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An Investigation of Metal 3D Spheroidal Resonators Using
a Body of Revolution Approach
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Abstract: A fast and accurate method is developed for the analysis of a class
of metal three-dimensional resonators with rotational symmetry. The analysis is
formulated using the Body of Revolution approach and the Method of Analytical
Regularization. This development is motivated by the need for three-dimensional
analytical solvers that could enable fast and accurate analysis of photonic reso-
nant structures which support very high Q whispering gallery modes and which
are computationally challenging for numerical simulations. The paper outlines the
formulation of the method and demonstrates the stability and the source of com-
putation errors of the method. As a practical illustration, the values obtained for
the resonant frequencies of metal prolate and oblate resonators are compared with
results from both numerical and exact analytic methods.

Keywords: Body of revolution, integral equation method, Method of Analytical
Regularization, metal spheroids.

1 Introduction

Body of Revolution (BOR) approaches employ techniques for modeling a class
of three dimensional geometries as equivalent two dimensional problems without
introducing any physical approximation. The methodology is generally applicable
to objects with rotational symmetry, i.e., those that can be obtained by rotating a
generic arc around an axis of symmetry. In essence, the approach involves building
into the integral or differential equations that describe the physical processes the
fact that the geometry is a body of revolution so that it is no longer necessary
to explicitly sample the fields in all three dimensions. In practice, the question
is whether using these more complex equations over a lower dimension problem
space is computationally preferable to using the original simpler equations over a
larger problem space?
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To date, integral equation (IE) methods exploiting this equivalency have mainly
been applied to electromagnetic scattering problems and for example, have been
widely used in antenna and radar research [Andreasen, M.G, (1964), L. Marin
(1974), Glisson W. (1978), Glisson W. and Willton D. R. (1980), T.K. Wu, (1989),
Abdelmageed K. (2000)].

This paper focuses on IE methods that construct a modified free space Green’s func-
tion which rather than give the fields radiated by a point source, give the fields ra-
diated by a continuous ring of point sources with a prescribed angular dependence.
However, it is noted that body of revolution objects have also been modeled using
similar principles in conjunction with numerical methods such as the Method of
Moments (MM), Finite Element (FE) and Finite Difference Time Domain (FDTD)
methods, (Yuceer, M., Mautz, J.R., and Arvas, E. (2005), Morgan, M. and Mei, K.,
(1979), Farahat, N., Yu, W. and Mittra R. (2003)).

The key to obtaining a practical advantage from the BOR IE formulation is the
identification of a computationally efficient description of the modified free space
Green’s function: naturally, it is expected that the behavior of this function is more
complex than that of the simple point source Green’s function. To proceed, it is
first convenient to express the modified form of the free space Green’s function as
a Fourier series with respect to the azimuthal angle φ . Each term of this series
is given by an integral over φ of the free space Green’s function and a harmonic
angular dependence of the fields, for example e− jmϕ , and this is referred to as
the Modal Green’s function (MGF). It is noted that in a BOR the MGF terms for
different values of m are physically uncoupled by the rotational symmetry.

The kernel of an IE formulation of a BOR problem contains the MGF and as this
function is highly oscillatory, the major demand upon computational time when
solving for the fields is its evaluation for the purpose of numerical integration.
Therefore, simpler and computationally faster forms of the MGF have been sought
in the form of convergent series representations although, to date, these have mainly
be applied to the study of antenna problems, limiting the investigations to slim or
moderately thick bodies [Yu W. M., Fang D. G. and Cui T. J. (2008), Wang W. X.
(1992), Werner D. H. (1999), Lim P., Li L.W. and Li E.P. (2002)]. Furthermore,
series acceleration methods and asymptotic extraction have also been applied to the
series expansion of the MGF with good success [Abdelmageed K. (2000)].

Unfortunately, computationally efficiency is further compromised by the presence
of singular points of the kernel and more generally sharp peaks which are physically
a consequence of evaluating fields in close proximity to source points. Therefore, it
is also important to remove this behavior from the kernel and this can be achieved
by identifying the local characteristics of the kernel and introducing yet another
representation of the MGF which is rapid to evaluate in the vicinity of these peaks.
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In this paper, the BOR integral equations are reduced to second-kind equations of
the Fredholm type using the Method of Analytical Regularization (MAR) [Nosich
A. (1999)]. This is achieved by using canonical shape extraction and by an appro-
priate choice of the expansion functions used to represent the fields on the surface of
the geometry. This approach will be shown to substantially reduce the sharp peaks
of the functions that need to be integrated numerically and thus yield a significantly
more robust algorithm.

Canonical shape extraction is a physically based singularity extraction technique
which exploits the fact that the numerical integrations that need to be evaluated
become analytic for particular canonical geometries and are thus easy to evaluate
in closed form. Therefore, rather than perform the numerical integrations directly
on the integrand arising from the general BOR, they are actually performed on the
difference between the integrands arising from the actual BOR and those from the
canonical shape. As both the BOR and canonical shape integrands exhibit similar
sharp peaks, this results in smoother and more robust numerical integrations. The
general behavior of the MGF around the sharp peaks is discussed further below and
the advantages of the regularization process in terms of the algorithm’s accuracy
and stability are illustrated. However, it shall also be shown below that even using
canonical shape extraction, the numerical robustness is still affected by the choice
of basis functions used to expand the field unknowns. In this paper the Galerkin
method is used to discretize the integral equations and the results obtained with two
different types of expansion functions are compared. As an example application,
the method is used to model 3D spheroidal metal resonators and the results obtained
compared with those obtained using an exact variational approach [Li L.W., Kang
X.K. and Leong M.S. (2001)] and the unstructured mesh numerical Transmission
Line Modeling (TLM) method [Sewell P., Benson T.M., Christopoulos C., Thomas
D. W. P., Vukovic A. and Wykes J.G., (2005)].

The following section introduces the concept of the MAR, its application to the
BOR method for the case of a metal body and the MGF function. Section 3 sum-
marizes the main implementation details and sections 4 and 5 present the numerical
results and the main conclusions of the paper, respectively.

2 Mathematical formulations

2.1 The MAR method

The Method of Analytical Regularization (MAR) transforms first kind integral
equations to second kind integral equations of the Fredholm type with a smoother
kernel [Nosich A. (1999)]. The general first-kind integral equation can be written
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in operator notation as

ĈX = Y (1)

where X and Y represent unknown and given functions respectively. By splitting
the operator Ĉ into two parts Ĉ = Ĉ1 + Ĉ2, where the first operator has a known
inverse Ĉ−1

1 , the original equation can be re-expressed as the second kind integral
equation(
Î + Ĥ

)
X = B (2)

where Ĥ = Ĉ−1
1 Ĉ2,B = Ĉ−1

1 Y , and Î is the identity operator.

Mathematically, eq.(2) is of the Fredholm type if the inverted operator Ĉ1 is singular
and Ĉ2 regular. When the continuous integral equations are discretized with N basis
terms, the truncated form of eq.(2) is given by

XN + ĤNXN = B (3)

The significant attraction of eq.(2) is that there are theoretical guarantees available
regarding its convergence as the order of discretization is increased: specifically as
N increases the relative error is theoretically only bounded by machine precision.
This is not the case with eq.(1).

Clearly, the key question when considering the MAR is the identification and ex-
traction of the operator Ĉ1 which must be amenable to analytic inversion in a con-
venient manner. To date this has been done in three ways: a) by extracting the static
part, b) by extracting the asymptotic high frequency part or c) by extracting the fre-
quency dependent part corresponding to a canonical shape [Nosich A. (1999)]. The
canonical shape can be a circle in two-dimensions or a sphere in three-dimensions
as both of these geometric forms are amenable to exact solution using the separa-
tion of variables and thus it is straightforward to construct their inverses in terms of
two or three dimensional harmonic series. Finally, the choice of expansion func-
tions is also important as if these can be chosen to be the orthogonal eigenfunctions
of Ĉ1 then the singular operator Ĉ1 is also diagonalised and the convergence of the
scheme is further improved [Nosich A. (1999)].

2.2 MAR regularization of the Body of Revolution integral equations

Body of Revolution objects are obtained by rotating a so-called generic arc around
an axis of symmetry. Fig. 1 shows a hollow metal object which is a body of
revolution placed in a medium of dielectric constant εr1 and below we present a
formulation to enable its interior resonances to be identified. From here on it is
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convenient to describe the geometry of the object using the parametric coordinates
t and ϕ , where t defines the arc-length of the body and ϕ is the azimuthal angle, as
shown in Fig.1.
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Figure 1: Geometry of the body of revolution. ρ, φ and z form a cylindrical coordinate system. 
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Figure 1: Geometry of the body of revolution. ρ,φ and z form a cylindrical coor-
dinate system.

The boundary conditions on the metal surface require that the tangential electric
fields vanish at the surface of the body. The scattered tangential electric fields can
be expressed as, [Abdelmageed K. (2000)],

~Es (~r) =− jω~A(~r)−∇Φ(~r) (4)

where ~A and Φ denote vector and scalar field potentials defined respectively by

~A(~r) =
µo

4π

∫
S

~J
(
~r′
)

G
(
~r,~r′

)
dS′, (5)

Φ(~r) =
1

4πε

∫
S

∇
′·~J
(
~r′
)

G
(
~r,~r′

)
dS′, (6)

~J is the electric surface current density vector that is to be found and G
(
~r,~r′

)
is

the free space Green’s function given by

G
(
~r,~r′

)
=

e− jkR

R
(7)

R =
∣∣∣~r−~r′

∣∣∣= (ρ
2 +ρ

′2−2ρρ
′ cos

(
φ −φ

′)+ (z− z′
)2
)1/2
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where the free space wavenumber k = 1
ω
√

εµo
.

Substituting eqs.(5,6) into eq.(4) gives

n̂×~E (~r) =

∫∫
S

~J GdS′+
1
k2 ∇

∫∫
S

(
∇
′ · ~J
)

GdS′

= 0. (8)

In order to generate second kind Fredholm equations, canonical shape extraction is
performed by adding and subtracting the case of a perfect sphere from eq.(8). The
tangential electric fields are thus given by

n̂×~E (~r) =

[
∫∫
S

~J GdS′+
1
k2 ∇

∫∫
S

(
∇
′ · ~J
)

GdS′


−


∫∫
So

~J GodS′o +
1
k2 ∇

∫∫
So

(
∇
′ · ~J
)

GodS′


]

+

∫∫
So

~J G̃odS′o +
1
k2 ∇

∫∫
So

(
∇
′ · ~J
)

G̃odS′o

= 0.

(9)

The surface So denotes the surface of a perfect sphere of radius a. Both Go and G̃o

represent the Green’s function for source points on this sphere and the tilde is being
used here to emphasize that it is being expressed in different forms. Overall, the
new terms in eq.(9) are introducing the field that would be produced if the surface
current on the BOR were on the surface of the sphere. Therefore the net effect
of the first two lines of eq.(9), which is the operator Ĉ2 above and which will be
evaluated by numerical integration, will be small if the BOR were a perturbation
on a sphere and even for large deviations, the problematic sharp peaks arising in
the integrations tend to cancel. This leaves the second line of eq.(9) which is the
operator Ĉ1 above and can be analytically inverted.

Go is expressed in the form of eq.(7) and G̃o is the well known spherical harmonic
representation of the free space Greens function [Morse and Feshbach, (1953)], i.e.,

Go

(
~r,~r′

)
=

e− jkRo

Ro
(10)

Ro =
∣∣∣~ro−~r′o

∣∣∣= (ρ
2
o +a2−2ρoacos

(
φo−φ

′
o
)
+
(
zo− z′o

)2
)1/2
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and

G̃o

(
~r,~r′

)
=− jk

∞

∑
n=0

(2n+1)
n

∑
m=0

ηm
(n−m)!
(n+m)!

cos
(
m
(
φo−φ

′
o
))

Pm
n (cosθo)Pm

n
(
cosθ

′
o
){ jn (kr′o)hn (kro) , ro > r′o

jn (kro)hn (kr′o) , ro < r′o
(11)

where Pm
n (cosθ) denote associated Legendre polynomials whose indices n and m

represent the radial and azimuthal orders respectively. jn and hn are the spherical
Bessel functions of the first and the third kind, and ηm=1 for m=0 and ηm=2 for
m 6=0 .

In the next stage of the MAR approach, eq.(9) is discretisized using the Galerkin
procedure and the choice of expansion functions for the surface current density
should ideally be chosen to permit full diagonalisation of the operator Ĉ1, i.e. the
third line of eq.(9), and hence reduction to the form of eq.(2).

The expansion of the electric surface currents in previous BOR formulations em-
ployed frequency independent basis terms: specifically the electric currents were
expanded by pulse functions with respect to the t-direction and a Fourier series
with respect to the ϕ-direction [Glisson W. (1978), Glisson W. and Willton D. R.
(1980)], or with the high frequency asymptotic basis terms Jm

n (~r′) = ∑m[Am
n t ′+

Bm
n ϕ ′]e− jmϕ ′ [Abdelmageed K. (2000)]. However, neither of these choices diago-

nalises the operator Ĉ1. In this paper, the electric surface currents are expanded in
terms of frequency dependent spherical waves defined on the surface of the perfect
sphere with a view to accomplishing this diagonalisation. The paper investigates
two particular expansion forms: the scalar high-frequency expansion which is de-
fined as [Vukovic, A., Sewell, P., and Benson T. M. (2009)],

Jm
n
(
~r′
)

= ∑
m

∑
n

[
Am

n Pm
n
(
cosθ

′
o
)
~t ′+Bm

n Pm
n
(
cosθ

′
o
)

φ̂
′]e− jmφ ′ = Jn,m

t t̂ ′+ Jn,m
φ

φ̂
′,

(12)

and the full vector expansion form that uses a vector harmonic spherical wave ex-
pansion, [Li L.W., Kang X.K., Leong M.S. (2001)], i.e.,

Jm
n
(
~r′
)

=

∑
m

∑
n

[
Am

n

(
(Jn,m

t )T E~t ′+
(

Jn,m
φ

)T E
φ̂
′
)

+Bm
n

(
(Jn,m

t )T M~t ′+
(

Jn,m
φ

)T M
φ̂
′
)]

,

(13)
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where

(Jn,m
t )T E =−∂Pm

n (cosθ ′o)
∂ t ′

cos
(
mφ
′) ,

(
Jn,m

φ

)T E
=− jm

sinθ ′o
Pm

n
(
cosθ

′
o
)

sin
(
mφ
′) ,

(Jn,m
t )T M =

jm
sinθ ′o

Pm
n
(
cosθ

′
o
)

sin
(
mφ
′) ,

(
Jn,m

φ

)T M
=

∂Pm
n (cosθ ′o)

∂ t ′
cos
(
mφ
′) .

In both eq.(12) and eq.(13) Am
n and Bm

n are unknown coefficients to be found.

Although the scalar form, eq.(12), does not diagonalise Ĉ1 it merits investigation as
it is notably simpler than the vector basis terms which do diagonalise Ĉ1. In both
cases, eq.(9) is solved for the unknown coefficients Am

n and Bm
n for a prescribed az-

imuthal order m. Application of Galerkin’s method, i.e., performing term-by-term
testing and integration for all the entire domain expansion functions n=0,1,2,...,N,
results in a final matrix problem of order 2N×2N which exhibits a zero determi-
nant for those frequencies at which a resonance of the BOR occurs. This process
can then be repeated independently for each value of azimuthal order m of interest.
More details of the numerical integrations are described in section 3 of this paper.

2.3 The Modal Green’s Function

The rotational symmetry of the resonator permits expansion of the Green’s function
in terms of spherical harmonics using the so-called Modal Green’s function (MGF).
For clarity this is shown in the context of the first term of eq.(9) with the expansion
given in eq.(12),∫∫

S

~J GdS′ =

π∫
0

r′dθ
′

2π∫
0

dϕ
′
[
∑
n

[
Am

n Pm
n
(
cosθ

′
o
)
~t ′+Bm

n Pm
n
(
cosθ

′
o
)

φ̂
′]] e− jkR

R
e− jmϕ ′ (14)

Eq.(14) shows that the azimuthal integration can be incorporated into the Modal
Green’s function as:

Gm
(
~r,~r′

)
=

1
π

2π∫
0

e− jkiR

R
e− jm(φ−φ ′)d

(
φ −φ

′). (15)
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This illustrates the discussion of the introductory paragraph: eq.(15) is now more
complex than the simple free space Green’s function, but the expansion functions
representing surface currents on the BOR effectively need only span one dimension
(i.e. t in Fig.1).

As stated above, the MGF function is highly oscillatory and its efficient computa-
tion is generally only available using the series expansion [Abdelmageed K. (2000)]

Gm
(
~r,~r′

)
=

e− jkiRb

Rb
δm,0− jk

∞

∑
q=1

Am
q h(2)

q (kRb)
(

k2ρρ ′

kRb

)q

, (16)

where Rb =
(

ρ2 +ρ ′2 +(z− z′)2
)1/2

,h(2)
q represents the spherical Hankel function

of the 3rd kind and the coefficients Am
q are evaluated using recurrence formulae

[Abdelmageed K. (2000)].

Substituting the finite power series form of the spherical Hankel function in eq.(16)
[Abdelmageed K. (2000)]

h(2)
q (x) = j(q+1) e− jx

x

q

∑
i=0

(q+ i)!
i!(q− i)!

1

( j2x)i (17)

results in the following form of the MGF which is most suitable for rapid compu-
tation.

Gm
(
~r,~r′

)
=

e− jkiRb

Rb

[
δm,0 +

∞

∑
q=1

q

∑
i=0

Bm
q,i

(
k2ρρ ′

)q

(kRb)
q+i

]
. (18)

The coefficients Bm
q,i are again found using recurrence and need to be obtained only

once as they are independent of both frequency and the coordinates of the source
and observation points formulae [Abdelmageed K. (2000)].

Unfortunately, the presence of the free space Green’s function singularity at r = r′

undermines the convergence of (eq.(18)) in the vicinity of Rb = 0 and therefore
[Abdelmageed K. (2000)] extracted this singularity from the MGF by re-expressing
eq.(15) as

Gm
(
~r,~r′

)
=

1
π

π∫
0

(
e− jkiR

R
e− jmβ − 1

R

)
dβ +

1
π

π∫
0

1
R

dβ , (19)

whereby the first term is now a smooth function and the second term can be eval-
uated in closed form as a complete elliptic integral of the first kind: the remaining
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logarithmic singularity of the latter being extracted analytically along the generic
arc [Glisson W. (1978)].

At this point it is important to note that the only true singularity of the MGF occurs

at Rb=0, and as Rb =
(

ρ2 +ρ ′2 +(z− z′)2
)1/2

, and as we see that this can only
occur if z = z′ and ρ = ρ ′ generally only corresponds to both the source and obser-
vation points being located at the exact top and bottom of BOR. However, even for
general locations on the surface of the BOR, the MGF still exhibits a sharp peak as
t approaches t ′ and although not an exact singularity, numerically these are equally
problematic and must be dealt with carefully.

3 Numerical details

This section outlines the main details for the numerical implementation of the BOR-
MAR method. For background details the reader is referred to [Glisson W. (1978)
and Glisson W., Willton D.R., (1980)].

The parametric coordinates t and φ , introduced in Fig.1, are related to the Cartesian
coordinates through:

t̂ = ẑcosγ + x̂sinγ cosφ + ŷsinγ sinφ (20)

φ̂ =−x̂sinφ + ŷcosφ (21)

In the parametric system t and φ , it is straightforward calculus to show that the
components of the gradient and divergence for an arbitrary vector function Ψ are:

t̂ ·∇Ψ =
∂

∂ t
Ψ,

φ̂ ·∇Ψ =
1
ρ

∂

∂φ
Ψ,

∇ · t̂Ψt =
1
ρ

∂

∂ t
ρΨt ,

∇ · φ̂Ψφ =
1
ρ

∂

∂φ
ρΨφ

(22)

where Ψt and Ψφ respectively denote the t and φ components of the vector Ψ.

Using the identities in eqs.(20-22) and taking into account that the azimuthal part of

the surface integral
′∫

S
dS′ =

2π∫
0

dφ ′
tmax∫
0

ρ ′dt ′ has become absorbed within the MGF,
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Gm, the tangential components of eq.(8) become:

~t ·

∫∫
S

~JGdS′+
1
k2 ∇

∫∫
S

(
∇ · ~J

)
GdS′

=

( tmax∫
0

ρ
′dt ′
(

cosγ cosγ
′Gm + sinγ sinγ

′
(

Gm−1 +Gm+1

2

))
J′mt +

sinγ

(
Gm−1−Gm+1

2 j

)
J′mφ

)
+

+
1
k2

∂

∂ t

 tmax∫
0

ρ
′dt ′Gm

(
1
ρ ′

∂

∂ t ′
ρ
′J′mt +

jm
ρ ′

J′mφ

)

(23)

φ̂ ·

∫∫
S

~JGdS′+
1
k2 ∇

∫∫
S

(
∇ · ~J

)
GdS′

=

 tmax∫
0

ρ
′dt ′
(
−sinγ

′)(Gm−1−Gm+1

2 j

)
J′mt +

(
Gm−1 +Gm+1

2

)
J′mφ


+

1
k2

1
ρ

∂

∂φ

 tmax∫
0

ρ
′dt ′Gm

(
1
ρ ′

∂

∂ t ′
ρ
′J′mt +

jm
ρ ′

J′mφ

)
(24)

Eqs.(23,24) represent the original BOR formulation without using the MAR canon-
ical shape extraction (i.e. eq.(8)) [Glisson W. (1978), Glisson W., Willton D.R.,
(1980), Abdelmageed K. (2000)].

The formulation of this work based upon eq.(9) and its first term is also directly
given by eqs.(23-24). Similarly, the second and the third terms of eq.(9) have the
same expanded forms as eqs.(23,24) but are defined for the sphere of radius r = a
and use the Green’s function defined for the sphere Go or G̃o respectively.

The Galerkin discretisation of the third term of eq.(9) that contains the spherical
harmonic expansion of the Green’s function (eq.(11)) can be evaluated analytically
whilst the first and the second term integrations are performed numerically. The
radius of the sphere, a, is chosen such that the generic arcs of the sphere and the
BOR have the same length. Experimentation has shown that this provides a good
extraction of the source point peaks.

As the singular point Rb = 0 of the MGF occurs when t=0 and t=tmax, it is also
helpful to undertake the change of variable t = 1

2 (w+1) tmax where -1<w<1 and
subsequently define w =−cos(ν) with 0 < ν < π .
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Overall, this change of variables transforms the numerical integrations as

tmax∫
o

ρdt =
π∫

0

ρ
∂ t
∂ν

dν =
π∫

0

ρ sinν
tmax

2
dν

where the term sinν has zeros where the MGF has a true singularity.

4 Results

This section presents numerical results demonstrating the accuracy and stability of
the algorithm. First, the singular behavior of the MGF integral is analyzed and the
effectiveness of the singularity extraction within the BOR-MAR method is demon-
strated. In order to verify the accuracy of the method, the self-consistent conver-
gence of the relative error of the method is considered and then to verify the abso-
lute accuracy, results obtained for the resonant frequencies of a range of spheroids
are compared to those obtained using an exact variational method [Li L.W., Kang
X.K., Leong M.S. (2001)] and numerical simulations based upon an unstructured
mesh geometry description[Sewell P., Benson T.M., Christopoulos C., Thomas D.
W. P., Vukovic A. and Wykes J.G., (2005)]. All the BOR-MAR computations are
performed in double precision on a standard desktop PC.

Spheroids are obtained by rotating the generic arc of an ellipse with major and
minor radii defined as rx=1 µm and rz = r.

xα about an axis and prolate and oblate
spheroids correspond to the ranges 0<α < 1 and α>1 respectively. These structures
are chosen for validation purposes due to the availability of benchmark quality
results.

Fig.2 shows the behavior of the MGF function along the generic arc over which
the numerical integrations must be performed for the case of the oblate spheroid
defined by α=0.9. The values are obtained using the series expansion given by
eq.(18) and for comparison by numerically evaluating the MGF integral of eq.(15).
The generic arc contour is divided into 100 uniform segments, ∆t. As discussed
at the end of section 2, a sharp peak occurs when Rb is minimal which in this
illustration occurs at t = t ′=40∆t. The series expansion of the MGF is shown when
the series of eq.(18) is truncated to 10, 50 and 85 terms. As a reference, the MGF is
also evaluated directly from eq.(15) numerically using 105 integration points which
is very slow but accurate, except when close to the centre of the peak. The MGF
function is shown for azimuthal orders m=0 and m=5.

Fig.2 shows that the direct integral evaluation of the MGF clearly exhibits quasi-
singular behavior at t = t ′ whilst the truncated series representations notably smooth
out this peak. This confirms that in the vicinity of the peak, the series convergence
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of the MGF function is unacceptably slow and does not adequately capture the
quasi-singular behavior of the MGF integral. It is noted that in practice the number
of terms that can be used in the series is limited by loss of precision caused by
adding large values of opposite signs. This lack of accuracy is more pronounced for
higher azimuthal orders as shown in Fig.2b and overall these observations provide
the motivation for performing the MAR: removal of these sharp peaks from the
numerical integrations.

To demonstrate the effect of canonical shape extraction Fig.3 plots the difference
between the MGF integrands arising from the actual BOR and those of the perfect
sphere. The BOR body is taken to be oblate spheroid with α=0.9 and the sphere
of radius a is chosen such that both BOR body and the sphere have same lengths
of generic arcs (a=0.950658). The difference in integrands is evaluated for the
azimuthal order m=5 and is plotted for both integral and series representation of
the MGF functions. It can be seen that in both cases peaks at quasi-singular points
are cancelled resulting in a much smoother curve.

 

a)                                      b) 

 Figure 2: Quasi-singular behavior of the MGF along the contour for a) m=0 and b)
m=5 using 10, 50 and 85 terms in the series expansion eq.(18) and direct numerical
integration of the MGF integral, eq.(14) using 105 points.

To demonstrate the consequences of the poor convergence of the MGF series in the
vicinity of the peaks on a practical simulation, the TM02 mode resonant frequency
of an oblate spheroid with α=0.9 is determined using the BOR formulation.

Fig.4 shows the relative error in this resonant frequency, fr, with respect to the
number of Legendre polynomial basis terms, N used to expand the surface currents
in the manner of eq.(12). All numerical integrations sample at 100 points along
the BOR contour. The relative error is calculated as

(
f (N)
r − f (N−1)

r

)
/ f (N)

r , which



184 Copyright © 2010 Tech Science Press CMES, vol.55, no.2, pp.171-190, 2010

 

Figure 3: Integrand MGFBOR-MGFsphere for m=5. BOR body is taken to be oblate
spheroid with α=0.9 and sphere of radius a=0.950658.

gives a measure of self-consistent convergence of the method in the presence of
matrix truncation.

Three curves are given in Fig.4: (a) Using the standard BOR implementation with
the singularity extracted kernel of [Abdelmageed K. (2000)], (eq.(19)), (b) using
BOR-MAR with the singularity-extracted kernel of [Abdelmageed K. (2000)], i.e.
eq.(19) and (c) using the BOR-MAR with the smooth kernel of eq.(18). It is imme-
diately apparent that the standard BOR implementation does not converge and this
is a direct consequence of the inaccuracy presented in Fig.2. However, it is well
known that the relative error of the 2nd kind equations of the Fredholm type pro-
duced by the MAR theoretically decreases as the order of the matrix increases and
Fig.4 shows that in both BOR-MAR cases, the singularity-extracted and smooth
kernel, the relative error decreases logarithmically. Moreover, the results obtained
using the shape extraction with smooth kernel (eq.(18)) method are slightly lower
than those using the singularity-extracted kernel. As an aside, it is commented that
the alternate term oscillation of the relative error is explained by the two-term re-
currence relationship satisfied by the derivatives of the Associated Legendre Poly-
nomials [Abramowitz, M., Stegun, I. A. (1965)].

Fig.5 compares results for the TM02 resonant frequency of the BOR-MAR method
obtained using the MGF function given in eq.(18) and eq.(19) for a range of spheroids,
defined by the parameter α . All results were obtained with 10 Legendre polyno-
mials as current basis functions (eq.(9)), 50 terms in the series MGF expansion,
eq.(14), and 100 integration points along the contour. The two sets of results ob-
tained are virtually indistinguishable.
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 Figure 4: Relative error of the solution with respect to number of Legendre poly-
nomials for the standard BOR, BOR-MAR method using the MGF function given
in eq.(18) and BOR-MAR using the MGF function given in eq.(19).

 
Figure 5: TM02 resonant frequency for a range of oblate and prolate spheroids with
smooth and singular kernels.
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Fig.6 compares the relative error of the resonant TM02 frequency as a function of
the number of terms, n, used in the spherical harmonic representation of the free
space Green’s function, eq.(11). Clearly sufficient terms must be used to (a) cap-
ture the inherent order of the resonant fields being sought and also (b) to capture
the deviation of the BOR structure from a perfect sphere. Fig 6. shows that for
different oblate spheroids defined with α=0.8, 0.9 and 0.98 a sharp initial drop
is followed by a slower improvement in accuracy and these two features are at-
tributable to points (a) and (b) above. These results were obtained using canonical
shape extraction MAR, 10 Legendre polynomials, eq.(12), 50 terms in eq.(18), and
100 sample points for the numerical integrations.

 Figure 6: Relative error as a function of the number of terms in the free space
Green’s function for α=0.8,0.9 and 0.98.

The impact of the number of sample points used in the numerical integrations on
the relative error is shown in Fig.7. Results are obtained using 10 Legendre poly-
nomials, 50 terms in eq.(18), 50 terms in the spherical harmonic Green’s function
eq.(11) and for different oblate spheroids defined with α=0.8, 0.9 and 0.98. It can
be seen that for accuracy greater than 10−5 a minimum of 100 integration points
is needed. However, this is a relatively low value which is good for computational
efficiency and demonstrates the success of the MAR at removing the sharp peaks
from the integrands of the numerical integrations.

In order to provide independent validation of the accuracy, Fig.8(a,b) compares
the results obtained using BOR-MAR approach against those obtained for a range
of oblate and prolate spheroids with 0.8<α<1.2 using the variational approach [Li
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L.W., Kang X.K., Leong M.S. (2001)] and the numerical TLM method based on
unstructured meshes [Sewell P., Benson T.M., Christopoulos C., Thomas D. W.
P., Vukovic A., Wykes J.G., (2005)]. The simulation parameters are obtained for
50 terms in eq.(18), 50 terms in eq.(11), 30 current basis terms and 100 integra-
tion points. Fig.8a) first shows the results obtained using the scalar basis functions
for the surface currents given in eq.(12) and shows that, except for the case of
very small sphere deformations α ∼1, the BOR-MAR results deviate unacceptably
from both the variational and TLM results. This indicates that the scalar expan-
sion, eq.(12) does not adequately capture the true surface current distributions with
this number of expansion terms. The reason for this is that these basis functions
do not diagonalise the operator Ĉ1 as explained above and this slows convergence
with respect to the number of basis terms: specifically, the derivatives of the basis
functions that are performed in eq.(23) and eq.(24) cause a wide cross-coupling of
the basis terms. In contrast, Fig.8b) shows that BOR-MAR results obtained using
the full vector expansion of the surface currents, eq.(13), agree very well with the
numerical TLM results, which is consistent with the diagonalisation of Ĉ1 and the
more compact cross-coupling of the basis terms due to differentiation. It is noted
here that the variational results are obtained in the form of a series and for the larger
and smaller values of α are expected to be less accurate due to the limited number
of coefficients available in the literature. For convenience, all results are also given
in Table 1.

An individual BOR-MAR result takes only a few minutes to calculate, indicating
the computational efficiency of the method. This can be compared with the TLM
results which are evaluated as an numerical eigenvalue problem in the frequency
domain and require substantially more time per point. Depending upon the mesh
density demanded by the accuracy and the spatial order of the mode being sought,
the run times typically require 30 minutes using 4 parallel CPUs on an EV6 Alpha
(1250MHz) SMP cluster.

5 Conclusions

In this paper the original Body of Revolution approach is reformulated as 2nd

kind Fredholm equations using Method of Analytical Regularisation and applied
to metal spheroidal resonators. A number of key practical issues have been ex-
plored that strongly influence both the accuracy and the run time efficiency of the
approach. It has been shown that the regularization process is essential in order
to obtain convergence of the discretized problem and that using canonical shape
extraction is superior to simple extraction of the singularity of the kernel. Good
convergence has been shown with respect to both number of current expansion
functions used as well as the number of sample points used to evaluate the nu-
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Figure 7: Relative error as a function of the number of integration points for
α=0.8,0.9 and 0.98.
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Figure 8: Comparison of resonant frequencies for the oblate and prolate spheroids
obtained using variational method, numerical TLM method and BOR-MAR
method with a) the scalar expansion of the surface currents and b) the vector ex-
pansion for the surface currents
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Table 1: Comparison of TM02 resonant frequency for spheroids with the major
and minor axis rx=1µm and rz = αrx, obtained using Variational, TLM and BOR
method with the scalar and vector expansion function.

Frequency [MHz]
Alpha Variational method TLM Vector BOR Scalar BOR

0.8 207.305 201.822 201.6530 204.596
0.9 192.673 192.422 192.0390 194.249
0.93 189.929 190.019 189.6860 191.308
0.96 187.542 187.710 187.461 188.412
0.98 186.085 186.052 186.045 186.524

1. 184.713 184.947 184.6790 184.672
1.02 183.383 183.549 183.344 182.830
1.04 182.101 182.113 182.058 181.024
1.07 180.228 180.190 180.184 178.371
1.1 178.391 178.196 178.403 175.773
1.2 172.330 171.518 172.812 167.529

merical integrations. Results for the resonant frequencies of oblate and prolate
metal spheroids have been compared to those obtained using an exact variational
approach and the numerical TLM method and demonstrate a good independent
validation of the accuracy.
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