), (B13)

R̂72(α, p) = R721(α, p)e−p23t2 +R722(α, p)e−p24t2 +R723(α, p), (B14)

R̂81(α, p) = R811(α, p)e−p11t1 +R812(α, p)e−p12t1 +R813(α, p), (B15)

R̂82(α, p) = R821(α, p)e−p23t2 +R822(α, p)e−p24t2 +R823(α, p), (B16)

R11(α, p) =

p13
2µ0
(
8α2µ0− (κ−3) p2ρ0

)
− (κ−3) p2ρ0

(
µ0β1 lnα1 p13−α2µ0− p2ρ0

)
(1+κ)µ0 p13 (p13− p11)(p13− p12)(p13− p14)

,

(B17)

R12(α, p) =

p14
2µ0
(
8α2µ0− (κ−3) p2ρ0

)
− (κ−3) p2ρ0

(
µ0β1 lnα1 p14−α2µ0− p2ρ0

)
(1+κ)µ0 p14 (p14− p11)(p14− p12)(p14− p13)

,

(B18)

R13(α, p) =
(κ−3) p2ρ0

(
α2µ0 + p2ρ0

)
2(1+κ)µ0 p11 p12 p13 p14

, (B19)
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R21(α, p) =−
α
(
8 µ0 p13

3 +8β1 lnα1µ0 p13
2−4 p2ρ0 p13 +(κ−3) p2β1 lnα1ρ0

)
(1+κ) p13 (p13− p11)(p13− p12)(p13− p14)

,

(B20)

R22(α, p) =−
α
(
8 µ0 p14

3 +8β1 lnα1µ0 p14
2−4 p2ρ0 p14 +(κ−3) p2β1 lnα1ρ0

)
(1+κ) p14 (p14− p11)(p14− p12)(p14− p13)

,

(B21)

R23(α, p) =−α (κ−3) p2ρ0β1 lnα1

2(1+κ) p11 p12 p13 p14
, (B22)

R311(α, p) =

−
p11

2µ0
(
8α2µ0− (κ−3) p2ρ0

)
− (κ−3) p2ρ0

(
µ0β1 lnα1 p11−α2µ0− p2ρ0

)
(1+κ)µ0 p11 (p11− p12)(p11− p13)(p11− p14)

,

(B23)

R312(α, p) =

−
p12

2µ0
(
8α2µ0− (κ−3) p2ρ0

)
− (κ−3) p2ρ0

(
µ0β1 lnα1 p12−α2µ0− p2ρ0

)
(1+κ)µ0 p12 (p12− p11)(p12− p13)(p12− p14)

,

(B24)

R313(α, p) =−
(κ−3) p2ρ0

(
α2µ0 + p2ρ0

)
2(1+κ)µ0 p11 p12 p13 p14

, (B25)

R321(α, p) =

p23
2µ0
(
−8α2µ0 +(κ−3) p2ρ0

)
− (κ−3) p2ρ0

(
−µ0β2 lnα2 p23 +α2µ0 + p2ρ0

)
(1+κ)µ0 p23 (p23− p21)(p23− p22)(p23− p24)

,

(B26)

R322(α, p) =

p24
2µ0
(
−8α2µ0 +(κ−3) p2ρ0

)
− (κ−3) p2ρ0

(
−µ0β2 lnα2 p24 +α2µ0 + p2ρ0

)
(1+κ)µ0 p24 (p24− p21)(p24− p22)(p24− p23)

,

(B27)

R323(α, p) =−
(κ−3) p2ρ0

(
α2µ0 + p2ρ0

)
2(1+κ)µ0 p21 p22 p23 p24

, (B28)
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R411(α, p) =
α
(
8 µ0 p11

3 +8β1 lnα1µ0 p11
2−4 p2ρ0 p11 +(κ−3) p2β1 lnα1ρ0

)
(1+κ) p11 (p11− p12)(p11− p13)(p11− p14)

,

(B29)

R412(α, p) =
α
(
8 µ0 p12

3 +8β1 lnα1µ0 p12
2−4 p2ρ0 p12 +(κ−3) p2β1 lnα1ρ0

)
(1+κ) p12 (p12− p11)(p12− p13)(p12− p14)

,

(B30)

R413(α, p) =
α (κ−3) p2ρ0β1 lnα1

2(1+κ) p11 p12 p13 p14
, (B31)

R421(α, p) =
α
(
8 µ0 p23

3 +8β2 lnα2µ0 p23
2−4 p2ρ0 p23 +(κ−3) p2β2 lnα2ρ0

)
(1+κ) p23 (p23− p21)(p23− p22)(p23− p24)

,

(B32)

R422(α, p) =
α
(
8 µ0 p24

3 +8β2 lnα2µ0 p24
2−4 p2ρ0 p24 +(κ−3) p2β2 lnα2ρ0

)
(1+κ) p24 (p24− p21)(p24− p22)(p24− p23)

,

(B33)

R423(α, p) =
α (κ−3) p2ρ0β2 lnα2

2(1+κ) p21 p22 p23 p24
, (B34)

R51(α, p) =

p21
2µ0
(
8α2µ0− (κ−3) p2ρ0

)
+(κ−3) p2ρ0

(
−µ0β2 lnα2 p21 +α2µ0 + p2ρ0

)
(1+κ)µ0 p21 (p21− p22)(p21− p23)(p21− p24)

,

(B35)

R52(α, p) =

p22
2µ0
(
8α2µ0− (κ−3) p2ρ0

)
+(κ−3) p2ρ0

(
−µ0β2 lnα2 p22 +α2µ0 + p2ρ0

)
(1+κ)µ0 p22 (p22− p21)(p22− p23)(p22− p24)

,

(B36)

R53(α, p) =
(κ−3) p2ρ0

(
α2µ0 + p2ρ0

)
2(1+κ)µ0 p21 p22 p23 p24

, (B37)
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R61(α, p) =

−
α
(
8 µ0 p21

3 +8β2 lnα2µ0 p21
2−4 p2ρ0 p21 +(κ−3) p2β2 lnα2ρ0

)
(1+κ) p21 (p21− p22)(p21− p23)(p21− p24)

, (B38)

R62(α, p) =−
α
(
8 µ0 p22

3 +8β2 lnα2µ0 p22
2−4 p2ρ0 p22 +(κ−3) p2β2 lnα2ρ0

)
(1+κ) p22 (p22− p21)(p22− p23)(p22− p24)

,

(B39)

R63(α, p) =−α (κ−3) p2ρ0β2 lnα2

2(1+κ) p21 p22 p23 p24
, (B40)

R711(α, p) =−[(κ−3)p2
β1 lnα1ρ0 +(α2(1+κ)µ0

− (κ−3)(µ0(β1 lnα1)
2− p2

ρ0))p11− (κ−3)µ0 p11
2(2β1 lnα1 + p11)]

/[(1+κ)µ0 p11(p11− p12)(p11− p13)(p11− p14)], (B41)

R712(α, p) =−[(κ−3)p2
β1 lnα1ρ0 +(α2(1+κ)µ0

− (κ−3)(µ0(β1 lnα1)
2− p2

ρ0))p12− (κ−3)µ0 p12
2(2β1 lnα1 + p12)]/

[(1+κ)µ0 p12(p12− p11)(p12− p13)(p12− p14)], (B42)

R713(α, p) =− (κ−3)p2β1 lnα1ρ0

2(1+κ)µ0 p11 p12 p13 p14
, (B43)

R721(α, p) =−[(κ−3)p2
β2 lnα2ρ0− (α2(1+κ)µ0

− (κ−3)(µ0(β2 lnα2)
2− p2

ρ0))p23 +(κ−3)µ0 p23
2(2β2 lnα2 + p23)]/

[(1+κ)µ0 p23(p23− p21)(p23− p22)(p23− p24)], (B44)

R722(α, p) = [−(κ−3)p2
β2 lnα2ρ0− (α2(1+κ)µ0

− (κ−3)(µ0(β2 lnα2)
2− p2

ρ0))p24 +(κ−3)µ0 p24
2(2β2 lnα2 + p24)]

[(1+κ)µ0 p24(p24− p21)(p24− p22)(p24− p23)], (B45)

R723(α, p) =− (κ−3)p2β2 lnα2ρ0

2(1+κ)µ0 p21 p22 p23 p24
, (B46)
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R811(α, p) =−[((α2
µ0 + p2

ρ0)(1+κ)

− (κ−3)µ0(β1 lnα1)
2−2 p11(1+κ)µ0β1 lnα1− (κ +5)µ0 p11

2)α]/
[(1+κ)µ0 p11(p11− p12)(p11− p13)(p11− p14)], (B47)

R812(α, p) =−[((α2
µ0 + p2

ρ0)(1+κ)

− (κ−3)µ0(β1 lnα1)
2−2 p12(1+κ)µ0β1 lnα1− (κ +5)µ0 p12

2)α]/
[(1+κ)µ0 p12(p12− p11)(p12− p13)(p12− p14)], (B48)

R813(α, p) =−((α2µ0 + p2ρ0)(1+κ)− (κ−3)µ0(β1 lnα1)
2)α

2(1+κ)µ0 p11 p12 p13 p14
, (B49)

R821(α, p) = [(−(α2
µ0 + p2

ρ0)(1+κ)

+(κ−3)µ0(β2 lnα2)
2 +2 p23(1+κ)µ0β2 lnα2 +(κ +5)µ0 p23

2)α]/
[(1+κ)µ0 p23(p23− p21)(p23− p22)(p23− p24)], (B50)

R822(α, p) = [(−(α2
µ0 + p2

ρ0)(1+κ)

+(κ−3)µ0(β2 lnα2)
2 +2 p24(1+κ)µ0β2 lnα2 +(κ +5)µ0 p24

2)α]/
[(1+κ)µ0 p24(p24− p21)(p24− p22)(p24− p23)], (B51)

R823(α, p) =
(−(α2µ0 + p2ρ0)(1+κ)+(κ−3)µ0(β2 lnα2)

2)α
2(1+κ)µ0 p21 p22 p23 p24

. (B52)

The matrix (b jk) is the inverse of (a jk). The non-zero vectors of (a jk) are expressed
as

a1 j = c3 j exp(m1 jh1), a2 j = e3 j exp(m1 jh1), j = 1−4, (B53)

a3 j = c3 j, a4 j = e3 j, j = 1−4, a3 j =−c4 j, a4 j =−e4 j, j = 5−8, (B54)

a5 j = c4 j exp(−m2 jh2), a6 j = e4 j exp(−m2 jh1), j = 5−8, (B55)

a7 j = G1 j, a8 j = 1, j = 1−4, a7 j =−G2 j, a8 j =−1, j = 5−8. (B56)

Appendix C
The functions k11(y,s, p), k12(α,x1, t1, p), k13(α,x1, t2, p), k21(y,s, p), k22(α,x2, t1, p)
and k23(α,x2, t2, p) are

k11(y,s, p) = d11 f11 exp(n11y)+d12 f12 exp(n12y),

k12(α,x1, t1, p) =
4

∑
j=1

8

∑
k=1

d3 jb jkR̂k1 exp(p1 jx1),
(C1)
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k13(α,x1, t1, p) =
4

∑
j=1

8

∑
k=1

d3 jb jkR̂k2 exp(p1 jx1),

k21(y,s, p) =d21 f21 exp(n21y)+d22 f22 exp(n22y),

(C2)

k22(α,x2, t2, p) =
4

∑
j=1

8

∑
k=1

d4 jb jkR̂k1 exp(p2 jx2),

k23(α,x2, t2, p) =
4

∑
j=1

8

∑
k=1

d4 jb jkR̂k2 exp(p2 jx2),

(C3)

The kernel functions Hi j(i = 1,2, j = 1,2) can be given by

H11(x1, t1, p) =
1+κ

8µ0

{∫ A

0
(k11 + k11c)cos[s(t1− x1)]ds

+
∫

∞

A
(k11 + k11c−

4β1 lnα1µ0

s(1+κ)
)cos[s(t1− x1)]ds

+
∫

∞

0
(k11−k11c +

8iµ0

1+κ
)isin[s(t1−x1)]ds+4

[
H11b(x1, t1, p)+H11s(x1, t1, p)

]}
,

(C4)

H11b(x1, t1, p) =
∫

∞

0
[k12(α,x1, t1, p)− k12∞(α,x1, t1, p)]dα, (C5)

H11s(x1, t1, p) =
b11

(t1 + x1)2 +
b12

t1 + x1
+

2b21

(2h1 + t1 + x1)3

+
b22

(2h1 + t1 + x1)2 +
b23

2h1 + t1 + x1
, (C6)

H12(x1, t2, p) =
1+κ

2µ0

{
H12b(x1, t2, p)+H12s(x1, t2, p)

}
, (C7)

H12b(x1, t2, p) =
∫

∞

0
[k13(α,x1, t2, p)− k13∞(α,x1, t2, p)]dα, (C8)

H12s(x1, t2, p) =
b31

(x1− t2)2 −
b32

x1− t2
, (C9)

H21(x2, t1, p) =
1+κ

2µ0

{
H21b(x2, t1, p)+H21s(x2, t1, p)

}
, (C10)
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H21b(x2, t1, p) =
∫

∞

0
[k22(α,x2, t1, p)− k22∞(α,x2, t1, p)]dα, (C11)

H21s(x2, t1, p) =
b41

(x2− t1)2 +
b42

x2− t1
, (C12)

H22(x2, t2, p) =
1+κ

8µ0

{∫ A

0
(k21 + k21c)cos[s(t2− x2)]ds

+
∫

∞

A
(k21 + k21c−

4β2 lnα2µ0

s(1+κ)
)cos[s(t2− x2)]ds

+
∫

∞

0
(k21− k21c +

8iµ0

1+κ
)isin[s(t2− x2)]ds+4

[
H22b(x2, t2)+H22s(x2, t2)

]}
,

(C13)

H22b(x2, t2, p) =
∫

∞

0
[k23(α,x2, t2, p)− k23∞(α,x2, t2, p)]dα, (C14)

H22s(x2, t2, p) =
b51

(t2 + x2)2 +
b52

t2 + x2
+

2b61

(2h2− t2− x2)3

++
b62

(2h2− t2− x2)2 +
b63

2h2− t2− x2
. (C15)

Here, k11c and k21c are the complex conjugate of k11 and k21, respectively.
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