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Dispersion Relations of Axisymmetric Wave Propagation
in Finite Pre-Stretched Compound Circular Cylinders
Made from Highly Elastic Incompressible Materials

Surkay D. Akbarov1,2,3, Mugan S. Guliev4 and Ramazan Tekercioglu5

Abstract: Dispersion relations of axisymmetric longitudinal wave propagation
in a finite pre-strained compound (bi-material) cylinder made from high elastic
incompressible materials are investigated within the scope of a piecewise homoge-
neous body model utilizing three-dimensional linearized theory wave propagation
in the initially stressed body. The materials of the inner and outer cylinders are
assumed to be neo-Hookean. The numerical results regarding the influence of the
initial strains in the inner and outer cylinders on the wave dispersion are presented
and discussed. These results are obtained for the case where the material of the
inner solid cylinder is stiffer than that of the outer hollow cylinder. At the same
time, the following results have been obtained for the following two cases (distin-
guished from each other by the thickness of the external hollow cylinder): Case 1:
The thickness is infinite; Case 2: The thickness is finite.

Keywords: Compound cylinder; finite initial strain; non-linear dynamical effect;
wave dispersion; incompressible highly elastic material.

1 Introduction

Initial strains (or stresses) in the construction elements are one of the reference par-
ticularities of those which must be taken into account under consideration of their
statical and especially dynamical behaviour. It is known that these initial strains
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(or stresses) occur in structural elements during their manufacture and assembly, in
the Earth’s crust under the action of geostatic and geodynamic forces, in composite
materials, etc.

Moreover, the construction elements are loaded by external forces under working
procedure and in the case where additional forces act on those in this procedure,
and if it is necessary to learn the mechanical problems caused by these additional
forces, then the stresses caused by the working load can be taken as initial stresses.

Consequently, the area of the problem regarding the initially stressed body is sig-
nificantly wide and it is evident that to study these problems is of the utmost im-
portance in the practical as well as in the theoretical sense. At the same time, there
are also other types of reference particularities such as the existence of a crack in
the body which also significantly influences its dynamics: see, for example, Guz,
Menshikov, Zozulya and Guz (2007), Guz and Zozulya (2007). Nevertheless, we
return to the discussion of the dynamic problems regarding the elastic body with
initial stresses.

First, we note that at present the problems regarding the elastodynamics for initially
stressed bodies are studied by utilizing a linearized theory constructed using the lin-
earization principle from the general nonlinear theory of elasticity or its simplified
modifications. Within the scope of elastoacoustics linearized equations make it
possible to investigate all kinds of dynamical problems for initially stressed bod-
ies. However, at this point it is necessary to distinguish the so called approximate
and exact approaches. The first of these (i.e. the approximate approaches) is based
on the Bernoulli, Kirchoff-Love and Timoshenko hypotheses and other methods of
reducing three-dimensional (two-dimensional) problems to two-dimensional (one-
dimensional) ones. Consequently, the approximate approaches simplify the math-
ematics involved in finding a solution. However, the acceptable fields of these
approaches are bounded with a few propagating waves (modes) in rods, plates and
shells. At the same time, within the scope of these approaches the near-surface
dynamical processes for the initially stressed bodies cannot be described. It fol-
lows from these statements that it is preferable to use the exact approach; i.e., the
Three-dimensional Linearized Theory of Elastic Waves in Initially Stressed Bodies
(TLTEWISB) for investigations of the dynamical problems of elastic bodies with
initial stresses. The general field equations and relations of the TLTEWISB have
been elaborated in many investigations such as Biot (1965), Gren, Rivlin and Shield
(1952), Eringen and Suhubi (1975a, 1975b), Guz (1986a, 1986b, 2004), Truestell
(1961), etc.

It should be noted that the main part of the investigations made by employing
TLTEWISB, (except Akbarov (2006a, 2006b, 2006c, 2006d, 2007a), Yahnioglu
(2007) and some others listed therein) refer to the influence of the initial stresses
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on the speed and the dispersion of various types of waves. The details of the men-
tioned investigations can be found in papers by Hayes and Rivlin (1961), Chadwick
and Jarvis (1979a, 1979b), Dowaik and Ogden (1991), Ogden and Sotiropoulos
(1998), Fu and Mielke (2002), Daniel (2008), Akbarov and Guz (2004), Akbarov
and Ozisik (2003, 2004), Rogerson and Sandiford (2000), Zhuk and Guz (2007),
Guz, Rushchitsky and Guz (2007, 2008) and the papers listed therein. Reviews of
these investigations were given in papers by Akbarov (2007b), Guz (2002, 2005),
Guz and Makhort (2000). The systematic analysis of these investigations was given
in the monographs by Guz (1986a, 1986b, 2004).

Analysis of the aforementioned references shows that a considerable part of the
investigations refer to layered composite materials. Also there are a consider-
able number of investigations on wave propagation in pre-stressed cylinders in
Belward (1976), Demiray and Suhubi (1970), Green (1961, 1963), Guz, Kushnir
and Makhort (1975), Kushnir (1979) and others. However, in these investigations
the subject of research was a homogeneous circular cylinder. Consequently, up to
now, investigations on the wave propagation in pre-stressed compound (bi-material)
cylinders are almost completely absent. One notable exception was an investiga-
tion on the axisymmetric longitudinal wave propagation in the compound cylinder
which was made in the paper by Akbarov and Guz (2004) in which it was assumed
that the materials of the cylinders are moderately rigid and the initial strains in them
are small. Here by “small” it is meant that the strains can be neglected with respect
to unit in the corresponding equations and relations of the TLTEWISB. According
to the foregoing assumptions, in the paper by Akbarov and Guz (2004) it was con-
cluded that the effect of the initial stresses (i.e. the initial uniaxial homogeneous
stresses the values of which are less than the corresponding yield stresses) on the
wave propagation velocity in compound cylinders is insignificant.

Taking this statement into account in the paper by Akbarov and Guliev (2009), the
axisymmetric longitudinal wave propagation in a compound cylinder with finite
initial strains has been studied. However, in the mentioned paper by Akbarov and
Guliev (2009) it is assumed that the materials of the cylinders are compressible
highly elastic ones.

In the present paper, the investigations started in the paper of Akbarov and Guliev
(2009) is continued for high elastic incompressible materials, i.e. it is assumed that
the cylinders’ materials are incompressible neo-Hookean highly elastic materials.
At the same time, in the present paper the resulting dispersion relations are obtained
for the following two cases (distinguished from each other by the thickness of the
external hollow cylinder): Case 1. The thickness of the external hollow cylinder is
infinite; Case 2. The thickness of the external hollow cylinder is finite. However,
in the paper by Akbarov and Guliev (2009) only Case 2 is considered.
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2 Formulation of the problem and governing field equations

We consider the compound (composite) circular cylinder shown in Fig. 1 and as-
sume that in the natural state the radius

of the inner solid cylinder is R, the thickness of the external hollow cylinder is h.
In the natural state we determine the position of the points of the cylinders by the
Lagrangian coordinates in the Cartesian system of coordinates Oy1y2y3 as well as
in the cylindrical system of coordinates Orθy3. Assume that the cylinders have
infinite length in the direction of the Oy3 axis and the initial stress state in each
component of the considered body is axisymmetric with respect to this axis and
homogeneous. Such a stress field may be present with stretching of the considered
body along the Oy3 axis. The stretching may be conducted for the inner solid
cylinder and the external hollow cylinder separately before they are compounded;
this can also be done after compounding them. Note that in the later case the
initial stress field in the constituents of the body will also be the homogeneous one
because the materials of these constituents are assumed to be incompressible ones.

 
Figure 1: The geometry of the compound cylinder

With the initial state of the cylinders we associate the Lagrangian cylindrical sys-
tem of coordinates O′r′θ ′y′3 and the Cartesian system of coordinates O′y′1y′2y′3.
Assume that the mechanical relations of the materials of the components are the
neo-Hookean materials and the values related to the inner solid cylinder and ex-
ternal hollow cylinder will be denoted by upper indices (2) and (1), respectively.
Furthermore, we denote the values related to the initial state by an additional upper
index, 0. Thus, the initial strain state in the fiber and matrix can be determined as
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follows.
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introduce the following notation
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y′i = λ
(k)
i yi, r′ =

(
λ

(k)
)−1/2

r, R′ =
(

λ
(2)
)−1/2

R. (3)

The values related to the system of the coordinates associated with the initial state
below, i.e. with O′y′1y′2y′3, will be denoted by upper prime.

Within this framework, let us investigate the axisymmetric wave propagation along
the O′y′3 axis in the considered body. We make this investigation by the use of
coordinates r′ and y′3 in the framework of the TLTEWISB under construction of
which one considers two states of a deformable solid. The first is regarded as the
initial or unperturbed state and the second is a perturbed state with respect to the
unperturbed. By “the state of a deformable solid” both motion and equilibrium (as
a particular case of motion) are meant. It is assumed that all values in a perturbed
state can be represented as a sum of the values in the initial state and perturbations.
The latter is also assumed to be small in comparison with the corresponding values
in the initial state. It is also assumed that both initial (unperturbed) and perturbed
states are described by the equations of non-linear solid mechanics. Owing to the
fact that the perturbations are small, the relationships for the perturbed state in
the vicinity of appropriate values for the unperturbed state are linearized, and then
the relations for the perturbed state are subtracted from them. The results are the
equations of the TLTEWISB.

The general problems of the TLTEWISB have been elaborated in many investiga-
tions such as Guz (1986a, 1986b, 2004) and others. In the present paper we will
follow the style and notation used in the monograph Guz (2004).

Thus, according to Guz (2004), we write the basic relations of the TLTEWISB for
the incompressible body under an axisymmetrical state. These relations are satis-
fied within each constituent of the considered body because we use the piecewise
homogeneous body model.
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The equations of motion are
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In (4) and (5), from Q′(k)r′r′ ,. . . ,Q′(k)3r′ the perturbation of the components of the Kir-
choff stress tensor are denoted. The notation u′(k)r′ , u′(k)3 shows that the perturbations
of the components of the displacement vector, p′(k) = p′(k)(r′,y′3, t) is an unknown
function (a Lagrangian multiplier). The constants χ ′

(k)
1111,. . . ,χ ′(k)3333 in (4), (5) are

determined through the mechanical constants of the fiber and matrix materials and
through the initial stress state. ρ ′(k) is a density of the k-th material.

As noted above, in the present investigation we assume that the fiber’s and matrix’s
materials are incompressible neo-Hookean one and the elasticity relations for that
is given by the following potential:

Φ = C10(I1−3), I1 = 3+2A1, A1 = εrr + εθθ + ε33, (6)

where C10 is an elastic constant; A1 is the first algebraic invariant of Green’s strain
tensor, εrr, εθθ and ε33 are the components of this tensor. For the considered ax-
isymmetric case, the components of Green’s strain tensor are determined through
the components of the displacement vector by the following expressions:
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In this case the components Si j of the Lagrange stress tensor are determined as
follows:
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Note that the expressions (6)-(8) are written in the arbitrary system of cylindrical
coordinate system without any restriction related to the association of this system
to the natural or initial state of the considered compound cylinders.

For the considered case the relations between the perturbation of the Kirchoff stress
tensor and the perturbation of the components of the Lagrange stress tensor can be
written as follows:
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According to Guz (1986a, 1986b, 2004), by linearization of equation (8) and taking
(9), (1) and (2) into account, we obtain the following expressions for the constants
χ ′
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1111,. . . ,χ ′(k)3333 in (5) for the potential (6):
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χ
′(k)
1331 = 2C(k)

10 (λ (k))−1, χ
′(k)
1221 = 2C(k)

10 (λ (k))−1,

χ
′(k)
3333 = 2C(k)

10

(
1+
(

λ
(k)
)−3
)

(λ (k))2, χ
′(k)
1313 = χ

′(k)
3131 = 2C(k)

10

(
λ

(k)
)−1

,

χ
′(k)
3113 = 2C(k)

10 (λ (k))2. (10)

It should be noted that to the above equations the incompressibility condition of the
fiber and matrix materials must be added. This condition for the considered case
can be written as follows:

∂u′(k)r′

∂ r′
+

u′(k)r′

r′
+

∂u′(k)3
∂y′3

= 0. (11)

Thus, the wave propagation in the considered body will be investigated by the use of
the equations (4), (5), (10) and (11). In this case we will assume that the following
complete contact conditions are satisfied.

Q′(1)
r′r′
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r′=R′

= Q′(2)
r′r′
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r′3
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r′3
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= 0. (12)

With this we have exhausted the formulation of the problem and the consideration
of the governing field equations. It should be noted that in the case where λ (k) = 1,
(k = 1,2) equations (4), (5), (10), (11) and (12) for the k-th constituent transform to
the corresponding ones of the classical linear theory of elastodynamics for incom-
pressible bodies.

3 Solution procedure

To solve the dynamical problems of deformable solid body mechanics, various
types of numerical and semi-analytical methods have been developed. The detailed
analyses of these methods are given, for example, in papers by Yoda and Kodama
(2006), Lu and Zhu (2007), Chen, Fu and Zhang (2007), Gato and Shie (2008),
Liu, Chen, Li and Cen (2008), Lin, Lee, Tsai, Chen, Wang and Lee (2008), Wang
and Wang (2008), Yao (2009), Dziatkiewicz and Fedelinski (2007), Gato and Shie
(2008) and in many others. The systematic consideration of these methods was
made in monographs by Atluri (2004, 2005). It should be noted that these methods
are realized by employing modern computer modeling. At the same time, there
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are also other methods, so called analytical+numerical methods (see Mitra and
Gopalakrishnan (2008), Willner (2009), Wei and Su (2008), Akbarov and Guliev
(2009, 2010), Fu and Mielke (2002)) according to which, up to a certain stage of
the solution procedure, analytical expressions are obtained for the sought values,
but after this stage procedures based on visual numerical results arrived at with
modern PC modeling are also employed. As in the previous paper by Akbarov and
Guliev (2009), in the present paper also the latest version of computer modeling
is employed. Thus we return to the solution procedure of the formulated problem
above.

Substituting equation (5) in (4), we obtain the following equation of motion for the
displacement terms:

χ
′(k)
1111

∂ 2u′(k)r′

∂ r′2
+ χ

′(k)
1122

∂

∂ r′

(
u′(k)r′

r′

)
+
(

χ
′(k)
1133 + χ

′(k)
1331

)
∂ 2u′(k)3
∂ r′∂y′3

+

χ
′(k)
1313

∂ 2u′(k)r′

∂y′23
+

1
r′

(
χ
′(k)
1111−χ

′(k)
2211

)
∂u′(k)r′

∂ r′
+

(
χ
′(k)
1122−χ

′(k)
2222

) u′(k)r′

r′2
+
(

χ
′(k)
1133−χ

′(k)
2233

) 1
r′

∂u′(k)3
∂y′3

= ρ
′(k) ∂ 2u′(k)r′

∂ t2 − ∂ p′(k)

∂ r′
;

χ
′(k)
3322

∂ 2u′(k)r′

∂ r′∂y′3
+ χ

′(k)
3131

∂ 2u′(k)3
∂ r′2

+
1
r′

χ
′(k)
3113

∂u′(k)r′

∂y′3
+

1
r′

χ
′(k)
3131

∂u′(k)3
∂ r′

+

χ
′(k)
3311

∂ 2u′(k)r′

∂y′3∂ r′
+ χ

′(k)
3322

1
r′

∂u′k)r′

∂y′3
+ χ

′(k)
3333

∂ 2u′(k)3

∂y′23
= ρ

′(k) ∂ 2u′(k)3
∂ t2 − ∂ p′(k)

∂y′3
. (13)

Equations (11) and (13) compose the complete system with respect to the unknown
functions u′(k)r′ , u′(k)3 and p′(k). According to Guz (1986a), we use the following
representation for the displacement and unknown function p′(k):
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The function X′(k) satisfies the following equation:[(
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We represent the function X′(k) = X′(k) (r′,y′3, t) as
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)
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Substituting (18) in (16) and doing some mathematical manipulations we obtain
the following equation for X′(k)1 (r′):(
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Introducing the notation s(m) = c
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According to (19), (21) we can write:
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∆
′
1 +λ

(m)
((

s(m)
)2
−
(

λ
(m)
)2
)]

X′(m)
13 = 0. (22)

From (23) we determine the following expressions for the functions X′(1)
1 (r′) and

X′(2)
1 (r′).

X′(2)
1 (r′) = A(2)I0(kr′)+B(2)E0(kr′),

X′(1)
1 (r′) = A(1)I0(kr′)+B(1)G0(kr′)+C(1)K0(kr′)+

D(1)F0(kr′), (23)

where

G0
(
kr′
)

=


J0

(√
λ (1)

((
s(1)
)2−

(
λ (1)

)2
)

kr′
)

if s(1) > λ (1)

I0

(√
λ (1)

((
s(1)
)2−

(
λ (1)

)2
)

kr′
)

if s(1) < λ (1)
,

F0
(
kr′
)

=


Y0

(√
λ (1)

((
s(1)
)2−

(
λ (1)

)2
)

kr′
)

if s(1) > λ (1)

K0

(√
λ (1)

((
s(1)
)2−

(
λ (1)

)2
)

kr′
)

if s(1) < λ (1)
,

E0
(
kr′
)

=


J0

(√
λ (2)

((
s(2)
)2−

(
λ (2)

)2
)

kr′
)

if s(2) > λ (2)

I0

(√
λ (2)

((
s(2)
)2−

(
λ (2)

)2
)

kr′
)

if s(2) < λ (2)
(24)

In (23) and (24) the functions J0(x) and Y0(x) are Bessel functions of the first and
second kind of order zero; I0(x) and K0(x) are a Bessel function of a purely imag-
inary argument in order zero and a Macdonald function in order zero, in turn; in
(23), (24) the constant k is a wave number of the propagating wave. Note that
the expressions for the functions E0 (kr′) and F0 (kr′) for other cases which are not
considered in (24), (i.e. for the cases where s(m) = λ (m)), can easily be determined.
Therefore the corresponding expressions for E0 (kr′) and F0 (kr′) are not given here.

Thus, using (23), (24), (18), (14) and (5) we obtain the following dispersion equa-
tion from the contact conditions (12).

det
∥∥αi j

∥∥= 0, i; j = 1,2,3,4,5,6, (25)
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where

α11 =
C(2)

10

λ (2)

[
−λ

(2)
((

λ
(2)
)2
−
(

s(2)
)2
)

I0
(
kR′
)
− I2

(
kR′
)]

, α21 =
C(2)

10

λ (2) I1
(
kR′
)
,

α31 = I1
(
kR′
)
, α41 = I0

(
kR′
)
,

α51 = 0, α61 = 0,

α12 =
C(2)

10

λ (2)

−
(
q(2)
)2 [

I0
(
q(2)kR′

)
+ I2

(
q(2)kR′

)]
if λ (2) < s(2)(

q(2)
1

)2 [
J0

(
q(2)

1 kR′
)
− J2

(
q(2)

1 kR′
)]

if λ (2) > s(2)
,

α22 =
C(2)

10

2λ (2)


(

q(2) +
(
q(2)
)3
)

I1
(
q(2)kR′

)
if λ (2) < s(2)(

q(2)
1 −

(
q(2)

1

)3
)

J1

(
q(2)

1 kR′
)

if λ (2) > s(2)
,

α32 =

{
q(2)I1

(
q(2)kR′

)
if λ (2) < s(2)

q(2)
1 J1

(
q(2)

1 kR′
)

if λ (2) > s(2) ,

α42 =


(
q(2)
)2

I0
(
q(2)kR′

)
if λ (2) < s(2)

−
(

q(2)
1

)2
J0

(
q(2)

1 kR′
)

if λ (2) > s(2)
,

α52 = 0, α62 = 0,

α13 =−
C(1)

10

λ (1)

[
−λ

(1)
((

λ
(1)
)2
−
(

s(1)
)2
)

I0
(
kR′
)
− I2

(
kR′
)]

,

α23 =−
C(1)

10

λ (1) I1
(
kR′
)
, α33 =−I1

(
kR′
)
, α43 =−I0

(
kR′
)
,

α53 =−
C(1)

10

λ (1)

[
−λ

(1)
((

λ
(1)
)2
−
(

s(1)
)2
)

I0
(
kR′(1+h′/R′)

)
−I2

(
kR′(1+h′/R′)

)]
,

α63 = I1
(
kR′(1+h′/R′)

)
,

α14 =−
C(1)

10

λ (1)

[
−λ

(1)
((

λ
(1)
)2
−
(

s(1)
)2
)

K0
(
kR′
)
−K2

(
kR′
)]

,

α24 =
C(1)

10

λ (1) K1
(
kR′
)
, α34 = K1

(
kR′
)
, α44 =−K0

(
kR′
)
,
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α54 =−
C(1)

10

λ (1)

[
−λ

(1)
((

λ
(1)
)2
−
(

s(1)
)2
)

K0
(
kR′(1+h′/R′)

)
−K2

(
kR′(1+h′/R′)

)]
,

α64 =−K1
(
kR′(1+h′/R′)

)
,

α15 =
C(1)

10

λ (1)


(
q(1)
)2 [

I0
(
q(1)kR′

)
+ I2

(
q(1)kR′

)]
if λ (1) < s(1)

−
(

q(1)
1

)2 [
J0

(
q(1)

1 kR′
)
− J2

(
q(1)

1 kR′
)]

if λ (1) > s(1)
,

α25 =−
C(1)

10

2λ (1)

{
((q(1))3 +q(1))I1(q(1)kR′) if λ (1) < s(1)

((q(1))3−q(1))J1(q(1)kR′) if λ (1) > s(1) ,

α35 =

{
−q(1)I1(q(1)kR′) if λ (1) < s(1)

q(1)J1(q(1)kR′) if λ (1) > s(1) ,

α45 =

{
−(q(1))2I0(q(1)kR′) if λ (1) < s(1)

(q(1))2J0(q(1)kR′) if λ (1) > s(1) ,

α55 =
C(1)

10

λ (1)



(
q(1)
)2 [

I0
(
q(1)kR′(1+h′(R′)

)
+ I2

(
q(1)kR′(1+h′(R′)

)]
if λ (1) < s(1)

−
(

q(1)
1

)2 [
J0

(
q(1)

1 kR′(1+h′(R′)
)
− J2

(
q(1)

1 kR′(1+h′(R′)
)]

if λ (1) > s(1)

α65 =−
C(1)

10

2λ (1)

{
((q(1))3 +q(1))I1(q(1)kR′(1+h′/R′)) if λ (1) < s(1)

((q(1))3−q(1))J1(q(1)kR′(1+h′/R′)) if λ (1) > s(1) ,

α16 =
C(1)

10

λ (1)


(
q(1)
)2 [

K0
(
q(1)kR′

)
+K2

(
q(1)kR′

)]
if λ (1) < s(1)

−
(

q(1)
1

)2 [
Y0

(
q(1)

1 kR′
)
−Y2

(
q(1)

1 kR′
)]

if λ (1) > s(1)
,

α26 =
C(1)

10

2λ (1)

{
((q(1))3 +q(1))K1(q(1)kR′) if λ (1) < s(1)

−((q(1))3−q(1))Y 1(q(1)kR′) if λ (1) > s(1) ,

α36 =

{
q(1)K1(q(1)kR′) if λ (1) < s(1)

q(1)Y1(q(1)kR′) if λ (1) > s(1) ,

α46 =

{
−(q(1))2K0(q(1)kR′) if λ (1) < s(1)

(q(1))2Y0(q(1)kR′) if λ (1) > s(1) ,
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α56 =
C(1)

10

λ (1)


−
(
q(1)
)2 [

K0
(
q(1)kR′(1+h′(R′)

)
+ K2

(
q(1)kR′(1+h′(R′)

)]
if λ (1) < s(1)

−
(

q(1)
1

)2 [
Y0

(
q(1)

1 kR′(1+h′(R′)
)
− Y2

(
q(1)

1 kR′(1+h′(R′)
)]

if λ (1) > s(1)

α66 =−
C(1)

10

2λ (1)

{
−((q(1))3 +q(1))K1(q(1)kR′(1+h′/R′)) if λ (1) < s(1)

((q(1))3−q(1))Y 1(q(1)kR′(1+h′/R′)) if λ (1) > s(1) ,

q(m) =
√

λ (m)
((

λ (m)
)2−

(
s(m)
)2
)

q(m)
1 =

√
λ (m)

((
s(m)
)2−

(
λ (m)

)2
)
. (26)

Thus, the dispersion equation for the considered wave propagation problem has
been derived in forms (25) and (26).

4 Numerical results and discussions

The quantities regarding the fiber (matrix) will be denoted below by the upper sym-
bol ( f )((m)) instead of the upper index (2) ((1)). Now we investigate the influence
of the initial

strains determined by the elongations λ ( f ) and λ (m) on the dispersion curves

c = c
(

kR,h/R,ρ(m),ρ( f ),C( f )
10 /C(m)

10 ,λ (m),λ ( f )
)

. (27)

At this point, the notation e = C( f )
10 /C(m)

10 is introduced. It should be noted that in
the framework of the paper we cannot consider the analyses and discussions of
numerical results regarding the possible problem parameters. Therefore, we must
bound the change range of these parameters. In connection with this, in the present
paper we assume that e = 5.0.

The packet programs by employing of which the numerical results are obtained
have been tested on known problems such as axisymmetric wave propagation in a
solid cylinder as well as in a hollow cylinder, separately. Some fragments of theses
tests will be indicated below.

To establish the effect of the waves reflected from the outer surface of the external
hollow cylinder on the dispersion of the wave propagation in the considered com-
pound (composite) cylinder, first we consider the case where h

/
R = ∞; i.e. the case

which corresponds the wave propagation in the solid cylinder contained in the infi-
nite body. Note that the dispersion equation corresponding to this case is attained
from equations (25), (26) by the evident corrections.
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4.1 Numerical results regarding the case where h/R = ∞

According to the physical and mechanical considerations the results obtained in
this case may be more reasonable under h >> R, e >> 1 for a certain finite inter-
val of time. First we consider the case where λ ( f ) = λ (m) = 1.0, i.e. where the
initial strains in the constituents of the considered body are absent. The dispersion
curve for this case is given in Fig. 2 for the first three modes for the various values
of ρ(m)/ρ( f )(where ρ(m) (ρ( f )) is a density of the infinite body (solid cylinder)).
Moreover, in Fig. 2, dashed lines show the corresponding dispersion curves for
the solid cylinder. It follows from these graphs that the contact of the solid cylin-
der with surrounding infinite material causes the values c/c( f )

2 to decrease because
c( f )

2 > c(m)
2 . Moreover, it follows from these graphs that the mode1 for the solid

cylinder has a finite limit as kR→ 0and this limit is equal to the corresponding
bar velocity. At the same time, the wave propagation velocity for this mode ap-
proaches to the Rayleigh wave velocity as kR→∞. However, such types of modes;
i.e. the mode for which the wave propagation velocity has a finite limit as kR→ 0,
disappears in the case where the cylinder is surrounded by an infinite body.

Detail analyses of the numerical results show that around the points indicated by
the small circles (Fig. 2) in the dispersion curves, stop band (narrow) zones arise.

Let us to introduce notation s = c/c( f )
2 , where the values of s for the aforementioned

points denote s1 < s2 < ... < sn < ... < sN . To analyze the meaning of the parts of the
dispersion curves we consider the dispersion diagrams given in Fig. 3 for the case
ρ( f )/ρ(m) = 0.7. It follows from these diagrams that for the considered modes in
which the points s1 and s2 exist only, the parts of the dispersion curves determined
by the relations s > s1, s2 < s < s1 and s < s2 correspond to the backward wave,
anomalous dispersion and normal dispersion, respectively.

According to the expression c( f )
2 /c(m)

2 =
√

C( f )
10 ρ(m)/

(
C(m)

10 ρ( f )
)

, for fixed C( f )
10 /C(m)

10

the decreasing of the values of c( f )
2 /c(m)

2 corresponds to the decreasing of the ρ(m)/ρ( f )

and this statement causes an increase in the values of c/c( f )
2 with reducing of the

ρ(m)/ρ( f ). Note that this conclusion agrees well with the physical considerations
and with the corresponding results obtained in paper Parnes (1981) which regards
the study of the waves propagated in a system consisting of a linear elastic rod em-
bedded in a compressible linear elastic medium. However, in paper Parnes (1981)
the equation of motion for the rod is written within the framework of the Bernoulli
hypotheses. From the viewpoint of the authors, therefore, effects of the stop band
zones discussed above were not observed in investigation Parnes (1981). Because
the backward wave, band zones and other similar type particularities of the wave
propagation in the rods or in the compound rods is caused namely with the radial
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Figure 2: Dispersion curves attained in the case where h/R = ∞ for various
ρ(m)/ρ( f ) and for the first three modes.

displacement which within the scope of the Bernoulli hypotheses is not taken into
account.

Now we consider the influence of the initial strains of the constituents on the ana-
lyzed wave dispersion. For this purpose we consider only the case where ρ(m)/ρ( f ) = 0.7.
Note that in the qualitative sense the same results are obtained for other values of
the relation ρ(m)/ρ( f ).

Fig. 4 shows the influence of the pre-stretching of the cylinder on the dispersion
curves in the case where the initial strain in the surrounding infinite body is absent,
i.e. λ (m) = 1.0. It follows from the graphs that in modes 2 and 3, the number
of points sn increases with initial strains. Nevertheless, the part of the dispersion
curves for which s < sN corresponds to normal dispersion. However, those parts
which are similar to the part for which s ∈ (sN ,sn−1) (s ∈ (sN−1,sN−2))correspond
to an anomalous dispersion (backward wave).

We denote the values of kR corresponding to the values s1 < s2 < ... < sn < ... < sN
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through the (kR)1, (kR)2,. . . ,(kR)n,. . . , (kR)N . Moreover, we introduce the notation

(kR)∗ = min{(kR)1 , (kR)2, . . . , (kR)n, . . . , (kR)N} (28)

The analyses of the results show that the values of (kR)∗ depends significantly of
the initial strains of the cylinder; i.e. the values of (kR)∗ decrease with λ ( f ). At the
same time, the values of sN increase with λ ( f ). Consequently, for the fixed mode,
minsN is the sNattained for the case where λ ( f ) = 1.0, but min(kR)∗ is the (kR)∗
attained for the max(λ ( f )) (for the considered case max(λ ( f )) = 1.90). According
to the aforementioned notation and according to the results illustrated in Fig. 4,
we can conclude that under kR < (kR)∗N (where (kR)∗N corresponds to the minsN)
and under kR > min(kR)∗ (for the parts which correspond to normal dispersion) the
wave propagation velocity increase with the initial stretching of the solid cylinder.

Note that similar results occur also for the case where initial stretching exists only
in the surrounding infinite body. The dispersion curves for this case are given in
Fig. 5, according to which the wave propagation velocity decreases (increases)
with λ (m) under kR < (kR)N (kR > (kR)∗ for normal dispersion parts). The same
results also occur for the case where the constituents of the considered body are pre-
stretched simultaneously. The dispersion curves attained for this case are illustrated
in Fig. 6. However in this case, the length of the stop band zones increase with
λ (= λ ( f ) = λ (m)). Moreover, in Fig. 3, for example, the dispersion diagrams are
given for the case where λ = 1.20. These diagrams illustrate more clearly the
influence of the simultaneous pre-stretching of the constituents of the compound
cylinder on the values of the sn and (kR)n.

With the preceeding, we restrict ourselves to consideration of the numerical results
attained for the system which comprises the solid cylinder and the surrounding
infinite body. The character of the obtained results can be explained by the increase
in the material rigidity with the initial stretching and by the kind of nonlinearity of
the materials.

4.2 Numerical results regarding to the compound cylinder

As in the previous subsection, first we consider the case where λ ( f ) = λ (m) = 1.0;
i.e. the case where the initial stretching in the constituents of the compound cylinder
is absent. The dispersion curves for this case are given in Fig. 7 for the first three
modes under various h/R. These curves show that, as a result of taking into account
the waves, reflection from the free surface of the external hollow cylinder, the wave
propagation velocity in the first mode (Fig. 7, a) has a finite limit as kR→ 0. Note
that this limit is a bar velocity (denote it bycb) of the considered compound cylinder
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which is determined by the expression

cb

c( f )
2

=
√

3

(
C(m)

10

C( f )
10

η
(m) +η

( f )

) 1
2
(

ρ(m)

ρ( f ) η
(m) +η

( f )

)− 1
2

(29)

where

η
(m) =

(
2

h
R

+
(

h
R

)2
)((

1+
h
R

)2
)−1

, η
( f ) =

(
1+

h
R

)−2

. (30)

Moreover, in the first mode the wave propagation velocity approach also to the
Rayleigh wave velocity for the external hollow cylinder material (denote it by c(m)

R );
i.e.

c(m)
R

c( f )
2

=

√√√√C(m)
10

C( f )
10

ρ( f )

ρ(m) (1− x2
∗) (31)

where x∗ ≈ 0.2916.

It follows from the graphs given in Fig. 7 that as a result of accounting for the
wave reflection from the free surface of the external hollow cylinder, the parts of
the dispersion curves which correspond to the anomalous dispersion observed for
the case h/R = ∞ disappear. Also Fig. 7 shows that the wave propagation veloc-
ity in the considered modes decrease with h/R. This decreasing can be explained
with the increasing of the volumetric concentration (i.e. of the η(m)) of the ex-
ternal hollow cylinder material in the compound cylinder with h/R and with the
assumption c(m)

2 /c( f )
2 < 1. In other words, the increasing of the surround cylinder

material the wave propagation velocity for which is less than that in the inner cylin-
der material, the wave propagation velocity in the compound cylinder decreases.
At the same time, the graphs given in Fig. 7 show that for fixed kR the values
of c/c( f )

2 approach to the certain limit value of c/c( f )
2 as h/R increases. However

this asymptotic value does not coincide with corresponding value of the c/c( f )
2 ob-

tained for the case where h/R = ∞. This statement is characteristic for dynamical
problems and is explained with neglecting the wave reflection from the external
surface surrounding the body in the direction which is perpendicular to the wave
propagation velocity.

Consider the numerical results illustrating the influence of the initial stretching of
the components of the compound cylinder on the wave propagation velocity. These
results for the first mode are shown in Fig. 8 under h/R = 0.1 (Fig. 8, a and Fig. 8,
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Figure 3: Dispersion diagrams constructed for the case where ρ(m)/ρ( f ) = 0.7 un-
der h/R = ∞ for the first three modes.
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20 Copyright © 2010 Tech Science Press CMES, vol.55, no.1, pp.1-31, 2010

 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 5: The influence of the pre-stretching of the surrounding infinite body on the wave 
dispersion curves in the case where  h R=∞ . 
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Figure 5: The influence of the pre-stretching of the surrounding infinite body on
the wave dispersion curves in the case where h/R = ∞.
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 Figure 6: The influence of the simultaneous pre-stretching of the solid cylinder and 
surrounding infinite body on the dispersion curves in the case where  h R=∞ . 
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surrounding infinite body on the dispersion curves in the case where h/R = ∞.
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Figure 7: Dispersion curves for the compound cylinder constructed for various h R : 

(a) mode 1; (b) mode 2; (c) mode 3. 
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Figure 7: Dispersion curves for the compound cylinder constructed for various h/R:
(a) mode 1; (b) mode 2; (c) mode 3.

b), 0.5 (Fig. 8,c), 1.0 (Fig. 8,d), 3.0 (Fig. 8, e), 5.0 (Fig. 8, f) and 7.0 (Fig. 8, g). It
follows from these graphs that in all considered cases the initial stretching causes
the wave propagation velocity for all considered values of kR to increase. In these
cases the influence of the λ (m)(λ ( f ))on the values of c/c( f )

2 , predictably, increases
(decreases) with h/R. At the same time, the values of c/c( f )

2 have a limit as kR→ 0
which can be taken as the bar velocity of the pre-strained compound cylinder. This
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Figure 8: The influence of the pre-stretching of the components of the compound cylinder on the wave 
dispersion curves in the mode 1 : (a) 0.1h R= , ( ) 1.0f

λ = ; (b) 0.1h R=  for the cases where ( ) 1.0m
λ =  and 

( ) ( ) 1.0f m
λ λ= > ; (c) 0.5h R= ; (d) 1.0h R= ; (e) 3.0h R= ; (f) 5.0h R= ; (g) 7.0h R= . 
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Figure 8: The influence of the pre-stretching of the components of the compound
cylinder on the wave dispersion curves in the mode 1 : (a) h/R = 0.1, λ ( f ) = 1.0;
(b) h/R = 0.1 for the cases where λ (m) = 1.0 and λ ( f ) = λ (m) > 1.0; (c) h/R = 0.5;
(d) h/R = 1.0; (e) h/R = 3.0; (f) h/R = 5.0; (g) h/R = 7.0.

bar velocity is determined by the following expression:

cb

c( f )
2

=

(
C(m)

10

C( f )
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η
(m)
((

λ
(m)
)2

+
2

λ (m)

)
+
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Figure 9-(a) 
 
 

Figure 9: The influence of the pre-stretching of the components of the compound cylinder on the wave 
dispersion curves under 3.0h R= : (a) mode 2; (b) mode 3. 
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Figure 9: The influence of the pre-stretching of the components of the compound
cylinder on the wave dispersion curves under h/R = 3.0: (a) mode 2; (b) mode 3.

 
      (a)                                                        (b) 
 
 

0.00 1.00 2.00 3.00 4.00 5.00 6.00

0.00

2.00

4.00

6.00
Ψ

kR

Mode 1. λ = λ(f) = λ(m) > 1.0

λ = 1.20

λ = 1.90

λ = 1.50

12

3

45

→1 h / R = 0.5

→2 h / R = 1.0

→3 h / R = 3.0
→4 h / R = 5.0
→5 h / R = 7.0

1
2

3

45

1
2

3

45

0.00 1.00 2.00 3.00 4.00 5.00 6.00

0.00

2.00

4.00

6.00

8.00

10.00
Ψ

kR

Mode 2.
λ = λ(m) = λ(f) > 1.0

λ = 1.90

λ= 1.50

λ = 1.20

→1 h / R = 0.5
→2 h / R = 1.0
→3 h / R = 3.0
→4 h / R = 5.0
→5 h / R = 7.0

1
2

34
5

1
2

3

4
5

1

2345

Figure 10: The graphs of the dependencies between Ψ (34) and kR attained for
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η
( f )
((

λ
( f )
)2

+
2

λ ( f )

)) 1
2
(

ρ(m)

ρ( f ) η
(m) +η

( f )

)− 1
2

(32)

Note that this expression is obtained by the following manner. First from the equa-
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tion α11α22 −α12α21 = 0 (which is a dispersion relation of the axisymmetric lon-
gitudinal wave propagation in the solid cylinder we determine the asymptotic root

as kR→ ∞. This root is determined to be c =
√

C( f )
10

((
λ ( f )

)2 +
(
λ ( f )

)−1
)
/ρ( f ).

Taking the expression C( f )
10

((
λ ( f )

)2
+
(
λ ( f )

)−1
)

as a “modulus of elasticity’’ for
the pre-stretched cylinder, we determine the effective (normalized) “modulus of
elasticity” for the compound cylinder by the use of the well-known expression[
C( f )

10

((
λ ( f )

)2
+
(
λ ( f )

)−1
)

η( f )+ C(m)
10

((
λ (m)

)2
+
(
λ (m)

)−1
)

η(m)
]
. Dividing this

expression into the averaged density
(
ρ( f )η( f ) +ρ(m)η(m)

)
, we determine the ex-

pression (32) which coincide with the expression (29) under λ ( f ) = λ (m) = 1.0.

Moreover, it follows from the results given in Fig. 8 that under kR→ ∞ the wave
propagation velocity in the first mode approach to the Rayleigh wave propagation
velocity of the pre-strained external hollow cylinder material. According to Guz
(2004), this velocity for the considered case can be expressed by the expression

c(m)
R

c( f )
2

= λ
(m)

√√√√C(m)
10

C( f )
10

ρ( f )

ρ(m) (1− x2
∗
(
λ (m)

)−4), (33)

which coincides with (31) for λ (m) = 1.0.

Thus we can explain the character of the graphs given in Fig. 8. The numerical
results which are not given here show that in the higher order modes of the consid-
ered wave propagation, the initial stretching of the components of the compound
cylinder also causes the wave propagation velocity to increase. This concluding is
also confirmed with the graphs illustrated in Fig. 9. Note that these graphs show the
dependencies between c/c( f )

2 and kRfor the modes 2 (Fig. 9,a) and 3 (Fig. 9,b) for
the various λ = λ (m) = λ ( f ) > 1.0 under h/R = 3.0. For a more clear illustration
of the previously discussed influence in Fig. 10, the graphs of the dependencies
between

ψ =

(
c

c( f )
2

∣∣∣∣∣
λ (m)=λ ( f )>1.0

− c

c( f )
2

∣∣∣∣∣
λ (m)=λ ( f )=1.0

)
×10 (34)

and kR are given for the first (a) and second (b) modes. It follows from these
graphs that the influence of the initial stretching on the compound cylinder depends
significantly on the values of the propagating wavelength (i.e. kR) and on the values
of the thickness of the external hollow cylinder (i.e. h/R).



26 Copyright © 2010 Tech Science Press CMES, vol.55, no.1, pp.1-31, 2010

5 Conclusions

In the present paper, within the scope of the piecewise homogeneous body model
with the use of the TLTEWISB, the axisymmetric longitudinal wave propagation in
a finite pre-strained compound (composite) cylinder is investigated. The materials
of the inner and outer cylinder are assumed to be incompressible neo-Hookean
ones. The numerical results regarding the influence of the initial strains in the
inner and outer cylinders on the wave dispersion, i.e. the dependencies between
c/c( f )

2 and kR, where c( f )
2 is a distortion wave velocity in the inner solid cylinder

material, have been presented and discussed. These results are obtained for the
case where the material of the inner solid cylinder is more stiffer than that of the
outer hollow cylinder; i.e. it is assumed that C( f )

10 /C(m)
10 = 5, where C( f )

10 (C(m)
10 ) is

a material constant of the inner (outer) cylinder which characterizes its stiffer. At
the same time, these results are obtained for the following two cases (distinguished
with each other by the thickness of the external hollow cylinder): Case 1. The
thickness is infinite (i.e. h/R = ∞). Case 2. The thickness is finite (i.e. h/R < ∞).

According to the obtained numerical results, it can be drown the following conclu-
sions for the Case 1.

• There exist the values s1 < s2 < ... < sn < ... < sN of s (= c/c( f )
2 ) around of

which the narrow stop band zones arise (Figs. 2 and 3);

• The part of the dispersion curves for which s < sN corresponds to normal
dispersion, however, those parts which are similar to the part for which s ∈
(sN ,sN−1) (s ∈ (sN−1,sN−2)) correspond to an anomalous dispersion (back-
ward wave);

• The values of (kR)∗ (determined by expression (28)) and sN depends signif-
icantly on the initial strain of the solid cylinder; i.e. the values of (kR)∗ (sN)
decrease (increase) with λ ( f );

• For kR < (kR)∗N (where (kR)∗Ncorresponds to minsN ; minsN is the sN attained
for λ ( f ) = 1.0) and kR > min(kR)∗ (for the parts which correspond to the
normal dispersion) the wave propagation velocity increases with the initial
stretching of the solid cylinder;

• The wave propagation velocity decrease (increase) with λ (m) under kR <
(kR)N (kR > (kR)∗for the normal dispersion parts).

• The concrete numerical results attained in the Case 2 can be summered as
follows.
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• The stop band zones in the dispersion curves observed in the Case 1 disap-
pear for cases where h/R < ∞. Consequently, the arising of the aforemen-
tioned stop band zones for the considered problem can be explained with the
neglecting of the wave reflection from the outer free surface of the external
cylinder;

• The pre-stretching of the components of the compound cylinder causes to
increase of the wave propagation velocity in all considered modes;

• In the first mode the wave velocity approach to the corresponding bar velocity
determined by the expression (32) as kR→ 0;

• The wave propagation velocity in the first mode approach to the Rayleigh
wave propagation velocity in outer cylinder material determined by the ex-
pression (33) as kR→ ∞;

• The character of the influence of the initial stretching on the wave propaga-
tion velocity significantly depends on the values of kRand h/R. This charac-
ter is illustrated by the graphs given in Fig. 10.

Although these results were obtained for a concrete s elected value of the problem
parameter C( f )

10 /C(m
10 , they also have a general validity in a qualitative sense for se-

lected type of pairs of materials. At the same time, these results are also new ones
for the classical linear theory of elastodynamics under absent of initial strains in the
components of the compound cylinder. The results have many fields of application
in the theoretical and practical sense. For example, the present results can be ap-
plied under nondestructive analyses of the residual stress-strain state in compound
cylinders. Moreover, note that the obtained numerical results can be also applied to
nano-composite materials by taking into consideration the restrictions described in
papers Guz and Guz (2006), Guz, Roger and Guz (2005).
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