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Numerical Phenomenology: Virtual Testing of the
Hierarchical Structure of a Bundle of Strands

D.P. Boso1 and M. Lefik2

Abstract: In this paper we study numerically the mechanical behaviour of wire
ropes, particularly the influence of the geometrical configuration on the overall
stiffness of the cables. Modelling the behaviour of a cable is a difficult prob-
lem, given the complexity of the geometrical layout, contact phenomena occurring
among wires and possible yielding of the material. For this reason we pursue a “hi-
erarchical beam approach”, to substitute recursively, at each cabling stage, the bun-
dle of wires with an equivalent single strand, having the characteristics computed
from the previous level. We consider the first two levels of the bundle hierarchy
and investigate the case of longitudinal stretching, as a representative application
of the method for the problem at hand. To this aim, we perform a certain num-
ber of numerical experiments on a bundle of wires, by varying their twist pitches.
In this way we compose a set of data to train suitable Artificial Neural Networks,
so that, given the twist pitches and the applied longitudinal displacement in input,
the ANNs give us the longitudinal reaction force, the bundle axial rotation or the
overall axial stiffness. These results can be used “directly” to search for geometri-
cal configurations that offer a significant improvement in stiffness, assuming that a
higher stiffness will reduce strand bending and wires breakage. Furthermore, they
can be used to obtain the characteristics of the single, equivalent beam that we need
for our approach.

Keywords: Multiscale Modelling, Hierarchical Structures, Artificial Neural Net-
work, Wire Rope Stiffness, Superconducting Strands.

1 Introduction

Wire ropes are largely used in engineering applications, ranging from suspended
bridge, cranes, electrical cables, electromagnets and superconducting coils. The
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basic element of a wire rope is a single thin metallic wire. A certain number of
wires are twisted together like helix or laid around a core to obtain a strand and
the rope is constructed by twisting some strands together or laying them around a
core-strand. If present, the main purpose of the core is to provide proper support
for the strands under normal bending and loading conditions. A property common
to structural elements such as ropes, cords, cables is their ability to resist relatively
large axial load. In the case of superconducting (SC) magnets, also bending and
torsional loads are particularly high, so that the coil must be carefully designed to
withstand magnetic pressure and Lorentz forces that could otherwise cause wire
fracture or crushing of insulation between adjacent turns. Actually for the SC coils
the cabling pattern consists of more than two stages. ITER (the International Ther-
monuclear Experimental Reactor, now under construction) cable layout is based on
a five-stage, multi-twisted configuration illustrated in Figure 1. It consists of 1422
chrome-coated strands, all stages are right-hand lay with twist pitches presently
defined as in Table 1, Option I (left column). Furthermore, two other twist pitch
combinations, called Option II and TFPRO-OSTII, are under experimental investi-
gation. They are summarized in Table 1, middle and right column.

During the last decade an extensive Research and Development (R&D) program has
been performed to demonstrate the feasibility of ITER magnet system [Sborchia,
C. (2000)], [Mitchell, N.; Salpietro, E. (2001)]. Experimental tests have provided
valuable information to finalize the design of the ITER magnetic system. However
the behaviour of Nb3Sn strand cables was not as good as expected on the basis
of the characteristics evaluated for the uncabled wires [Ulbricht, A.; Duchateau,
J.L.; Fietz, W.H.; Ciazynski, D.; Fillunger, H.; Fink, S.; Heller, R.; Maix, R.;
Nicollet, S.; Raff, S.; et al..(2005)], [Zanino, R.; Mitchell, N.; Savoldi Richard, L.
(2003)], [Zanino, R.; Boso, D.P.; Lefik, M.; et al. (2008)]. This lack in Nb3Sn
performance is due to various factors, among which the strain state of the wires
due to bending and contact phenomena inside the cable [Boso, D.P.; Lefik, M.;
Schrefler, B.A. (2006, IEEE)], [Boso, D.P.; Lefik, M.; Schrefler, B.A. (2005)] (in
Nb3Sn the superconducting properties depend upon temperature, magnetic field
and strain field). Therefore the conductor degradation seems to be linked also to the
loads on the wires within the cable, and the extent to which the wires are supported
by each other, i.e. the cabling pattern.

The main goal of this paper is to study the mechanical behaviour of wire ropes and
particularly the influence of the twist pitches on the overall behaviour of a bundle
of wires. We take into consideration ITER cable layout, which is based on a triplet
as first cabling stage. This is a preliminary work, and we limit our investigation to
the first two levels of the cable hierarchy. The first two cabling stages of the three
configurations of Table 1 are studied, as well as other twist pitch combinations,
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to better understand the influence of the first cabling patterns on the stiffness of a
cable.

The motivation of this analysis consists in searching for geometrical configurations
that offer a significant improvement in stiffness compared to the reference (Option
I in Table 1), assuming that a higher stiffness will reduce strand bending and wires
breakage.

 

Figure 1: ITER cable layout.

Modelling the behaviour of a cable is a difficult problem [Nemov, A.S.; Boso,
D.P.; Voynov, I.B.; Borovkov, A.I.; Schrefler, B.A. (2009)], [Bellina, F.; Boso, D.;
Schrefler, B.A.; et al. (2002)], given the complexity of the geometrical layout,
contact phenomena occurring among wires and possible yielding of the wire, to
cite the main points.

The main idea of this work is to make use of a suitably trained Artificial Neural
Network (ANN), to identify the longitudinal stiffness. The necessary database to
train the network is obtained by performing a sufficient number of numerical ex-
periments by means of the finite element (FE) method as explained in Section 3.

In our FE models, the wires are discretized by beam type elements, with two nodes
per element and six degrees of freedom per node. Non linear behaviour of the
material, large displacements and strain are taken into consideration. The possible



322 Copyright © 2010 Tech Science Press CMES, vol.55, no.3, pp.319-337, 2010

Table 1: Twist pitch details for the reference (Option I) and alternative (Option
II and TFPROII-OST2) configurations for ITER cables (Courtesy of D. Bessette,
ITER Cadarache).

Option I Option II TFPROII-OST2
Cable pattern (3×3×5×5+ core)×6

Stage 1 45 mm 80 mm 116 mm
Stage 2 85 mm 140 mm 182 mm
Stage 3 125 mm 190 mm 245 mm
Stage 4 250 mm 300 mm 415 mm

Core 3×4 45×85 80×140 116×182
Stage 5 450 mm 420 mm 440 mm

contact is checked pointwise on nodal positions (node-to-node contact) by means
of gap elements. This is clearly a simplification of the mechanics of contacts among
the wires, since in this way we disregard the local deformation in the contact areas
and the related three-dimensional characteristics of stress and strain fields. How-
ever, for the type of analysis we want to perform, it is a good interpretation of real
phenomena and allows for solving several numerical tests and compose the ANN
training database rather quickly.

As explained, an ITER cable has five cabling stages, and it can be regarded as
a hierarchical structure. The final goal of this research is to substitute, at each
level, the bundle of wires with an equivalent single strand, having the characteris-
tics computed on the bundle of the previous level. For example, at the second cable
stage, three triplets are twisted together. We want to schematize this stage with one
equivalent wire, having the mechanical behaviour of the nine-wire cable. A recur-
sive substitution of this type will allow for modelling higher cabling stages with
a low number of degrees of freedom. However, this is not an easy task, since the
stiffness matrix of the equivalent beam element has to incorporate the dependency
on the geometry (twist pitches), the level of strain and contact phenomena. This is
the beginning of the research activity, here we take into consideration the effects of
the first two twist pitches on the longitudinal behaviour of a sub-cable.

The idea of the hierarchical beam has already been presented in one of our recent
papers [Boso, D.P.; Lefik, M.J.; Schrefler, B.A. (2007)]. It is worth to mention
that in this work our main concern is to identify the influence of the twist pitch
on the mechanical behaviour of the wire bundle, while in [Boso, D.P.; Lefik, M.J.;
Schrefler, B.A. (2007)] the geometry was given. In that publication we solved an
inverse problem to identify the coupling terms between axial force and twisting
moment. For a set of trial values of coupling terms, given the kinematical load
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(axial displacement, axial rotation), the corresponding set of reaction forces (axial
force, twisting moment) was obtained with a single equivalent straight beam. An
ANN was trained with these sets of data (axial displacement, axial rotation, axial
force, twisting moment at the input nodes, coupling terms at the output ones) and
then used in recall mode to get the searched elements of the stiffness matrix of the
equivalent single beam. A more detailed description of that problem can be found
in the mentioned paper [Boso, D.P.; Lefik, M.J.; Schrefler, B.A. (2007)].

2 Description of the Artificial Neural Network Technique

For a non-linear composite or for a complex hierarchical heterogeneity, an adequate
description of the effective behaviour is usually difficult to obtain on a purely the-
oretical way. Furthermore it seems that phenomenological observations cannot be
dealt with by classical interpolative formulae, nomograms or abaci.

Artificial neural networks provide an alternative, non-symbolic approach to this
problem. A neural network can be considered as a non-linear operator that trans-
forms a set of suitably interpreted variables into another set of numerical data. It
is composed of a collection of simple processing units (called nodes or artificial
neurones) that are organized in layers and mutually interconnected with variable
weights. This system of units is organised to transform an input signal into an out-
put signal. Both input and output signals are suitably defined according to their
physical interpretation. In our case they are a sequence of corresponding values,
e.g. twist pitches and applied displacement are attributed to the input nodes of the
ANN and at the output nodes we expect the value of the longitudinal reaction force.
In this way we construct a functional dependence of the values at the output nodes
as a function of the independent values at the input nodes. This is obtained by a
correct choice of coefficients (synaptic weights) that scale the signal transmitted be-
tween each pair of nodes belonging to different layers of the ANN. The weights of
interconnections are modified by an iterative procedure to force the desired output
signal to be the response of a given input pattern. This process is called training and
it is continued until the error between the neural network output and the desired out-
put is minimised for a whole set of pairs: given input - known output. For this phase
a proper set of corresponding input-output data (training set) has to be known and
it is used partly to define weights and biases (learning set) and the remaining part
(test set) to check the error of the network response. ANNs are trained by means
of the error back propagation algorithm. According to this method, the weights of
connections between nodes of the ANN are shaped iteratively by successive correc-
tions, proportional to the error, which is transmitted through the link. As a result of
the training, the relationship between input data and output data is approximated in
such a manner that all given data are approximated with a given tolerance and the
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data not used for the network training are successfully interpolated. Once the ANN
is trained, it can be used in recall mode to obtain the output of the problem at hand.
Interested readers are referred to [Hertz, J.; Krogh, A.; Palmer, G.R. (1991)], or
[Hu, Y.H.; Hwang J-N. (Eds.), (2002)] for details concerning the activity of units.

In this direct approach, ANNs can be used as a tool of storage of data and a very
good interpolator. According to our experience [Lefik, M.J.; Boso, D.P.; Schrefler,
B.A. (2009, CMAME)], [Lefik, M.J.; Schrefler, B.A. (2003)], the ANN approxi-
mation discovers the real, inner dependence between two sets of data much better
than a theoretical approach and simulates very well a complex behaviour super-
posing influences of various physical factors and features. Non-symbolic model is
constructed as follow: neural network is trained first to reflect correctly the set of
observed, experimental or numerical data. Then the networks automatic general-
isation capability (interpolation between some data sets) enable us to predict e.g.
the longitudinal stiffness as a function of the twist pitches and applied displace-
ment. The network simulation can be checked against the real (numerical in our
case) experimental results at this step. If the network prediction is satisfactory, the
model is ready, if not, some new experimental or numerical data have to be added
to the existing training set and the network has to be taught again. According to
this approach the symbolic, mathematical description of the problem is replaced by
the sufficiently trained neural network (See e.g. [Liu, D. S.; Tsai, C.Y. (2009)]).

In this paper artificial neural networks with two or three hidden layers proved to be
sufficient. The scheme of the ANN used is presented in Figure 2. The following
equation is written for j-th output of a network composed of three layers of nodes
(layer number enclosed by parentheses). Weights are labelled with the number of
their related layer by superscript, b are biases:
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The transfer of the input signal i into the output signal o can be prescribed by eq.
(1) that defines a typical activity of a node in a ANN. Three actions are executed
by each neurone through the network:

• Summation of incoming signals from all connected nodes, weighted by the
weights of connections wtq;

• Transformation of the sum by a so called activation function of one variable
x → g(x), usually in the form of non-decreasing “cutting off” sigmoid (in
eq. (1) parentheses enclose a value of the scalar argument x of the function
g(x));
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• The computed result (activation of the node i) is again weighted by the weight
of connection wi j and sent to node j. This is repeated for every connected
node.

ANNs can be regarded as universal, non-linear approximation of any continuous
function of many variables x, f (x). Expression (21) symbolizes the action of the
artificial neural network “@” the input x.

o = ANN@x f (x)−o(x) < ε (2)

In Figure 2 we show an example of such a structure, for which a physical interpre-
tation of nodes at input and output is given. The number of nodes (i,r,s in (1)) and
the number of layers can be found such that the norm of the approximation (22) is
less than a given small number ε . This kind of network was discussed in [Lefik,
M.J.; Schrefler, B.A. (2003)], [Lefik, M.J.; Schrefler, B.A. (2002)], [Gawin, D.;
Lefik, M.J.; Schrefler, B.A. (2001)]. Weights wtq and biases bt in (1) can be under-
stood as degrees of freedom of the approximation process (2). We will try to find
the best approximation with the smallest possible number of degrees of freedom.

7 
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Figure 2: Scheme of the Artificial Neural Network used to approximate the longitu-
dinal stiffness, given the twist pitches and the applied displacement. The same type
of network is used to identify the longitudinal reaction forces and axial rotations.

As it was mentioned earlier, by means of Artificial Neural Networks we are in-
terested in approximating the reactions and the rotations at ends of the analysed
sample and its longitudinal stiffness as a function of the twist pitches and applied
displacements. In this way a prediction of the best geometrical layout for a given
engineering application in cabling manufacturing will be possible.
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3 The Training Set: Virtual Testing Method

The available experimental or numerical data have to be a sufficient source of infor-
mation to describe the functional dependence between the scalar, vector or tensor
fields of interest. In this case we compose the input-output data set to train the net-
work by performing a certain number of finite element analyses, i.e. we perform a
numerical testing of the structure. This approach is well known in the framework
of homogenisation methods: numerical experiments are carried out on a represen-
tative volume element (RVE) of the composite. Usually deformations are kinemat-
ically imposed and the effective properties are obtained from the relation between
average strain - average stress measures, computed from the FE solution [Miehe,
C.; Schröder, J.; Schotte, J. (1999)], [Pellegrino, C.; Galvanetto, U.; Schrefler, B.A.
(1999)], [Boso, D.; Pellegrino, C; Galvanetto, U.; Schrefler, B.A. (2000)], [Hain,
M.; Wriggers, P. (2008)]. This method is also known as virtual testing. In this
study we perform something similar: by using a FE discretization of a bundle of
wires with given twist pitches, we apply a longitudinal displacement and compute
the longitudinal reaction force and the axial rotation developed. These quantities
can be easily combined to calculate the equivalent axial stiffness of the bundle as a
function of the mean longitudinal strain. The network can be trained by perform-
ing a sufficient number of such numerical tests, by varying the twist pitches. We
underline that ANN representation cannot be used outside its numerical environ-
ment since its parameters (weights and biases) have no physical meaning. After the
training process, the ANN is used in recall mode to identify the reaction force, the
axial rotation or the axial stiffness for a given longitudinal displacement and twist
pitch combination.

In all tests the strands are supposed to be homogeneous, isotropic with a non lin-
ear constitutive law of elasto-plastic type. Actually, superconducting strands ex-
hibit an orthotropic behaviour (transversally isotropic) after yielding [Boso, D.P.;
Lefik, M.J.; Schrefler, B.A. (2006, Cryogenics)], [Boso, D.P.; Lefik, M.J. (2009)],
[Kanouté, P.; Boso, D.P.; Chaboche, J.L.; Schrefler, B.A. (2009)], [Lefik, M.J.;
Boso, D.P.; Schrefler, B.A. (2009, ZAMM)], but it has a negligible influence on
the phenomena analysed here. We have taken into consideration the stress – strain
curve measured in the FBI facility of FZK/ITP (Karlsruhe, Germany) [Weiss, K.P.
(2004)]. The considered properties are: Young modulus E = 117.7 GPa, Poisson’s
ratio ν = 0.3, yield stress σY = 129 MPa, ultimate strength σult = 324.1 MPa. The
problem is always solved by considering a non linear geometrical behaviour, that
is including large displacements and large strain, and associative plasticity with
isotropic hardening (Von Mises yield criterion).
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4 Numerical Experiments and ANN Training

In this work we investigate the case of longitudinal stretching, as a representative
application of the method for the problem at hand. Concerning the first cable stage,
several numerical tests were performed on a triplet. We report the results obtained
with four different cases, which are representative of a set of situations from a short
(25 mm) to a long (160 mm) twist pitch. The three real cases (Option I, Option II
and TFPROII-OST2 of table 1) fall within the considered range. At one end, all six
degrees of freedom of each node are bounded, while at the other end they are free
and longitudinal displacement is applied to each strand, parallel to the triplet axis.
The results of the finite element analyses are presented in Figure 3. It is clear that
the twist pitch has no influence on the longitudinal behaviour of the triplet, the four
curves are overlapping.

 

Figure 3: Longitudinal force vs. applied longitudinal displacement for four differ-
ent twist pitches of a triplet.

Considering the second cable stage, a 3x3 bundle of strands is investigated. It shows
a non linear behaviour from the beginning of the loading path. To understand the
reason why, four cases are compared in Figure 4: 3x3 twisted and parallel strands,
both for the elastic and elastic-plastic material case.

In the case of parallel strands (light blue and orange line) the behaviour is linear
from the beginning, becoming non-linear because of the material yielding at a cer-
tain point (light blue line, at a displacement of about 0.2 mm). For the nine twisted
strands (red and blue line), the behaviour is non linear also in the case of elastic
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 Figure 4: Longitudinal reaction force as a function of the longitudinal displace-
ment, for twisted and parallel strands (elastic and elastoplastic case).

material (red line). This means that at the beginning of the loading process the
strands are re-arranging inside the bundle (cable compaction), and then the longi-
tudinal stiffness increases. At a certain point the stiffness decreases again for the
plastic case (blue line, at a displacement of about 0.28 mm).

To construct the database to train the ANN, several numerical examples were per-
formed, first by keeping constant the triplet twist pitch (TpIin the following) and
varying the second one (TpIIin the following) and then vice versa. Table 2 sum-
marizes the considered cases and Figure 5 – Figure 6 show the numerical results
obtained for some combinations of twist pitches.

Table 2: Twist pitch combination considered for the second cable stage [mm].

TpI TpII TpII TpII TpII TpII TpII TpII TpII

27 35 45 85 116 120 140 182
45 45 60 85 116 140 182
80 80 100 120 140 182
116 120 130 140 160 182
∞ ∞ (9 parallel strands)

From the numerical experiments we have noted that when the first twist pitch is
short (27 and 45 mm) the influence of the second one is rather significant, while for
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 Figure 5: Longitudinal force as a function of the longitudinal displacement, for TpI

= 45 mm and some values of TpII .

 Figure 6: Longitudinal force as a function of the longitudinal displacement for TpI

= 116 mm and some values of TpII .
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higher values of the triplet twist pitch (TpI), the influence of the second one (TpII)
is less significant (Figure 6). In any case we can state that longer twist pitches
provide a higher longitudinal stiffness for the bundle of strands.

A suitable artificial neural network is trained to trace this dependence. The training
database is composed by the numerical tests of the 3x3 bundle described above.
The corresponding input-output sets are:

Longitudinal force = ANN@(TI
p, TII

p , applied displacement)
Axial rotation = ANN@(TI

p, TII
p , applied displacement)

Longitudinal stiffness= ANN@(TI
p, TII

p , applied displacement)

Therefore, the ANN input layer is always composed of three nodes representing the
values of the twist pitch of the first and second level of our hierarchical structure (TI

p
and TII

p respectively) and the applied longitudinal displacement. The output layer
has always one unit, which can provide the predicted values of the longitudinal
force at the end of the bundle where the displacements are applied, or the axial
rotation, or the computed longitudinal stiffness of the sample. Three networks are
thus created and trained with their suitable teaching patterns.

5 Results and Discussion

Once the ANNs are trained, they are used in recall mode to obtain the desired
output. First of all, we wanted to investigate the influence of the twist pitch values
on the axial stiffness of the bundle. To obtain the longitudinal reaction at output,
the network resulted very simple, with two hidden layer of 5 and 4 nodes (ANN
3541). A sketch of the topology of the network used is illustrated in Figure 7.
By using it in recall mode, we have easily obtained the force-displacement curve
for several twist pitch combinations. Some illustrative examples are presented in
Figure 8 and Figure 9. As previously noted, we can see that with long twist pitches,
their influence on the overall behaviour is less significant.

In the same way, to obtain the longitudinal stiffness at the output, a neural network
3761 was sufficient. It has a few more nodes than the previous one, but it is still
very simple. The results are presented in Figure 10 and Figure 11 for the same
combinations of twist pitches as in the previous cases.

Finally, to test the potentiality of the approach, we have also compared the results
of a finite element analysis dealing with a discretization considering nine strands,
and an analysis considering one straight strand, endowed with the average stress –
average strain law obtained from the neural network results. The average stress is
obtained simply by dividing the longitudinal force by the area of the strands, the
average longitudinal strain is obtained by dividing the applied displacement by the
length of the bundle. The finite element discretization used for the 9-strand cable
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Tp
I Tp

II 
Applied 

displacement

Longitudinal reaction

Figure 7: Topology of the network used to identify the longitudinal force: ANN
3541. Top line: input nodes (white), middle lines: hidden layers (light blue), bot-
tom line: output node (blue).

is the same as that used to make the learning set. The wires are discretized with
beam elements and contact is checked pointwise, at the nodal positions. The single
equivalent strand is modelled with beam elements. The comparison between the
numerical results of the two finite element models is presented in Figure 12. It can
be easily seen that there is a good agreement, thus confirming that, by identifying
the constitutive law for the bundle of wires via a suitable trained ANN, it is possi-
ble to define a hierarchical beam model, which can simplify the analysis of the final
cable, by decreasing significantly the number of wires to be taken into considera-
tion. The slight discrepancy at the beginning of the loading path depends upon the
initial configuration of the nine-wire bundle. The more it is compacted, the less the
difference will result. On the other hand, its effect disappears soon after the first
load steps.

6 Concluding Remarks

We have investigated the influence of the twist pitch combination on the longi-
tudinal stiffness of a bundle of strands. Starting from the first cabling stage (i.e.
the triplet), we can state that the twist pitch has no influence on the longitudinal
behaviour of the triplet itself. Concerning higher cabling stages, the twist pitch
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Figure 8: Longitudinal force as a function of the longitudinal displacement for TpI

= 90 mm and various values of TpII .

 

Figure 9: Longitudinal force as a function of the longitudinal displacement for TpI

= 130 mm and various values of TpII .
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Figure 10: Longitudinal stiffness as a function of the longitudinal displacement for
TpI = 90 mm and various values of TpII .

 

Figure 11: Longitudinal stiffness as a function of the longitudinal displacement for
TpI = 130 mm and various values of TpII .
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Figure 12: Comparison between the results of a nine-wired model and a single wire
model.

combination has some influence on the bundle behaviour. To investigate in detail
this effect, besides the three real configurations of ITER cables, we have performed
a sort of sensitivity analysis by considering several 3x3 layouts. The longitudinal
stiffness results higher for longer twist pitches. Even if this result is limited to the
nine wire bundle, this information is already meaningful for ITER team, which has
to choose the cabling patterns to test during the next experiments.

The numerical tests performed are used to compose the necessary database to teach
artificial neural networks. The final goal of this work is to develop a model merg-
ing soft computation algorithms and hard computing, to have a valuable and fast
predictive tool. To this aim, suitable ANNs have been trained to identify the lon-
gitudinal force, rotation or stiffness as a function of the twist pitches and applied
axial displacement. Furthermore, it has been shown a comparison between a finite
element analysis considering the nine strands of the second cabling stage and an
equivalent single wire. The two models give practically the same results. There-
fore, this preliminary work allows us to carry on the approach with an equivalent
hierarchical beam, where the analyses of lower cabling stages are used to iden-
tify the characteristics of the following level. For example, this analysis allows for
studying the longitudinal behaviour of a ITER petal (last but one cable stage, Fig-
ure 1) by considering 37 wires instead of 237. By identifying the complete stiffness
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matrix, it will be possible to study complex bundles subject to any type of loading,
by using rather simple discretizations.
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