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Large Deformation Analyses of Space-Frame Structures,
Using Explicit Tangent Stiffness Matrices, Based on the
Reissner variational principle and a von Karman Type

Nonlinear Theory in Rotated Reference Frames

Yongchang Cai1,2, J.K. Paik3 and Satya N. Atluri3

Abstract: This paper presents a simple finite element method, based on assumed
moments and rotations, for geometrically nonlinear large rotation analyses of space
frames consisting of members of arbitrary cross-section. A von Karman type non-
linear theory of deformation is employed in the updated Lagrangian co-rotational
reference frame of each beam element, to account for bending, stretching, and tor-
sion of each element. The Reissner variational principle is used in the updated
Lagrangian co-rotational reference frame, to derive an explicit expression for the
(12x12) symmetric tangent stiffness matrix of the beam element in the co-rotational
reference frame. The explicit expression for the finite rotation of the axes of the co-
rotational reference frame, from the global Cartesian reference frame is derived
from the finite displacement vectors of the 2 nodes of each finite element. Thus,
the explicit expressions for the tangent stiffness matrix of each finite element of the
beam, in the global Cartesian frame, can be seen to be derived as text-book exam-
ples of nonlinear analyses. When compared to the primal (displacement) approach
wherein C1 continuous trial functions (for transverse displacements) over each el-
ement are neccessary, in the current approch the trial functions for the transverse
bending moments and rotations are very simple, and can be assumed to be linear
within each element. The present (12×12) symmetric tangent stiffness matrices of
the beam, based on the Reissner variational principle and the von Karman type sim-
plified rod theory, are much simpler than those of many others in the literature. The
present approach does not involve such numerical procedures as selective reduced
integration or suppression of attendant Kinematic modes. The present methodolo-
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gies can be extended to study the very large deformations of plates and shells as
well. Metal plasticity may also be included, through the method of plastic hinges,
etc. This paper is a tribute to the collective genius of Theodore von Karman (1881-
1963) and Eric Reissner (1913-1996).

Keywords: Large deformation, Unsymmetrical cross-section, Explicit tangent
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1 Introduction

In the past decades, large deformation analyses of space frames have attracted much
attention due to their significance in diverse engineering applications. Many differ-
ent methods were developed by numerous researchers for the geometrically non-
linear analyses of 3D frame structures. Bathe and Bolourchi (1979) employed the
total Lagrangian and updated Lagrangian approaches to formulate fully nonlinear
3D continuum beam elements. Punch and Atluri (1984) examined the performance
of linear and quadratic Serendipity hybrid-stress 2D and 3D beam elements. Based
on geometric considerations, Lo (1992) developed a general 3D nonlinear beam
element, which can remove the restriction of small nodal rotations between two
successive load increments. Kondoh, Tanaka and Atluri (1986), Kondoh and Atluri
(1987), Shi and Atluri(1988) presented the derivations of explicit expressions of
the tangent stiffness matrix, without employing either numerical or symbolic inte-
gration. Zhou and Chan (2004a, 2004b) developed a precise element capable of
modeling elastoplastic buckling of a column by using a single element per mem-
ber for large deflection analysis. Izzuddin (2001) clarified some of the conceptual
issues which are related to the geometrically nonlinear analysis of 3D framed struc-
tures. Simo (1985), Mata, Oller and Barbat (2007, 2008), Auricchio, Carotenuto
and Reali (2008) considered the nonlinear constitutive behavior in the geometri-
cally nonlinear formulation for beams. Iura and Atluri (1988), Chan (1994), Xue
and Meek (2001), Wu, Tsai and Lee(2009) studied the nonlinear dynamic response
of the 3D frames. Lee, Lin, Lee, Lu and Liu (2008), Lee, Lu, Liu and Huang (2008),
Lee and Wu (2009) gave the exact large deflection solutions of the beams for some
special cases. Gendy and Saleeb (1992); Atluri, Iura, and Vasudevan(2001) had
brief discussions of arbitrary cross sections. Dinis, Jorge and Belinha (2009), Han,
Rajendran and Atluri (2005), Lee and Chen (2009), Rabczuk and Areias (2006),
Shaw and Roy (2007), Wen and Hon (2007) applied meshless methods to the anal-
yses of nonlinear problems with large deformations or rotations. Large rotations in
beams, plates and shells, and attendant variational principles involving the rotation
tensor as a direct variable, were studied extensively by Atluri and his co-workers
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(see, for instance, Atluri 1980, Atluri 1984, and Atluri and Cazzani 1994).

This paper presents a simple finite element method, based on assumed moments
and rotations, for geometrically nonlinear large rotation analyses of space frames
consisting of members of arbitrary cross-section. A von Karman type nonlinear
theory of deformation is employed in the updated Lagrangian co-rotational refer-
ence frame of each beam element, to account for bending, stretching, and torsion
of each element. The Reissner variational principle (1953) [see also Atluri and
Reissner (1989)] is used in the updated Lagrangian co-rotational reference frame,
to derive an explicit expression for the (12x12) symmetric tangent stiffness matrix
of the beam element in the co-rotational reference frame. The explicit expression
for the finite rotation of the axes of the co-rotational reference frame, from the
global Cartesian reference frame is derived from the finite displacement vectors of
the 2 nodes of each finite element. Thus, the explicit expressions for the tangent
stiffness matrix of each finite element of the beam, in the global Cartesian frame,
can be seen to be derived as text-book examples of nonlinear analyses. When com-
pared to the primal (displacement) approach wherein C1 continuous trial functions
(for transverse displacements) over each element are necessary, in the current ap-
proach the trial functions for the transverse bending moments and rotations are
very simple, and can be assumed to be linear within each element. The present
(12×12) symmetric tangent stiffness matrices of the beam, based on the Reissner
variational principle and the von Karman type simplified rod theory, are much sim-
pler than those of many others in the literature, such as, Simo (1985), Bathe and
Bolourchi (1979), Kondon, Tanaka and Atluri (1986), Kondoh and Atluri (1987),
and Shi and Atluri (1988). The present approach does not involve such numerical
procedures as selective reduced integration or suppression of attendant Kinematic
modes. The present methodologies can be extended to study the very large de-
formations of plates and shells as well. Metal plasticity may also be included,
through the method of plastic hinges, etc. Furthermore, Unlike in the formulations
of Simo(1985), Crisfield (1990) [and many others who followed them], which lead
to the currently popular myth that the stiffness matrices of finitely rotated structural
members should be unsymmetric, the (12x12) stiffness matrix of the beam element
in the present paper is enormously simple, and remains symmetric throughout the
finite rotational deformation. This paper is a tribute to the collective genius of
Theodore von Karman (1881-1963) and Eric Reissner (1913-1996).

2 Von-Karman type nonlinear theory for a rod with large deformations

We consider a fixed global reference frame with axes x̄i (i = 1,2,3) and base vectors
ēi. An initially straight rod of an arbitrary cross-section and base vectors ẽi, in
its undeformed state, with local coordinates x̃i (i = 1,2,3), is located arbitrarily in
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space, as shown in Fig.1. The current configuration of the rod, after arbitrarily large
deformations (but small strains) is also shown in Fig.1.

The local coordinates in the reference frame in the current configuration are xi and
the base vectors are ei (i = 1,2,3). The nodes 1 and 2 of the rod (or an element of
the rod) are supposed to undergo arbitrarily large displacements, and the rotations
between the ẽi (i = 1,2,3) and the ek (k = 1,2,3) base vectors are assumed to be
arbitrarily finite. In the continuing deformation from the current configuration, the
local displacements in the xi (ei) coordinate system are assumed to be moderate,
and the local gradient (∂u10/∂x1) is assumed to be small compared to the transverse
rotations (∂uα0/∂x1)(α = 2,3). Thus, in essence, a von-Karman type deformation
is assumed for the continued deformation from the current configuration, in the co-
rotational frame of reference ei (i = 1,2,3) in the local coordinates xi (i = 1,2,3).
If H is the characteristic dimension of the cross-section of the rod, the precise
assumptions governing the continued deformations from the current configuration
are
u10

H
� 1;

H
L
� 1

uα0

H
≈ O(1)(α = 2,3)

∂u10

∂x1
� ∂uα0

∂x1
(α = 2,3)

and
(

∂uα0
∂x1

)2
(α = 2,3) are not negligible.

As shown in Fig.2, we consider the large deformations of a cylindrical rod, sub-
jected to bending (in two directions), and torsion around x1. The cross-section is
unsymmetrical around x2 and x3 axes, and is constant along x1.

As shown in Fig.2, the warping displacement due to the torque T around x1 axis is
u1T (x2,x3) and does not depend on x1, the axial displacement at the origin (x2 =
x3 = 0) is u10 (x1), and the bending displacement at x2 = x3 = 0 along the axis x1
are u20 (x1) (along x2) and u30 (x1) (along x3).

We consider only loading situations when the generally 3-dimensional displace-
ment state in the ei system, donated as

ui = ui (xk) i = 1,2,3; k = 1,2,3

is simplified to be of the type:

u1 = u1T (x2,x3)+u10 (x1)− x2
∂u20

∂x1
− x3

∂u30

∂x1

u2 = u20 (x1)− θ̂x3

u3 = u30 (x1)+ θ̂x2

(1)
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where θ̂ is the total torsion of the rod at x1 due to the torque T .

2.1 Strain-displacement relations

Considering only von Karman type nonlinearities in the rotated reference frame
ei (xi), we can write the Green-Lagrange strain-displacement relations in the up-
dated Lagrangian co-rotational frame ei in Fig.1 as:

x3, e3

1

2
2
10u

2
20u

2
30u

2θ̂

2
20θ

2
30θ

11, ex

Von Karman nonlinear strains in 
rotated reference frame ei

1
2

11
~,~ ex

Undeformed element

Initial configuration

Current configuration

10u

30u
20u

x2, e2

x1, e1

22
~,~ ex33

~,~ ex

22 , ex
33 , ex

L

l

u1

u2

 
Figure 1: Kinematics of deformation of a space framed member
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Figure 2: Large deformation analysis model of a cylindrical rod
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where θ = dθ̂/dx1.

By letting

χ22 =−u20,11

χ33 =−u30,11

ε
0
11 = u10,1 +

1
2

(u20,1)
2 +

1
2

(u30,1)
2 = ε

0L
11 + ε

0NL
11

(3)

the strain-displacement relations can be rewritten as

ε11 = ε
0
11 + x2χ22 + x3χ33

ε12 =
1
2

(u1T,2−θx3)

ε13 =
1
2

(u1T,3 +θx2)

ε22 = ε33 = ε23 = 0

(4)

where , i denotes a differentiation with respect to xi.

The matrix form of the Eq.(4) is

εεε = εεε
L +εεε

N (5)

where

εεε
L =


εL

11
εL

12
εL

13

=


u10,1 + x2χ22 + x3χ33

1
2 (u1T,2−θx3)
1
2 (u1T,3 +θx2)

 (6)

εεε
N =


εN

11
εN

12
εN

13

=


1
2 (u20,1)

2 + 1
2 (u30,1)

2

0
0

 (7)

2.2 Stress-Strain relations

Taking the material to be linear elastic, we assume that the additional second Piola-
Kirchhoff stress, denoted by tensor S1 in the updated Lagrangian co-rotational ref-
erence frame ei of Fig.1 (in addition to the pre-existing Cauchy stress due to prior
deformation, denoted by τττ0), is given by:

S1
11 = Eε11

S1
12 = 2µε12

S1
13 = 2µε13

S1
22 = S1

33 = S1
23 ≈ 0

(8)
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where µ = E
2(1+ν) ; E is the elastic modulus; ν is the Poisson ratio.

By using Eq.(5), Eq.(8) can also be written as

S1 = D̃
(
εεε

L +εεε
N)= S1L +S1N (9)

where

D̃ =

E 0 0
0 2µ 0
0 0 2µ

 (10)

From Eq.(4) and Eq.(8), the generalized nodal forces of the rod element in Fig.2
can be written as

N11 =
∫

A
S1

11dA = E
(

Aε
0
11 + χ22

∫
A

x2dA+ χ33

∫
A

x3dA
)

= E
(
Aε

0
11 + I2χ22 + I3χ33

)
M33 =

∫
A

S1
11x3dA = E

∫
A

(
Aε

0
11 + x2χ22 + x3χ33

)
x3dA

= E
(
I3ε

0
11 + I23χ22 + I33χ33

)
M22 =

∫
A

S1
11x2dA = E

∫
A

(
Aε

0
11 + x2χ22 + x3χ33

)
x2dA

= E
(
I2ε

0
11 + I22χ22 + I23χ33

)
T =

∫
A

S1
13x2−S1

12x3dA = 2µ

∫
A
(x2ε13 + x3ε12)x2dA

=
2µ

2

∫
A
[(u1T,3 +θ x2)x2− (u1T,2−θx3)]dA

= µ

∫
A

θ
(
x2

2 + x2
3
)

dA+ µ

∫
A
(u1T,3x2−u1T,2x3)dA

= µIrrθ + µ

∮
S
(u1T n3x2−u1T n2x3)dS

= µIrrθ

(11)

where n j is the outward norm, I2 =
∫

A x2dA, I3 =
∫

A x3dA, I22 =
∫

A x2
2dA, I33 =∫

A x2
3dA, I23 =

∫
A x2x3dA, and Irr =

∫
A

(
x2

2 + x2
3
)

dA.

The matrix form of the above equations is
σ1
σ2
σ3
σ4

=


N11
M22
M33
T

=


EA EI2 EI3 0
EI2 EI22 EI23 0
EI3 EI23 EI33 0
0 0 0 µIrr




ε0
11

χ22
χ33
θ

 (12)
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It can be denoted as

σσσ = DE (13)

where

σσσ =


σ1
σ2
σ3
σ4

=


N11
M22
M33
T

= element generalized stresses (14)

D =


EA EI2 EI3 0
EI2 EI22 EI23 0
EI3 EI23 EI33 0
0 0 0 µIrr

 (15)

E = EL +EN =


E1
E2
E3
E4

=


ε0

11
χ22
χ33
θ

= element generalized strains (16)

where

EL =
[
u10,1 −u20,11 −u30,11 θ̂,1

]T
(17)

EN =
[

1
2

(
u2

20,1 +u2
30,1

)
0 0 0

]T
(18)

3 Updated Lagrangian formulation in the co-rotational reference frame ei

3.1 The use of the Reissner variational principle in the co-rotational updated
Lagrangian reference frame

If τ0
i j are the initial Cauchy stresses in the updated Lagrangian co-rotational frame

ei of Fig.1, S1
i j are the additional (incremental) second Piola-Kirchhoff stresses in

the same updated Lagrangian co-rotational frame with axes ei, Si j = S1
i j +τ0

i j are the
total stresses, and ui are the incremental displacements in the co-rotational updated-
Lagrangian reference frame, the functional of the Reissner variational principle
(Reissner 1953) [see also Atluri and Reissner (1989)] for the incremental S1

i j and ui

in the co-rotational updated Lagrangian reference frame is given by [Atluri 1979,
1980]

ΠR =
∫
V

{
−B
(
S1

i j
)
+

1
2

τ
0
i juk,iuk, j +

1
2

Si j (ui, j +u j,i)−ρbiui

}
dV −

∫
Sσ

T̄iuidS (19)
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Where V is the volume in the current co-rotational reference state, Sσ is the surface
where tractions are prescribed, bi = b0

i +b1
i are the body forces per unit volume in

the current reference state, and T̄i = T̄ 0
i + T̄ 1

i are the given boundary tractions.

The conditions of stationarity of ΠR, with respect to variations δS1
i j and δui lead

to the following incremental equations in the co-rotational updated- Lagrangian
reference frame.

∂B
∂S1

i j
=

1
2

[ui, j +u j,i] (20)

[
S1

i j + τ
0
iku j,k

]
, j

+ρb1
i =−

(
τ

0
i j
)
, j
−ρb0

i (21)

n j
[
S1

i j + τ
0
iku j,k

]−
T̄ 1

i =−n jτ
0
i j + T̄ 0

i at Sσ (22)

In Eq.(19), the displacement boundary conditions,

ui = ūi at Su (23)

are assumed to be satisfied a priori, at the external boundary, Su. Eq.(21) leads to
equilibrium correction iterations.

If the variational principle embodied in Eq.(19) is applied to a group of finite ele-
ments, Vm, m = 1,2, · · · ,N, which comprise the volume V , ie, V = ∑Vm, then

ΠR =

∑
m

∫
Vm

{
−B
(
S1

i j
)
+

1
2

τ
0
i juk, juk, j +

1
2

Si j (ui, j +u j,i)−ρbiui

}
dV −

∫
Sσm

TiuidS


(24)

Let ∂Vm be the boundary of Vm, and ρm be the part of ∂Vm which is shared by the
element with its neighbouring elements. If the trial function ui and the test function
∂ui in each Vm are such that the inter-element continuity condition,

u+
i = u−i at ρm (25)

(where + and – refer to either side of the boundary ρm) is satisfied a priori, then it
can be shown (Atluri 1975,1984; Atluri and Murakawa 1977; Atluri, Gallagher and
Zienkiewicz 1983) that the conditions of stationarity of ΠR in Eq.(24) lead to:

∂B
∂S1

i j
=

1
2
[
ui, j +u j,i

]
in Vm (26)
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[
S1

i j + τ
0
iku j,k

]
, j

+ρb1
i =−τ

0
i j, j−ρb0

i in Vm (27)

[
ni
(
S1

i j + τ
0
iku j,k

)]+
+
[
ni
(
S1

i j + τ
0
iku j,k

)]−
=−

[
niτ

0
i j
]+− [niτ

0
i j
]−

at ρm (28)

n j
[
S1

i j + τ
0
iku j,k

]
− T̄ 1

i =−n jτ
0
i j + T̄ 0

i at Sσm (29)

Eq.(28) is the condition of traction reciprocity at the inter-element boundary, ρm.
Eqs(27) and (28) lead to corrective iterations for equilibrium within each element,
and traction reciprocity at the inter-element boundaries, respectively.

Carrying out the integration over the cross sectional area of each rod, and using
Eqs.(4) and (12), Eq.(24) can be easily shown to reduce to:

ΠR = ∑
elem


∫
l

(
−1

2
σσσ

T D−1
σσσ

)
dl +

∫
l

N0
11

1
2
(
u2

20,1 +u2
30,1
)

dl

+
∫
l

(
N̂11ε

0L
11 + M̂22χ22 + M̂33χ33 + T̂ θ

)
dl− Q̄q


(30)

where D is given in Eq.(15), C = D−1, l is the length of the rod element, σσσ is given
in Eq.(14), σ0

i j =
[
N0

11 M0
22 M0

33 T 0
]T is the initial element-generalized- stress

in the corotational reference coordinates ei, and σ̂σσ =σσσ0 +σσσ =
[
N̂11 M̂22 M̂33 T̂

]T
is the total element generalized stresses in the corotational reference coordinates ei.
Q̄ is the nodal external generalized force vector (consisting of force as well as
moments) in the global Cartesian reference frame, and q is the incremental nodal
generalized displacement vector (consisting of displacements as well as rotations)
in the global Cartesian reference frame. It should be noted that while ΠR in Eq.(30)
represents a sum over the elements, the relevant integrals are evaluated over each
element in it’s own co-rotational updated Lagrangian reference frame.
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By integrating by parts, the second item of the left side can be written as

∫
l

N̂11ε
0L
11 dl =

∫
l

N̂11u10,1dl =−
∫
l

N̂11,1u10dl + N̂11u10
∣∣l
0∫

l

M̂22χ22dl =−
∫
l

M̂22u20,11dl

=−
∫
l

M̂22,11u20dl + M̂22,1u20
∣∣l
0− M̂22u20,1

∣∣l
0∫

l

M̂33χ33dl =−
∫
l

M̂33u30,11dl

=−
∫
l

M̂33,11u30dl + M̂33,1u30
∣∣l
0− M̂33u30,1

∣∣l
0∫

l

T̂ θdl =
∫
l

T̂ θ̂,1dl =−
∫
l

T̂,1θ̂dl + T̂ θ̂
∣∣l
0

(31)

The condition of stationarity of ΠR in Eq.(30) leads to:

D−1
σ = E =

[
u10,1 −u20,11 −u30,11 θ

]T
N̂11,1 = 0 in each element

T̂,1 = 0 in each element

M̂22,11 +
(
N0

11u20,1
)
,1 = 0 in each element

M̂33,11 +
(
N0

11u30,1
)
,1 = 0 in each element

(32)

and the nodal equilibrium equations, which arise out of the term:

∑
elem

(
N̂11δu10

∣∣l
0 + M̂22,1δu20

∣∣l
0 − M̂22δu20,1

∣∣l
0 + M̂33,1δu30

∣∣l
0 − M̂33δu30,1

∣∣l
0 +

T̂ δ θ̂
∣∣l
0 +
(
N0

11u20,1
)

δ u20|l0 +
(
N0

11u30,1
)

δ u30|l0− Q̄δq
)

= 0

(33)
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3.2 Trial functions of the stresses and displacements in each element

We assume the trial functions for N11, M22, M33 and T , in each element, as

N11 = n

M22 =−m3 =−
(

1− x1

l

)
1m3−

x1

l
2m3

M33 = m2 =
(

1− x1

l

)
1m2 +

x1

l
2m2

T = m1

(34)

The matrix form of the above equation is

σσσ = Pβββ (35)

where

P =


1 0 0 0 0 0
0 −1+ x1

l − x1
l 0 0 0

0 0 0 1− x1
l

x1
l 0

0 0 0 0 0 1

 (36)

βββ =
[
n 1m3

2m3
1m2

2m2 m1
]T (37)

In a same way, the initial stress σσσ0 can be expressed as

σσσ
0 = Pβββ

0 (38)

where

βββ
0 =

[
n0 1m0

3
2m0

3
1m0

2
2m0

2 m0
1

]T (39)

The incremental internal nodal force vector βββ n of node 1 and node 2 of a rod

βββ n =
[

1N 1m1
1m2

1m3
2N 2m1

2m2
2m3
]T

can be expressed as

βββ n = Rnβββ (40)
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where

Rn =



1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 1 0 0 0


(41)

In the functional in Eq.(30), only the squares of (u20,1) and (u30,1) occur within
each element. Thus, (u20,1) and (u30,1) are assumed directly to be linear within
each element, in terms of their respective nodal values. This will be enormously
simple and advantageous in the case of plate and shell elements. This is in contrast
to the primal (displacement) approach (Cai, Paik and Atluri 2010) wherein u20 and
u30 were required to be C1 continuous over each element, and thus were assumed to
be Herimitian polynomials over each element. In this paper, however, we assume:

uθ = Nθ aθ =
[

φ1 0 φ2 0
0 φ1 0 φ2

]
1θ20
1θ30
2θ20
2θ30

 (42)

where
φ1 = 1−ξ

φ2 = ξ

(
ξ =

x1

l

)
(43)

Assuming that ‘a’ represents the vector of generalized displacements of the nodes
of the rod element in the updated Lagrangian co-rotational frame ei of Fig.1, the
displacement vectors of node i are:
ia =

[
iu1

iu2
iu3

iu4
iu5

iu6
]T

=
[

iu10
iu20

iu30
iθ̂ iθ20

iθ30
]T (i = 1,2)

(44)

The relation between aθ and a can be expressed as

aθ = Tθ a (45)

where

Tθ =


0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

 (46)
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3.3 Explicit expressions of the tangent stiffness matrix for each element

Because of the assumption of the trial functions of the stresses in Eqs.(35), the
following items in Eq.(31) become∫
l

N̂11,1u10dl = 0

∫
l

M̂22,11u20dl = 0

∫
l

M̂33,11u30dl = 0

∫
l

T̂,1θ̂dl = 0

(47)

Eq.(30) can be rewritten as

ΠR =−ΠR1 +ΠR2 +ΠR3−ΠR4 (48)

where

ΠR1 = ∑
elem

∫
l

(
1
2

σσσ
T D−1

σσσ

)
dl = ∑

elem

∫
l

(
1
2

βββ
T PT CPβββ

)
dl (49)

ΠR2 = ∑
elem

{
2N2u10− 1N1u10 +

1
l

(1m3− 2m3
)(2u20− 1u20

)
+ 2m3

2
θ30− 1m3

1
θ30

+
1
l

(2m2− 1m2
)(2u30− 1u30

)
+ 2m2

2
θ20− 1m2

1
θ20 + 2m1

2
θ̂ − 1m1

1
θ̂

}
= ∑

elem

{
(βββ n)

T Rσ a
}

= ∑
elem

{
(βββ )T RT

n Rσ a
}

(50)

where

Rσ =



−1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0
0 0 1

l 0 −1 0 0 0 −1
l 0 0 0

0 −1
l 0 0 0 −1 0 1

l 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 −1

l 0 0 0 0 0 1
l 0 1 0

0 1
l 0 0 0 0 0 −1

l 0 0 0 1


(51)
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ΠR3 = ∑
elem

∫
l

N0
11

[
1
2

(u20,1)
2 +

1
2

(u30,1)
2
]

dl = ∑
elem

∫
l

σ
0
1

[
1
2

(θ20)
2 +

1
2

(θ30)
2
]

dl

= ∑
elem

∫
l

σ0
1

2
uT

θ uθ dl = ∑
elem

∫
l

σ0
1

2
aT TT

θ NT
θ Nθ Tθ adl

(52)

Letting Ann = TT
θ

NT
θ

Nθ Tθ , ΠR3 can be rewritten as

ΠR3 = ∑
elem

∫
l

σ0
1

2
aT Annadl (53)

and

ΠR4 = ∑
elem

(
aT F−aT RT

σ Rnβββ
0) (54)

By invoking δΠR = 0, we can obtain

δΠR = ∑
elem

δβββ
T

−
∫
l

PT CPβdl +RT
n Rσ a

+

∑
elem

δaT

RT
σ Rnβββ +σ

0
1

∫
l

Annadl +RT
σ Rnβββ

0−F


(55)

Let

H =
∫
l

PT CPdl, G = RT
n Rσ , KN = σ

0
1

∫
l

Anndl, F0 = GT
βββ

0 (56)

then

δΠR = ∑
elem

δβββ
T {−Hβ +Ga}− ∑

elem
δaT {GT

βββ +KNa−F+F0}= 0 (57)

Since δβββ T in Eq.(53) are independent and arbitrary in each element, one obtains

βββ = H−1Ga (58)

and

∑
elem

δaT {(KL +KN)a−F+F0}= 0 (59)
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where

KL = GTH - 1G (60)

KN = σ
0
1

∫
l

Anndl (61)

The components of the element tangent stiffness matrix, KL and KN , respectively,
can be derived explicitly, after some simple algebra, as follows.

KN =
lσ0

1
6



0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 1 0
2 0 0 0 0 0 1

0 0 0 0 0 0
0 0 0 0 0

sym. 0 0 0 0
0 0 0

2 0
2



(62)

KL =
E
lA

[
KL1 KL12
KT

L12 KL2

]
(63)

where

KL1 =

A2 0 0 0 AI3 −AI2
12(AI22−I2

2)
l2

12(AI23−I2I3)
l2 0 −6(AI23−I2I3)

l
6(AI22−I2

2)
l

12(AI33−I2
3)

l2 0
−6(AI33−I2

3)
l

6(AI23−I2I3)
l

Aµ

E Irr 0 0
symmetric 4AI33−3I2

3 −4AI23 +3I2I3
4AI22−3I2

2


(64)
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KL2 =

A2 0 0 0 AI3 −AI2
12(AI22−I2

2)
l2

12(AI23−I2I3)
l2 0 6(AI23−I2I3)

l
−6(AI22−I2

2)
l

12(AI33−I2
3)

l2 0
6(AI33−I2

3)
l

−6(AI23−I2I3)
l

Aµ

E Irr 0 0
symmetric 4AI33−3I2

3 −4AI23 +3I2I3
4AI22−3I2

2


(65)

KL12 =

−A2 0 0 0 −AI3 AI2

0
−12(AI22−I2

2)
l2

−12(AI23−I2I3)
l2 0 −6(AI23−I2I3)

l
6(AI22−I2

2)
l

0 −12(AI23−I2I3)
l2

−12(AI33−I2
3)

l2 0
−6(AI33−I2

3)
l

6(AI23−I2I3)
l

0 0 0 −Aµ

E Irr 0 0

−AI3
6(AI23−I2I3)

l
6(AI33−I2

3)
l 0 2AI33−3I2

3 −2AI23 +3I2I3

AI2
−6(AI22−I2

2)
l

−6(AI23−I2I3)
l 0 −2AI23 +3I2I3 2AI22−3I2

2


(66)

Thus, KL is the usual linear symmetric (12×12) stiffness matrix of the beam in the
co-rotational reference frame, with the geometric parameters I2, I3, I22, I33, I23 and
Irr, and the current length l.

It is clear from the above procedures, that the present (12×12) symmetric tan-
gent stiffness matrices of the beam in the co-rotational reference frame, based on
the Reissner variational principle and simplified rod theory, are much simpler than
those of Kondon, Tanaka and Atluri (1986), Kondoh and Atluri (1987), and Shi and
Atluri (1988). Moreover, the explicit expressions for the tangent stiffness matrix of
each rod can be seen to be derived as text-book examples of nonlinear analyses.

3.4 Cubic trial functions of the displacements in the beam element, using the
Reissner variational principle

When using the Reissner functional in Eq.(30), one may directly assume the ro-
tation field (u20,1) and (u30,1) as linear functions in terms only of their respective
nodal values, as in Eq.(42). Alternatively, u20 and u30 may be assumed as cubic
polynomials in terms of the four nodal values 1u20, 2u20, 1u20,1, 2u20,1 (1u30, 2u30,
1u30,1, 2u30,1 for u30), and derive the element fields for u20,1 (and u30,1) from these
cubic polynomials [even though the Reissner principle does not demand it]. This
will be particularly advantageous for plate and shell elements which demand C1
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continuity while using the potential energy approach, while C1 continuity of the
displacement field will not be demanded in the Reissner principle.

In general, we assume over each element:

u20 = α1 +α2ξ +α3ξ
2 +α4ξ

3

u30 = γ1 + γ2ξ + γ3ξ
2 + γ4ξ

3 (67)

By letting

u20|ξ=ξ0
= 1u20, u20|ξ=ξ1

= 2u20, u20,1|ξ=ξ0
= 1

θ30, u20,1|ξ=ξ1
= 2

θ30

u30|ξ=ξ0
= 1u30, u30|ξ=ξ1

= 2u30,−u30,1|ξ=ξ0
= 1

θ20,−u30,1|ξ=ξ1
= 2

θ20
(68)

we can approximate the displacement function in each rod element by

uc = Na =
[

1N 2N
]{1a

2a

}
(69)

where

uc =
[
u10 u20 u30 θ̂

]T
(70)

1N =


φ1 0 0 0 0 0
0 N1 0 0 0 N2
0 0 N1 0 −N2 0
0 0 0 φ1 0 0

 (71)

1N =


φ2 0 0 0 0 0
0 N3 0 0 0 N4
0 0 N3 0 −N4 0
0 0 0 φ2 0 0

 (72)

N1 = 1−3ξ
2 +2ξ

3,N3 = 3ξ
2−2ξ

3

N2 =
(
ξ −2ξ

2 +ξ
3) l,N4 =

(
ξ

3−ξ
2) l

(73)

and φ1, φ2 are defined in Eq.(43).

By using the cubic trial functions of Eq.(69) and deriving the equations in a same
way as the section 3.3, we obtain the respective discrete equations, as follows.

∑
elem

δaT {(KL +Kc
N)a−F+F0}= 0 (74)
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where KL,F and F0 are the same as Eq.(59), and the nonlinear stiffness matrix Kc
N

is explicitly expressed as

(12×12 symmetric matrix)

Kc
N =

σ0
1
l



0 0 0 0 0 0 0 0 0 0 0 0
1.2 0 0 0 0.1l 0 −1.2 0 0 0 0.1l

1.2 0 −0.1l 0 0 0 −1.2 0 −0.1l 0
0 0 0 0 0 0 0 0 0

2l2

15 0 0 0 0.1l 0 −l2

30 0
2l2

15 0 −0.1l 0 0 0 −l2

30
0 0 0 0 0 0

1.2 0 0 0 −0.1l
sym. 1.2 0 0.1l 0

0 0 0
2l2

15 0
2l2

15



(75)

4 Transformation between deformation dependent co-rotational local [ei],
and the global [ēi] frames of reference

As shown in Fig.1, x̄i (i = 1,2,3) are the global coordinates with unit basis vectors
ēi. x̃i and ẽi are the local coordinates for the rod element at the undeformed element.
The basis vector ẽi are initially chosen such that (Shi and Atluri 1988, Cai, Paik and
Atluri 2010)

ẽ1 = (∆x̃1ē1 +∆x̃2ē2 +∆x̃3ē3)/L

ẽ2 = (ē3× ẽ1)/|ē3× ẽ1|
ẽ3 = ẽ1× ẽ2

(76)

where ∆x̃i = x̃2
i − x̃1

i ,L =
(
∆x̃2

1 +∆x̃2
2 +∆x̃2

3
) 1

2 .

Then ẽi and ēi have the following relations:
ẽ1
ẽ2
ẽ3

=

 ∆x̃1/L ∆x̃2/L ∆x̃3/L
−∆x̃2/S ∆x̃1/S 0

−∆x̃1∆x̃3/(SL) −∆x̃2∆x̃3/(SL) s/L


ē1
ē2
ē3

 (77)

where S =
(
∆x̃2

1 +∆x̃2
2
) 1

2 .
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Thus we can define a transformation matrix λ̃λλ 0 between ẽi and ēi as

λ̃λλ 0 =

 ∆x̃1/L ∆x̃2/L ∆x̃3/L
−∆x̃2/S ∆x̃1/S 0

−∆x̃1∆x̃3/(SL) −∆x̃2∆x̃3/(SL) S/L

 (78)

When the element is parallel to the x̄3 axis, S =
[
∆x̃2

1 +∆x̃2
2
] 1

2 = 0 and Eq.(64) is
not valid. In this case, the local coordinates is determined by

ẽ1 = ē3, ẽ2 = ē2, ẽ3 =−ē1 (79)

Let xi and ei be the co-rotational reference coordinates for the deformed rod ele-
ment. In order to continuously define the local coordinates of the same rod element
during the whole range of large deformation, the basis vectors ei are chosen such
that

e1 = (∆x1ē1 +∆x2ē2 +∆x3ē3)/l = a1ē1 +a2ē2 +a3ē3

e2 = (ẽ3× e1)/|ẽ3× e1|
e3 = e1× e2

(80)

where ∆xi = x2
i − x1

i , l =
(
∆x2

1 +∆x2
2 +∆x2

3
) 1

2 .

We denote ẽ3 in Eq.(77) as

ẽ3 = c1ē1 + c2ē2 + c3ē3 (81)

Then ei and ēi have the following relations:
e1
e2
e3

=

 a1 a2 a3
b1 b2 b3

a2b3−a3b2 a3b1−a1b3 a1b2−a2b1


ē1
ē2
ē3

= λλλ 0ēi (82)

where

b1 = (c2a3− c3a2)/l31

b2 = (c3a1− c1a3)/l31

b3 = (c1a2− c2a1)/l31

(83)

l31 =
[
(c2a3− c3a2)

2 +(c3a1− c1a3)
2 +(c1a2− c2a1)

2
] 1

2
(84)
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and

λλλ 0 =

 a1 a2 a3
b1 b2 b3

a2b3−a3b2 a3b1−a1b3 a1b2−a2b1

 (85)

Thus, the transformation matrix λλλ , between the 12 generalized coordinates in the
co-rotational reference frame, and the corresponding 12 coordinates in the global
Cartesian reference frame, is given by

λλλ =


λλλ 0

λλλ 0
λλλ 0

λλλ 0

 (86)

Letting xi and ei be the reference coordinates, and repeating the above steps [Eq.(70)
– Eq.(86)], the transformation matrix of each incremental step can be obtained in a
same way.

Then the element matrices are transformed to the global coordinate system using

ā = λλλ
T a (87)

K̄ = λλλ
T Kλλλ (88)

F̄ = λλλ
T F (89)

where ā, K̄, F̄ are respectively the generalized nodal displacements, element tan-
gent stiffness matrix and generalized nodal forces, in the global coordinates system.

The Newton-Raphson method, modified Newton-Rapson method or the artificial
time integration method (Liu 2007a, 2007b; Liu and Atluri 2008) can be employed
to solve Eqs.(59) and (74). In this implementation, the Newton-Raphson algorithm
is used. In all examples, the assumptions of linear trial functions of the rotations
were employed, except where stated otherwise.

5 Numerical examples

5.1 Buckling of a beam

The (12×12) tangent stiffness matrix for a beam in space should be capable of
predicting buckling under compressive axial loads, when such an axial load inter-
acts with the transverse displacement in the beam. We consider a simply supported
beam subject to an axial force as shown in Fig.3 and assume that EI = 1 and L = 1.
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The buckling loads of the beam obtained by the present method using different
numbers of elements are shown in Tab.1. It is seen that the buckling load predicted
by the present method agrees well with the analytical solution (buckling load is
π2).

 

Figure 3: A simply supported beam subject to an axial force

Table 1: Buckling load of the simply supported beam

Present method(Number of elements) Analytical
1 2 3 4 10 solution

Buckling load 12.005 12.005 10.799 10.384 9.950 9.870

When the beam is fixed at x1 = 0, while at the other end it is free and under a
compressive load P, the buckling load of the beam obtained by the present method
using different number of elements is shown in Tab.2 (the analytical solution is
π2EI
4L2 ).

Table 2: Buckling load of the beam fixed at x1 = 0

Present method(Number of elements) Analytical
1 2 3 4 10 solution

Buckling load 3.0003 2.5967 2.5240 2.4994 2.4722 2.4674

5.2 Large deformation analysis of a cantilever beam with a symmetric cross
section

A large deflection and moderate rotation analysis of a cantilever beam subject to a
transverse load at the tip, as shown in Fig. 5, is considered. The cross section of
the beam is a square with h = 1. The Poisson’s ration is ν = 0.3. Fig.5 shows the
results obtained in the analysis of the cantilever problem. It is seen that the present
results using 10 elements agree well with those of Bathe and Bolourchi (1979).
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Figure 4: A cantilever beam subject to a transverse load at the tip

P
L2 / E

I

L/δ
 

Figure 5: Deflections of a cantilever under a concentrated load
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5.3 Large rotations of a cantilever subject to an end-moment and a transverse
load

An initially-straight cantilever subject to an end moment M∗ = ML
2πEI (Crisfield

1990) as shown in Fig.6, is considered. The beam is divided into 10 equal ele-
ments. When M∗ = 1, the beam is curled into a complete circle as shown in Fig.6.

If a non-conservative, follower-type transverse load P∗ = PL2

2πEI is applied at the tip,
instead of M∗, the initial and deformed geometries of the cantilever are shown in
Fig.7.

5.4 Large deformation analysis of a cantilever beam with an asymmetric cross
section

We consider the large deflection of a cantilever beam with an asymmetric cross
section, as shown in Fig.8. The Poisson’s ration is ν = 0.3. The areas of the
symmetric and asymmetric cross section in Fig.8 are all equal to 1.

Fig.9 shows the comparison of the deflections in x3 direction, between the cases
of symmetric and asymmetric cross sections. Fig.10 shows the deflection in x2
direction for the cantilever beam with an asymmetric cross section. However, the
deflections in x2 direction are zero in the case of a symmetric cross section.

5.5 Large displacement analysis of a 45-degree space bend

The large displacement response of a 45-degree bend subject to a concentrated end
load [Bathe and Bolourchi (1979)] is calculated as shown in Fig.11. The radius
of the bend is 100, the cross section area is 1 and lies in the x1− x2 plane. The
concentrated is applied in the x3 direction.

8 equal straight elements and 140 equal load steps are used in the analysis of the
problem. Fig.12 shows the tip deflection predicted by the present method and Bathe
and Bolourchi (1979). It can be seen that the results of the present method agree
excellently with the results of Bathe and Bolourchi (1979).

5.6 A framed dome

A framed dome shown in Fig.13 is considered (Shi and Atluri 1988). A concen-
trated vertical load P is applied at the crown point. Each member of the dome is
modeled by 4 elements.

The linear approaches of the displacements in Eq.(42) are robust for most cases
in the large deformation analysis of the space frames. However, the solution was
found to diverge when λ > 0.59 by using the linear interpolations for rotations
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Figure 6: Initial and deformed geometries for cantilever subject to an end-moment
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Figure 7: Initial and deformed geometries for cantilever subject to a transverse load
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Figure 8: A cantilever beam with an asymmetric cross section

for this example. Thus, the nonlinear stiffness matrix in Eq.(75), which is derived
from cubic trial functions of the displacements, was used, and the converged results
shown in Fig.14 were obtained.

6 Conclusions

Based on the Reissner variational principle and a von Karman type nonlinear theory
in a rotated reference frame, a simplified finite deformation theory of a cylindrical
rod subjected to bending and torsion has been developed. The present (12×12)
symmetric explicit tangent stiffness matrices of the beam are much simpler than
those of many others based on the primal approach or potential energy approach.
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L/δ

 

Figure 9: Comparison of the deflections in x3 direction of a cantilever beam

L
u 2

 

Figure 10: Deflections in x2 direction for the cantilever beam with asymmetric
cross section

The explicit expressions for the tangent stiffness matrix of each element can be
seen to be derived as text-book examples of nonlinear analyses. The proposed
method is capable of handling large rotation geometrically nonlinear analysis of
frames with arbitrary cross sections, which haven’t been considered by a majority
of previous studies. Numerical examples demonstrate that the present method is
just as competitive as the existing methods in terms of accuracy and efficiency.
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Figure 11: Model of a 45-degree circular bend
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Figure 12: Three-dimensional large deformation of a 45-degree circular bend
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Figure 13: Framed dome (the unit of length is metre)

The present method can be extended to consider the formation of plastic hinges in
each beam of the frame; and also to consider large-rotations of plates and shells,
by implementing only a von Karman type nonlinear theory in the co-rotational
reference frame of each beam/plate element. It is noted that the present approach
does not involve any reduced integration, or suppression of Kinematic modes.
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Figure 14: Force-displacement curve for the crown point of a framed dome
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