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Node Placement Method by Bubble Simulation and Its
Application
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Abstract: In the light of the ideas and treatment technologies about molecular
dynamics simulation and bubble meshing, a new approach of node placement for
the meshless method called node placement method by bubble simulation (NPBS
method), is proposed. Nodes are seen as the centers of the bubbles which can
be moved by their interacting forces. Through dynamic simulation, bubbles are
placed into a near-optimal configuration, and the centers of bubbles will form a
good-quality node distribution in the domain. This process doesn’t need updating
the mesh connection constantly, i.e., is totally meshfree. Some example results
show that the uniform point sets and non-uniform point sets generated by NPBS
method have good construction, and the non-uniform point sets have also good
gradualness which is prefer to have for numerical solution methods of partial dif-
ferential equations in some case. In addition, NPBS method has good adaptability
to complex regions. Since the defined interbubble force is short-range, this method
has inherent parallelism. Two simple parallel example results show that the parallel
generated node sets are also good-quality. Furthermore, the node sets optimized by
bubble simulation are used in the meshless method, and by comparison, the advan-
tage with the less computational error is shown. And it is easy to make use of the
information of neighbor bubbles generated by NPBS method for finding the nodes
on the influence domain in meshless analysis. Finally, the node sets generated by
NPBS method are also used for triangular mesh generation and refinement in finite
element method. The results show that the mesh has excellent quality.
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1 Introduction

In meshless methods, local shape functions are constructed by only using the in-
formation of nodes and needn’t the mesh topology information. Meshless methods
show particular advantages in some fields where mesh-based numerical methods
encounter difficulties, e.g., large deformation, crack propagation and free surface
flow [Belytschko (1994); Atluri (1998); Atluri (2000); Atluri (2004); Liu (2005);
Li (2007); Han (2005); Rabczuk (2006)]. In contrast with an arbitrary set of nodes,
a good-quality node distribution will improve the computational accuracy of nu-
merical solution of partial different equations. So it is valuable and necessary to
generate a good-quality node set for meshless analysis. And we prefer to men-
tion that a good node distribution will help to form high quality mesh which is
necessary for mesh-based numerical methods, such as finite element method [Frey
(2008); Zienkiewicz (2008)], node-based finite element method [Nie (2007); Nie
(2009)], etc. There exist several node placement methods of the meshless methods.
In reference [Klaas (2000)], the node set is composed of the corner nodes of the oc-
tants. The biting method in reference [Li (2000)] uses an advancing front strategy
to generate a good sphere packing and their centers constitute a well-spaced node
set. And Du et al. proposed a node placement method using centroidal Voronoi
tesselations [Du (2002)].

Furthermore, the support region of the integration point includes more nodes, and
its shape functions aren’t polynomials usually. So the meshless methods need sig-
nificantly more computational cost to evaluate integration than the mesh-based
methods. To reduce the computational cost and especially to solve large-scale
problems, many parallel meshless methods are proposed. Singha et al. proposed
a parallel algorithm based on the data decomposition approach for the solution of
a sparse system of linear equations in the element free Galerkin method [Singha
(2005)]. And Lu et al. gave the parallel algorithms of several important compo-
nents in the element free Galerkin method [Lu (2006)]. In [Danielson (2000)], a
parallel computational implementation of modern meshless methods is presented
for explicit dynamics analysis. In [Cartwright (2006)], Cartwright et al. focused on
parallel support set searches for meshfree methods.

In this paper, we focus on node placement, parallelization and searching the nodes
in the meshless methods. In Section 2, in light of molecular dynamics [Srinivasan
(1997); Heffelfinger (2000); Allen (2004); Fleissner (2007)] and bubble mesh gen-
eration by Shimada et al. [Shimada (1995)], we present a new node placement
method and point out that this method is easy to parallelize. For uniform and non-
uniform point distribution in simple and complex regions, computational example
results are given. And parallel node placement method is also verified by a sim-
ple parallel example. In Section 3.1, the node set optimized by bubble simulation
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is used in the Element Free Galerkin (EFG) method [Belytschko (1994)], and by
comparison, the computational error is less. In Section 3.2, the generated infor-
mation of neighbor bubbles is used for selecting for influence radius in meshless
analysis. In Section 4, a node set generated by NPBS method are connected by con-
strained Delaunay triangulation, and after modifying node-spacing function, initial
mesh can be locally refined.

2 Node placement method by bubble simulation and its parallelism

In the light of bubble mesh method and molecular dynamics, we presented node
placement method by bubble simulation (NPBS method). Bubble mesh method
is a kind of unstructured mesh generation method, and has been successfully ap-
plied to two- and three-dimensional meshing [Shimada (1995); Cingoski (1997);
Shimada (1998); Yokoyama (1999)], anisotropic triangular meshing of parametric
surfaces [Shimada (1997); Yamakawa (2000)] and adaptive analysis in finite ele-
ment method [Kim (2003)]. It is based on the observation that a pattern of tightly
packed bubbles mimics a Voronoi diagram, from which a set of well-shaped De-
launay triangles and tetrahedral can be created by connecting the centers of the
bubbles [Shimada (1995)]. Fig. 1 illustrates Voronoi polygons, packed bubbles
and Delaunay triangles. Firstly, initial nodes are placed by recursive spatial sub-
division in the domain. Secondly, the mesh is relaxed by assuming the presence
of proximity-based, repulsive/attractive inter-node forces and then performing dy-
namics simulation for a force-balancing configuration of nodes [Shimada (1998)].
In the end, well-shaped Delaunay triangles can be generated.

 

Figure 1: Voronoi polygons, packed bubbles, Delaunay triangles

Bubble mesh method usually need to find adjacent bubbles in dynamics simulation
by using constrained Delaunay triangulation, and re-triangulation costs much time.
However, for the meshless methods, only nodes but triangles are needed. In order
to save time and make the total process of node generation being independent of the
mesh, we make use of the locality of the interacting force to construct a neighbor
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bubble set of each bubble, and renew timely the neighbor bubble sets to compute
a result force of each bubble in the simulation. This technology, called Verlet list
[Allen (2004)], is usually used in molecular dynamics simulation. And the molecu-
lar dynamics method has come to be widely employed for gaining atomistic insight
into many materials properties. The corresponding parallel algorithms have also
been deeply studied.

2.1 Node placement method by bubble simulation

The main steps of NPBS method are given as follows: First, an initial node set is
positioned in the domain. It is significant to obtain a good initial bubble configura-
tion for speeding up the simulation. Then nodes are seen as bubbles, and bubbles
are moved by their interacting forces which are analogous to the van der Waals
force. When two bubbles are too close, a repulsive force is applied; when two bub-
bles lie farther apart than the stable distance, an attractive force is applied. Finally
the centers of bubbles will form a good-quality node distribution in the domain.
The flow chart of NPBS method is shown in Fig. 2.

2.1.1 Input information

The inputs for NPBS method include the computational domain and the desired
node-spacing function. The computational domain in two-dimension is described
by Planar Straight Line Graph (PSLG) [Zhang (2005)] which is a set of vertices
and segments. And some holes can also be included. The desired node-spacing
function d can be defined by users, or be changed with a priori and a posterior error
estimates in the adaptive numerical computation [Babuvška (1978)].

2.1.2 Initial bubble configuration

It is important to obtain a good initial bubble configuration for saving the time of
simulation. Bubbles are placed successively on the vertices, edges and surfaces of
the domain by the recursive bisection technology [Shimada (1995)]. Especially,
when bubbles are placed on the surfaces, rhombic cells with inside angles of 60˚
and 120˚ are used instead of square cells in order to realize hexagonal arrangement
of the bubbles [Shimada (1998)]. An example is given as follows. In a square
domain with a hole, the desired node-spacing function is:

d (x,y) =
(
x2 + y2)1/2

/8 (1)

The placed initial bubbles can be seen in Figure 3.
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Figure 2: The flow chart of node placement method by bubble simulation

2.1.3 Computation of the motion of bubbles

In order to reduce the computational cost and avoid the force from growing in-
finitely large when the distance between two bubbles is close to zero, the interbub-
ble force is approximated by the 3rd order polynomials [Yamakawa (2000)]

f (w) =

{
k0
(
1.25w3−2.375w2 +1.125

)
0≤ w≤ 1.5

0 1.5 < w
(2)

instead of the van der Waals force, where w is the ratio of the real distance and
the desired distance between the bubbles, and the parameter k0 defined by user can
control the magnitude of the force.

The motion equation of the ith bubble is a second order ordinary differential equa-
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Figure 3: Initial bubble placement

tion [Shimada (1995)]:

m
d2xi (t)

dt2 + c
dxi (t)

dt
= Fi (t) (3)

where m is the coefficient of mass, and c is the coefficient of damping. The resul-
tant force Fi of the ith bubble depends on the interacting forces between it and its
neighbor bubbles. The ordinary differential equation system is integrated through
time and solved iteratively. The 4th order Runge-Kutta method can be used here.
So after each time step ∆t, the position and velocity of each bubble is renewed.

To find the neighbor bubbles of each bubble at each step, similar to the Verlet
list [Allen (2004)] in the molecular dynamics simulation, the neighbor bubble sets
are built initially by a series of buckets in the domain (Fig. 4 left), and must be
renewed timely. The new neighbor bubble set of the ith bubble could include the
old neighbor bubbles and their neighbor bubbles (Fig. 4 right), but the distances
between them and the ith bubble must be smaller than 1.7σ , where σ is the ideal
distance between two bubbles. So the adjacency bubble linked list of the ith bubble
contains enough neighbor bubbles, and need be only renewed every k steps.

The treatment of boundary constraints is very important to the quality of the node
set generated by the node placement method. After each time step ∆t, except vertex
bubbles on the boundaries and some special bubbles, the bubbles which moved
outside the domain can be projected into the domain and keep a certain distance
from the boundaries [Zhang (2005)]. And the bubbles on the boundaries must be
kept on the boundary.
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Figure 4: The neighbor bubble set of the bubble

2.1.4 Adjusting the total number of bubbles

Usually, initial bubble placement can not generate the proper number of bubbles.
So by computing the overlapping ratio [Shimada (1995)], delete the bubble whose
overlapping ratio is too large; add new bubbles near the bubble whose overlapping
ratio is too small. The total number of node set is changed, then bubble simulation
is reprocessed (Fig. 5).

 

Figure 5: Before and after adjusting the total number of bubbles

2.1.5 Numerical examples

Several numerical examples in convex and non-convex domains with uniform and
non-uniform distribution are provided for showing the performance of this method.
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Firstly, in the above example 1, set the force coefficient k0 = 1, the mass coefficient
m = 1, the damping coefficient c = 3.8429 and the time interval ∆t = 0.02. The left
picture of Fig. 5 shows the result after 750 steps. Obviously, the total number is too
large and isn’t proper. So it is necessary to adjust the total number of bubbles, then
bubble simulation is reprocessed. It can be seen that the quality of node distribution
is improved in Fig. 6.

For the non-convex domains in Fig. 7, Fig. 8 and Fig. 9, the desired node-spacing
function d is a constant, equal to 0.05. So the node distribution is uniform. The
basic coefficients of simulation are the same as above. After 30 steps, 5 steps and
6 loops each with 250 steps, we can see that the node sets generated respectively
have good construction in Fig. 7, Fig. 8 and Fig. 9, especially near the boundary
of domain. It means that this method is adaptable to the complex regions.

Fig. 10 shows the non-uniform node set in the circle domain after 500 steps. Near
the circle x2+y2= 0.09, the density of nodes is larger, and its desired node-spacing
function is:

d(x,y) = 0.04 ·
∣∣∣√x2 + y2−0.3

∣∣∣/0.3+0.02. (4)

The basic coefficients of simulation are the same as above. This example illustrates
that the non-uniform point set generated by this method have good construction and
gradualness. In the square domain of Fig. 11, we hope node (0, 0.25) is a densified
node. Its desired node-spacing function is:

d(x,y) = min
(

0.06 ·
√

x2 +(y−0.25)2/0.5+0.02,

0.06 ·
√

x2 +(y−0.75)2/0.5+0.02,0.05
)

(5)

The expected result is generated after 750 steps. Fig. 12 shows the non-uniform
node set in the L-type domain after 10 loops with 250 steps and adjusting the total
number of nodes. The corner node is a densified node and its desired node-spacing
function is:

d(x,y) = min
(

0.16 ·
√

(x−0.4)2 +(y−0.6)2 +0.01,0.08
)

(6)

In Fig. 13, seven fingers in comb structure need be densified, and its desired node-
spacing function is:

d(x,y) =

{
0.015 x > 0.7
min((0.7− x)/5+0.015,0.05) x≤ 0.7

(7)
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The final result is generated after 6 loops with 250 steps.

Through the above examples, it is obvious that this method is suitable for uniform
and non-uniform distribution in simple and complex domain and can generate the
good-quality node sets. And this method is simple and easy to implement. The
existed node set can also be optimized by bubble simulation. In addition, it can be
extended to three-dimensional node placement and anisotropic node placement by
using anisotropic node-spacing function.

 
Figure 6: The generated node set of ex-
ample 1

 

Figure 7: The generated uniform node
set in an octagram domain

2.2 Parallelism

The defined interbubble force is short-range, meaning that each bubble interacts
only with other bubbles that are geometrically nearby. The force computations are
spatially local. So coordinate and velocity updates for two distant bubbles can be
performed simultaneously and independently in the simulation, i.e., NPBS method
has natural parallelism. NPBS method is analogous to a molecular dynamics simu-
lation. And parallel molecular dynamics methods have been being widely studied.
There are three main parallel decomposition schemes: domain decomposition, data
decomposition and force decomposition [Heffelfinger (2000); Plimpton (1995)].
In comparison to molecular dynamics, the defined interbubble force is simple, so
the computation cost will account for less percentage. In view of this feature, it is
recommended to use domain decomposition for NPBS method.
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Figure 8: The generated uniform node
set in a non-convex domain with a hole

 

Figure 9: The generated uniform node
set in a trunk-like domain

 

Figure 10: The generated non-uniform
node set in a circle domain

 

Figure 11: The generated non-uniform
node set in a square domain

2.2.1 Parallel algorithm

First, the whole domain is geometrically decomposed into disjoint sub-domains
(MPI programming on the parallel computer “Lenovo DeepComp 1800”). Each
sub-domain is called as a computational domain which will be assigned to a dif-
ferent processor. Each processor only computes the motion of bubbles placed in it.
But neighbor bubbles of the bubble near the domain segmentation line may fall on
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Figure 12: The generated non-uniform
node set in a L-type domain

 

Figure 13: The generated non-uniform
node set in a comb domain

neighbor sub-domains. So each processor also must store bubbles in the neighbor
sub-domain and renew the position and velocity of them in the simulation. Because
the interbubble force is short-range, in order to reduce unnecessary information ex-
change, the corresponding adjacent affected areas are built, and each processor only
need to store a part of bubbles in neighbor sub-domains, see Fig. 14. The width of
the adjacent affected area is: 1.5maxd(x,y).

 

Figure 14: Domain decomposition

After initial node placement and domain decomposition, it begins to simulate in
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parallel. Every ssteps, the bubble information must be interchanged with each
other. Four concrete steps are as follows:

1. Transfer bubbles which moved to the neighbor sub-domains in the simulation
to the corresponding processors;

2. Accept bubbles which moved to its sub-domain, and get a new bubble set for
the next simulation stage;

3. Transfer the new bubble information of bubbles fell on the adjacent affected
areas to the corresponding processors;

4. Accept the new bubble information in the adjacent affected areas from the
other processors.

Therefore, if one bubble moves to the neighbor sub-domain in the process of sim-
ulation, its position is marked, and will not change in this simulation stage. At the
beginning of the next simulation stage, this bubble will be transfer to the processor
of the neighbor sub-domain.

2.2.2 Parallel examples

We tested the parallel performance of this method by using a simple parallel exam-
ple. For a ring domain, its center is (0,0), and the desired node-spacing function in
it is:

d (x,y) =
(
x2 + y2)1/2

/6 (8)

The node set is generated by parallel bubble simulation in two processors and four
processors. Fig. 14 and Fig. 15 shows domain decomposition and the initial node
set, respectively.

In the parallel simulation, the value of s is 50. After 20 times of data communi-
cation, the left picture of Fig. 16 shows the parallel result of two processors. Its
speedup ratio is 1.6042, and its parallel efficiency is 0.8021. As shown in the right
picture of Fig. 16, the parallel result of four processors is also good. But its parallel
performance is not so good. One of its reasons is that this example includes so
few nodes (the total number of nodes is 1192) that the communication cost takes
a large proportion. Further research about parallel realization of NPBS method is
still needed.
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Figure 15: Initial placement

 

Figure 16: The result of parallel node placement by bubble simulation

3 Its application in meshless methods

3.1 Impact of node quality on the computational error in meshless method

For the sake of studying the effect using the node set optimized by bubble simula-
tion in the meshless method on the calculation error, we solve the Poisson equation
with Dirichlet boundary condition by the element free Galerkin method with four
different node sets.{
−∆u =−

(
x2 + y2

)
exy in Ω

∆= (0,1)× (0,1)
u|x=0 = 1, u|x=1 = ey, u|y=0 = 1, u|y=0 = ex

(9)

Shape functions are constructed by moving least squares method [Belytschko (1994)]
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with linear basis. The quartic spline function [Nguyen (2008)] is used as the weight
function. 12×12 uniform background cells are introduced and 2×2 Gaussian inte-
gral algorithm is used in each cell. The essential boundary conditions are imposed
by the penalty method [Nguyen (2008)]. The influence radius is given by 0.15 [Nie
(2006)]. See Fig. 17, the picture in the top left corner is a random distributed node

 
Figure 17: The result of parallel node placement by bubble simulation (The same
number of nodes)

set of 144 nodes in [0,1]×[0,1]. In the top right corner is the result after 250 simu-
lation steps. In the lower left corner is after 500 simulation steps. The last picture
is after 1000 simulation steps. Its exact solution of problem (8) is u(x,y) = exy.
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Sobolev Norm ‖·‖t which is defined as follows is used to measure computing error.

‖ f‖t =

(
t

∑
l=0

∑
|α|=l

∫
Ω

[Dα f (x)]2 dΩ

)1/2

, f ∈ Ht (Ω) ,

Ω⊂ Rd ,Dα =
(

∂

∂x1

)α1
(

∂

∂x2

)α2

· · ·
(

∂

∂xd

)αd

, α = (α1,α2, · · · ,αd)

(10)

So Tab. 1 shows the calculation errors using these four different node sets. We
can see that bubble simulation results in better node distribution. And the node set
optimized by bubble simulation is suitable for the meshless method.

Table 1: The calculation errors using four different node sets

Node placement schemes Calculation errors ‖·‖0 Calculation errors ‖·‖1
a 0.390010815 2.933037054
b 0.004286155 0.041298026
c 0.000408937 0.016183909
d 0.000378625 0.014812266

3.2 Finding the nodes on the influence domain

The resultant force of each bubble depends on the interacting forces between it
and its neighbor bubbles. The neighbor bubble set of every bubble is stored in
adjacency bubble linked list, so after the simulation, it is easy to get the information
of neighbor nodes of each node. We can make use of this additional information for
finding the nodes within the influence domain of the integration points in meshless
analysis. This is one of the advantages of our method. It can help reduce the
searching time for nodes within the influence domains after generating the node
set. The influence domain sets of the above two examples are as shown in Fig. 18.

4 Its application in triangular mesh generation

Mesh generation is the first step of finite element analysis, and mesh quality has
great influence to analysis result. Because of its adaptability to complex domains,
Delaunay triangulation is commonly used. Node placement is a very important
part of Delaunay triangulation algorithms, and the quality of node set will finally
determine the quality of Delaunay mesh. So how to generate a good node set is a
research hotspot.
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Figure 18: The influence domain set

In this section, the generated nodes of example 1 are connected by constrained De-
launay triangulation algorithm, see Fig. 19. One of mesh quality measure formulas
is:

q(a,b,c) =
2rin

rout
=

(b + c - a)× (c + a - b)× (a + b - c)
a×b× c

(11)

that is, the ratio between the radius of the largest inscribed circle (times two) and the
smallest circumscribed circle, where a, b, c are the side lengths [Persson (2004)].
The generated mesh quality result in Fig. 19 shows NPBS method can be used to
generate initial node set for triangular mesh generation, and the mesh connected by
constrained Delaunay triangulation algorithm has good quality.

Furthermore, if the generated triangular mesh need be refined, firstly, modify the
desired node-spacing function:

d (x,y) =


√

x2 + y2/8 x2 + y2 > 0.72√
x2 + y2/11 0.72 ≥ x2 + y2 > 0.62√
x2 + y2/14 0.62 ≥ x2 + y2 > 0.52

(12)

Secondly, generate the new node set (Fig. 20). In the end, the new mesh is gained
by the new node set and constrained Delaunay triangulation algorithm. See Fig.
21, the new mesh after densifying the node set has good quality, and the refinement
effect is obvious. So like bubble mesh method, the NPBS method has also good
application prospect in triangular mesh generation.
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Figure 19: Triangular mesh of the generated nodes in example 1 and mesh quality

 

Figure 20: The densified node set

5 Conclusions

NPBS method can generate good-quality node sets efficiently and also can be easily
parallelized for large-scale problems. The generated node set is suitable for the
meshless analysis, and will be combined with the parallel EFG method. However,
these advantages mentioned in this paper are worth further studying. Especially, to
improve parallel efficiency, further work is urgently needed.
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Figure 21: The refined mesh and mesh quality
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