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Abstract: We present the solvability of a two space dimensional coefficient in-
verse problem for a transport-like equation and investigate the approximate solution
of this problem with the use of centered difference formulas and a symbolic approx-
imation method. Since this inverse problem is overdetermined, which is the main
difficulty in studying of its solvability, it is replaced by a related determined one by
using some extension of the class of unknown functions.
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1 Introduction and the Statement of the Problem

Let Ω = {(x,ϕ) : x ∈ D⊂ R2, ϕ ∈ (0,2π), ∂D ∈C3} be a bounded domain and in
the domain Ω, consider the transport-like equation

ux1 cosϕ +ux2 sinϕ +uϕK(x,ϕ)−µ(x)u = 0, (1)

where K(x,ϕ) = f2(x)cosϕ− f1(x)sinϕ (for the explanation of why the function K
is taken in this form, see [Amirov, Yildiz, and Ustaoglu (2009)] and the references
therein). We study the solvability and approximation methods for the solution of the
following coefficient inverse problem, where the data for the solution of equation
(1) are specified on a part of the boundary of the domain Ω : Γ1 = ∂D× (0,2π).

Problem 1 Given the function K, determine a pair of functions (u,µ) from the
equation (1), provided that u(x,ϕ) > 0, u(x,ϕ) is 2π-periodic in ϕ and the trace
of u(x,ϕ) is known on Γ1, i.e. u|

Γ1
= u0.

We construct two solution algorithms for the approximate solution of this prob-
lem with the use of the centered difference formulas and a symbolic approximation
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method. Computational feasibility of these algorithms is presented by some nu-
merical experiments. The solvability and numerical solution of Problem 1 have not
been investigated previously, and this work presents two approximation methods
to solve this coefficient inverse problem. The studies on the numerical solution
methods of inverse problems for differential equations is important and there is an
interest to develop new feasible methods (see, e.g. [Beilina and Klibanov (2008);
Huang and Shih (2007); Ling and Atluri (2006); Ling and Takeuchi (2008); Liu
(2008, 2009); Liu and Atluri (2008); Marin (2008); Marin et al (2008)]). More-
over, inverse problems for transport equations are of importance in applications
and used in many measurement problems, objectives of which are to determine
the conditions on the boundary or the scattering and absorption properties or the
measure of the medium, and have variety of applications in theory of nuclear re-
actors, geophysical imaging and medical imaging such as tomography, etc. (see,
e.g. [Anikonov, Kovtanyuk, and Prokhorov (2002); Anikonov (2001); Case and
Zweifel (1967); Isakov (2006); Li et al (2009); Natterer (1986); Stefanov and
Uhlmann (2003)]). The transport equations are used in the study of problems
involving the propagation of particles within a medium or vacuum and governs dif-
fusion processes such as scattering of light, near infrared lights, which has impor-
tant applications in imaging, etc. (see, e.g. [Anikonov, Kovtanyuk, and Prokhorov
(2002); Huang et al (2009); Mai-Cao and Tran-Cong (2008); Natterer (1986)]).

Here, we have to note that the coefficient µ in equation (1) depends only on x
and hence Problem 1 is overdetermined (the term overdeterminacy is explained in
Section 1.1). This fact is the main difficulty in studying of its solvability, so we
propose a way to overcome this difficulty for Problem 1 (see Section 1.1 and 2).

Since u > 0 in Ω, we divide the equation (1) by u(x,ϕ) and introduce a new un-
known function υ = lnu, so we obtain the following first order differential equation
in Ω

Lυ ≡ υx1 cosϕ +υx2 sinϕ +υϕK(x,ϕ) = µ(x). (2)

Therefore, we can reduce Problem 1 to the following inverse problem of finding
the right-hand side of the equation (2).

Problem 2 Given the function K, determine a pair of functions (υ ,µ) from the
equation (2), provided that υ(x,ϕ) is 2π-periodic in ϕ and the trace of υ (x,ϕ) is
known on Γ1, i.e. υ |Γ1 = υ0, where υ0 = lnu0.

Remark 1 Problem 2 is related to a certain problem of integral geometry (see
[Amirov, Yildiz, and Ustaoglu (2009)]). Assume that a family of regular curves
is given by curvature such that curvature of the curve passing from each point x
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∈ D, in any direction Φ = (cosϕ,sinϕ) (ϕ ∈ (0,2π)) is K(x,ϕ) = f2(x)cosϕ −
f1(x)sinϕ and for any point x∈D and any direction Φ = (cosϕ,sinϕ), there exists
a unique sufficiently smooth curve passing through the point x in the direction Φ

with endpoints on the boundary of D. Suppose the lengths of these curves in D
are upper-bounded by the same constant and denote the family of these curves by
{Γ}. Then the problem of integral geometry (IGP) is formulated as follows: "Find
a function µ(x) in a domain D from the integrals of µ(x) along the curves of the
family {Γ}."

The uniqueness of the solution of a problem of integral geometry by reducing it
to an equivalent inverse problem for the differential equation was firstly proved in
[Lavrent’ev and Anikonov (1967)]. Reduction of an integral geometry problem for
general curve class to an inverse problem for transport equation and the solvability
of this problem was investigated by Amirov in [Amirov (1986)] and the solvability
of the IGP is proved via solvability of Problem 2 in [Amirov, Yildiz, and Ustaoglu
(2009)]. Historically, the Radon transform (see [Radon (1917)]) is assumed to be
the basis of the integral geometry problems and particularly in the second half of
the last century, theory of these problems is developed by several researchers (see
[Amirov (2001)] for a reference list) and from the practical point of view, problems
of integral geometry have many important applications, especially in geophysics,
astronomy and medicine (see, e.g. [Amirov (2001); Lavrent’ev, Romanov, and
Shishatskii (1986)]). In particular, the reconstruction of a function from its line or
plane integrals is the main problem in the computerized tomography and some of
the applications related with the computerized tomography can be seen in problems
of seismology, flaw detection, microscopy, X-ray tomography, etc. (see, e.g. [Nat-
terer (1986)]). Moreover, integral geometry problems are closely interrelated with
the inverse problems for kinetic equations which are also important both from theo-
retical and practical points of view (see, e.g. [Amirov, Golgeleyen, and Rahmanova
(2009); Yildiz (2009)] ).

1.1 Overdeterminacy

As it was indicated above dependence of the unknown function µ only on the vari-
able x (which is the classical case in integral geometry) leads Problem 1 to be an
overdetermined one. In fact, the underlying operator of the IGP is compact and its
inverse operator is not bounded. Hence, proving the general existence results for the
IGP and Problem 2, and therefore for Problem 1, is impossible and we need some
special conditions on the data υ0 (u0) for the existence of the solution (for example
υ0 (u0) must has some quasianalytic character (see, e.g. Chapter 6, Section 17 in
[Courant and Hilbert (1962)] and Chapter 6, Section 1 in [Lavrent’ev, Romanov,
and Shishatskii (1986)])), so here the term "overdeterminacy" is used in this sense.
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It is worth noting that in the theory of inverse problems, usually "overdeterminacy"
means that the number of free variables in the data exceeds the number of free vari-
ables in the unknown coefficient or right hand side of the equation (µ(x)), and this
is not the case for our problems.

Because of the overdeterminacy, in establishing the solvability of the above prob-
lems, the initial data can not be arbitrary; they should satisfy some nontrivial "solv-
ability conditions" (see p. 4 in [Amirov (2001)] and Theorem 1.4 on p. 18 in
[Romanov (1974)]). It should be noted that the set of functions υ0 (u0) for which
IGP (Problem 1) is solvable is not everywhere dense in any of the spaces L2(Γ1),
Cm(Γ1) and Hm(Γ1). Furthermore, since the data in problems of integral geom-
etry are of quasianalytic character, in particular, this implies that it is impossible
to avoid overdeterminacy of the problem by specifying the data on a part of the
boundary rather than on the whole boundary. Even though finding the solvability
conditions for the mentioned overdetermined problems was possible, since the real
data in practice usually have some errors and thus fall out of the data class for which
the existence of a solution is established, these conditions would not be satisfactory
from the practical point of view.

Let us propose the procedure of the method for establishing the solvability of
Problem 1 (this method of investigating the solvability of overdetermined inverse
problems was firstly proposed by Amirov in [Amirov (1986)] (see also [Amirov
(2001)])). The overdetermined Problem 1 was reduced to Problem 2 above and on
using some extension of the class of unknown functions µ , the latter is replaced
by the determined Problem 3 (see Section 2). This is achieved by assuming the
unknown function µ depends not only upon the space variable x, but also upon the
direction ϕ in a specific way, i.e. µ(x,ϕ) satisfies a certain differential equation(
L̂µ = 0

)
where Problem 2 with the function µ(x,ϕ) becomes a determined one

and the sufficiently smooth functions µ depending only on x satisfy this equation.
Since this equation is not uniquely determined, the class of unknown functions µ

extends so that Problem 2 becomes a determined problem for the new class and all
sufficiently smooth functions in x belong to the class. With the use of this method,
the construction of the equation L̂µ = 0 (which is one of the crucial part of this
method) and some space in which the problem is uniquely solvable are given in
Section 2. It should be noted that µ(x,ϕ) cannot be arbitrarily dependent upon ϕ ,
because in the opposite case the problem would be underdetermined.

1.2 Some Definitions

Let us denote the set of real-valued functions υ(x,ϕ) that are 2π-periodic in ϕ

and three times continuously differentiable on Ω with respect to all arguments by
C3

π(Ω). Here, 2π-periodicity of the function υ ∈C3
π(Ω) with respect to argument
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ϕ in the domain Ω means that Dαυ(x,0) = Dαυ(x,2π), where Dα = Dα1
x1

Dα2
x2

Dα3
ϕ

and α i ≥ 0 are integers such that 0≤ α1 +α2 +α3 ≤ 3. Let us introduce the scalar
product

(υ ,z)1,2 =
∫

Ω

(
υz+υx1zx1 +υx2zx2 +υϕzϕ +υx1ϕzx1ϕ +υx2ϕzx2ϕ +υϕϕzϕϕ

)
dΩ

in C3
π(Ω), where dΩ = dx1dx2dϕ . Set ‖υ‖1,2 = [(υ ,υ)1,2]1/2.

Let Hπ
1,2(Ω) and Hπ

m(Ω) be the completions of C3
π(Ω) with respect to the norms

‖ · ‖1,2 and ‖ · ‖Hm(Ω) (m = 1,2,3) respectively (for detailed information about
the space Hm, see, e.g. [Lions and Magenes (1972); Mikhailov (1978)]). Let
C3

π0 = {ψ : ψ|Γ1 = 0, ψ ∈C3
π(Ω)} and the spaces H̊π

1,2(Ω) and H̊π
m(Ω) be the com-

pletions of C3
π0 with respect to the norm ‖ · ‖1,2 and ‖ · ‖Hm(Ω) (m = 1,2,3). Let us

select a set {w1,w2,w3, ...}⊂C3
π0 which is complete and orthonormal in L2(Ω). We

may assume that the linear span of the set {wi}∞

i=1 is everywhere dense in H̊π
1,2(Ω).

Indeed, since the space H̊π
1,2(Ω)∩ H̊1(Ω) is seperable, there exists a countable set

{ϕ i}
∞

i=1 ⊂ C3
π0 which is everywhere dense in H̊π

1,2(Ω) and this set up can be ex-
tended to a set which is everywhere dense in L2(Ω), if necessary. The set {wi}∞

i=1
is obtained by orthonormalizing the latter in L2 (Ω).
Let Γ′′(A) be the set of all functions υ(x,ϕ) ∈ L2(Ω) such that for any υ ∈ Γ′′(A)
there exists y ∈ L2(Ω) such that (υ ,A∗η)L2(Ω) = (y,η)L2(Ω) holds for every η ∈
C∞

0 (Ω), where A∗ is the differential expression conjugate to A in the sense of La-
grange, A is a differential expression of third order (A = L̂L, see the following
section) and C∞

0 (Ω) is the set of all functions defined in Ω which have continuous
partial derivatives of order up to all k < ∞, whose supports are compact subsets of
Ω (see, e.g. [Lions and Magenes (1972)]). So Aυ = y in the generalized func-
tions sense. Take a subset Γ(A) ⊂ Γ′′(A) such that for any υ ∈ Γ(A) there exists
a sequence {υk} ⊂C3

π0 such that υk→ υ weakly in L2(Ω) and (Aυk,υk)L2(Ω)→
(Aυ ,υ)L2(Ω) as k→∞. It can be seen that the inclusions H̊π

3 (Ω)⊂Γ′′(A)∩H̊π
1,2(Ω)⊂

Γ(A)⊂ L2(Ω) hold.

2 The Determined Problem and the Solvability Result

With the use of the proposed method in Section 1.1, the second order differential
expression L̂, which is defined in Ω, can be constructed as

L̂υ =
∂ 2υ

∂ l∂ϕ
=

∂

∂ l
υϕ , (3)

where
∂

∂ l
= (sinϕ)

(
∂

∂x1
+ f2

∂

∂ϕ
− f1

)
− (cosϕ)

(
∂

∂x2
− f1

∂

∂ϕ
− f2

)
. Let A =

L̂L.
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Remark 2 Suppose that, a priori the function υe
0 is known, which represents the

exact data of Problem 2 related to a function µ depending only on x. Then, utilizing
υe

0, a solution µ̃ to IGP can be constructed. If the problem has a unique solution
then µ̃ and µ(x) coincide. At the same time, knowing the approximate data υa

0 with∥∥υe
0−υa

0

∥∥
H3(Γ1)

≤ ε , an approximate solution µa(x,ϕ) can be constructed such
that ‖µ−µa‖L2(Ω) ≤Cε . Note that, if µ depends only on x and υa

0 does not satisfy
the "solvability conditions", the solution µa depending only x does not exist. Here
the data are specified on Γ1 and C > 0 is independent of υe

0 and υa
0. In other words,

a regularising procedure is constructed for Problem 2.

Let us replace the equation (2) by the following one (where µ depends also on the
variable ϕ)

Lυ = µ(x,ϕ), (4)

and consider the following determined problem.

Problem 3 Given the function K, determine a pair of functions (υ ,µ) from the
equation (4), provided that υ(x,ϕ) is 2π-periodic in ϕ , υ |Γ1 = υ0, and the condi-
tion L̂µ = 0 holds.

Here the equation L̂µ = 0 is satisfied in the generalized functions sense, i.e. for
each η ∈ C∞

0 (Ω), (µ,(L̂)∗η)L2(Ω) = 0, where (L̂)∗ is conjugate to L̂ in the sense
of Lagrange. If υ0 ∈C3(Γ1) and ∂D ∈C3, then one can obtain homogenous data
on Γ1 instead of nonhomogeneous data by considering a new unknown function
ῡ = υ −G, where G is the function from the set C3

π(Ω̄) such that G|Γ1 = υ0 (see,
e.g. Theorem 2 on p. 130 in [Mikhailov (1978)]). If we denote ῡ again by υ for
the simplicity, then the equation (4) is reduced to

Lυ = µ(x,ϕ)+F, (5)

where F =−LG. So, Problem 3 can be reduced to the following one (see p. 20 in
[Amirov (2001)]).

Problem 4 Given the functions K and F, determine a pair of functions (υ ,µ) from
the equation (5), provided that υ(x,ϕ) is 2π-periodic in ϕ , υ |Γ1 = 0, and the con-
dition L̂µ = 0 holds.

Theorem 1 (Amirov, Yildiz, and Ustaoglu (2009)) If f1(x), f2(x) ∈ C3(D̄), and
for all x ∈ D̄, f1x1 + f2x2 > 0 and F ∈Hπ

2 (Ω) then Problem 4 has a unique solution
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(υ ,µ), such that υ ∈ Γ(A)∩ H̊π
1 (Ω), µ ∈ L2(Ω), and the inequality ‖υ‖H̊π

1 (Ω) +
‖µ‖L2(Ω) ≤C(‖F‖L2(Ω) +

∥∥Fϕ

∥∥
L2(Ω)) holds, where C > 0 depends on f1, f2 and the

Lebesgue measure of D and D̄ is the closure of D.

Considering its relation with Problem 4, we investigate and present two approxi-
mation methods for the solution of Problem 1.

3 Finite Difference Approximation and Symbolic Approximation

Let us consider the following auxiliary Dirichlet type boundary value problem.

Problem 5 Find a function υ which satisfies the third order partial differential
equation

Aυ = F , (6)

provided that υ(x,ϕ) is 2π-periodic in ϕ and υ |Γ1 = 0, where Aυ ≡ L̂Lυ and
F =L̂F.

3.1 Finite Difference Approximation

We investigate finite difference approximation to the solution of Problem 1 on Ω =
D× (0,2π), where D = (a,b)× (c,d) and a, b, c, d are real numbers. By using the
centered-difference formulas in (6), we obtain the difference equations;

−d(k)
1 υ̃ i−1, j−1,k−1 +d(k)

6 υ̃ i−1, j−1,k +d(k)
1 υ̃ i−1, j−1,k+1− (d(k)

3 + e(i, j,k)
1 − e(i, j,k)

5 )

.υ̃ i−1, j,k−1 +(d(k)
4 +2e(i, j,k)

1 − e(i, j,k)
7 )υ̃ i−1, j,k +(d(k)

3 − e(i, j,k)
1 − e(i, j,k)

5 )υ̃ i−1, j,k+1

+d(k)
1 υ̃ i−1, j+1,k−1−d(k)

6 υ̃ i−1, j+1,k−d(k)
1 υ̃ i−1, j+1,k+1− (d(k)

2 + e(i, j,k)
2 − e(i, j,k)

6 )

.υ̃ i, j−1,k−1 +(d(k)
5 +2e(i, j,k)

2 − e(i, j,k)
8 )υ̃ i, j−1,k +(d(k)

2 − e(i, j,k)
2 − e(i, j,k)

6 )υ̃ i, j−1,k+1

− e(i, j,k)
3 υ̃ i, j,k−2 +(2(d(k)

2 +d(k)
3 + e(i, j,k)

3 )+ e(i, j,k)
4 − e(i, j,k)

9 )υ̃ i, j,k−1−2(d(k)
4

+d(k)
5 + e(i, j,k)

4 )υ̃ i, j,k− (2(d(k)
2 +d(k)

3 + e(i, j,k)
3 )− e(i, j,k)

4 − e(i, j,k)
9 )υ̃ i, j,k+1

+ e(i, j,k)
3 υ̃ i, j,k+2− (d(k)

2 − e(i, j,k)
2 + e(i, j,k)

6 )υ̃ i, j+1,k−1 +(d(k)
5 −2e(i, j,k)

2 + e(i, j,k)
8 )

.υ̃ i, j+1,k +(d(k)
2 + e(i, j,k)

2 + e(i, j,k)
6 )υ̃ i, j+1,k+1 +d(k)

1 υ̃ i+1, j−1,k−1−d(k)
6 υ̃ i+1, j−1,k

−d(k)
1 υ̃ i+1, j−1,k+1− (d(k)

3 − e(i, j,k)
1 + e(i, j,k)

5 )υ̃ i+1, j,k−1 +(d(k)
4 −2e(i, j,k)

1 + e(i, j,k)
7 )

.υ̃ i+1, j,k +(d(k)
3 + e(i, j,k)

1 + e(i, j,k)
5 )υ̃ i+1, j,k+1−d(k)

1 υ̃ i+1, j+1,k−1 +d(k)
6 υ̃ i+1, j+1,k

+d(k)
1 υ̃ i+1, j+1,k+1 = Fi, j,k, (7)
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where

d(k)
1 = 1

8∆x1∆x2∆ϕ
(sin2 (ϕk)− cos2 (ϕk)), d(k)

2 =− 1
2(∆x2)

2
∆ϕ

cos(ϕk)sin(ϕk) ,

d(k)
3 = 1

2(∆x1)
2
∆ϕ

cos(ϕk)sin(ϕk) , d(k)
4 =− 1

(∆x1)
2 sin2 (ϕk) ,

d(k)
5 =− 1

(∆x2)
2 cos2 (ϕk) , d(k)

6 = 1
2∆x1∆x2

cos(ϕk)sin(ϕk) ,

e(i, j,k)
1 = 1

2∆x1(∆ϕ)2 ( f1i, j cos(2ϕk)+ f2i, j sin(2ϕk)) ,

e(i, j,k)
2 =− 1

2∆x2(∆ϕ)2 ( f2i, j cos(2ϕk)− f1i, j sin(2ϕk)) ,

e(i, j,k)
3 = 1

2∆ϕ3 ( f1i, j cos(ϕk)+ f2i, j sin(ϕk))( f2i, j cos(ϕk)− f1i, j sin(ϕk)) ,

e(i, j,k)
4 = 1

(∆ϕ)2

(
1

2∆x1
(( f2i+1, j− f2i−1, j)cos(ϕk)− ( f1i+1, j− f1i−1, j)sin(ϕk))sin(ϕk)

− 1
2∆x2

(( f2i, j+1− f2i, j−1)cos(ϕk)− ( f1i, j+1− f1i, j−1)sin(ϕk))cos(ϕk)

−2( f2i, j sin(ϕk)+ f1i, j cos(ϕk))
2 +( f2i, j cos(ϕk)− f1i, j sin(ϕk))

2
)

,

e(i, j,k)
5 = 1

4∆x1∆ϕ
(( f2i, j cos(ϕk)− f1i, j sin(ϕk))cos(ϕk)

−3( f2i, j sin(ϕk)+ f1i, j cos(ϕk))sin(ϕk) ,

e(i, j,k)
6 = 1

4∆x2∆ϕ
(( f2i, j cos(ϕk)− f1i, j sin(ϕk))sin(ϕk)

+3( f2i, j sin(ϕk)+ f1i, j cos(ϕk))cos(ϕk) ,

e(i, j,k)
7 =− 1

2∆x1
( f1i, j cos(2ϕk)+ f2i, j sin(2ϕk)) ,

e(i, j,k)
8 = 1

2∆x2
( f2i, j cos(2ϕk)− f1i, j sin(2ϕk)) ,

e(i, j,k)
9 = 1

2∆ϕ

(
1

2∆x2
(( f2i, j+1− f2i, j−1)sin(ϕk)+( f1i, j+1− f1i, j−1)cos(ϕk))cos(ϕk)

− 1
2∆x1

(( f2i+1, j− f2i−1, j)sin(ϕk)+( f1i+1, j− f1i−1, j)cos(ϕk))sin(ϕk)
−2( f1i, j cos(ϕk)+ f2i, j sin(ϕk))( f2i, j cos(ϕk)− f1i, j sin(ϕk))) ,

(i = 1,2, ..., I, j = 1,2, ...,J, k = 1,2, ...,K).
In the above equations, I, J, K are positive integers, ∆x1 = (b−a)/(I +1), ∆x2 =
(d−c)/(J +1) and ∆ϕ = 2π/K are step sizes for x1, x2 and ϕ respectively. υ̃ i, j,k is
the approximation to the solution υ(x1i,x2 j,ϕk) = υ(a+ i∆x1,c+ j∆x2,k∆ϕ ) and
f1i, j = f1(x1i,x2 j), f2i, j = f1(x1i,x2 j), Fi, j,k = F (x1i,x2 j,ϕk). Since υ (x,ϕ) is 2π-
periodic, υ̃ i, j,0 = υ̃ i, j,K and υ̃ i, j,K+1 = υ̃ i, j,1. The condition υ |Γ1 = 0 in Problem 5
is discretized as

υ̃0, j,k = υ̃ I+1, j,k = υ̃ i,0,k = υ̃ i,J+1,k = 0,

(i = 0,1, ..., I +1, j = 0,1, ...,J +1, k = 1,2, ...,K).
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This system of linear equations can be written in the matrix form

Ãυ̃ = b, (8)

where the block tridiagonal matrix Ã is in the following form

Ã =



A(1)
1 A(1)

2 0 · · · 0

A(2)
3 A(2)

1 A(2)
2

. . .
...

0 A(3)
3

. . . . . . 0
...

. . . . . . . . . A(I−1)
2

0 · · · 0 A(I)
3 A(I)

1


IJK×IJK

,

here the sub-block matrices A(i)
1 ,A(i)

2 and A(i)
3 (i = 1,2, ..., I) are also block tridiag-

onal and they can be represented as follows.

A(i)
1 =



B1 +C(i,1)
1 B2 +C(i,1)

2 0 · · · 0

B2−C(i,2)
2 B1 +C(i,2)

1 B2 +C(i,2)
2

. . .
...

0 B2−C(i,3)
2

. . . . . . 0
...

. . . . . . . . . B2 +C(i,J−1)
2

0 · · · 0 B2−C(i,J)
2 B1 +C(i,J)

1


JK×JK

,

A(i)
2 =



B3 +C(i,1)
3 B4 0 · · · 0

−B4 B3 +C(i,2)
3 B4

. . .
...

0 −B4
. . . . . . 0

...
. . . . . . . . . B4

0 · · · 0 −B4 B3 +C(i,J)
3


JK×JK

,

A(i)
3 =



B3−C(i,1)
3 −B4 0 · · · 0

B4 B3−C(i,2)
3 −B4

. . .
...

0 B4
. . . . . . 0

...
. . . . . . . . . −B4

0 · · · 0 B4 B3−C(i,J)
3


JK×JK

,

where the nonzero entries in the matrices B1 = (b1m,n), B2 = (b2m,n), B3 = (b3m,n)
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and B4 = (b4m,n) are

b1k,k = −2d(k)
4 −2d(k)

5 , b2k,k = d(k)
5 , b3k,k = d(k)

4 , b4k,k = d(k)
6 ,

(k = 1, ...,K)

b1k,k+1 = −2d(k)
2 −2d(k)

3 , b2k,k+1 = d(k)
2 , b3k,k+1 = d(k)

3 , b4k,k+1 = d(k)
1 ,

(k = 1, ...,K−1)

b1k,k−1 = 2d(k)
2 +2d(k)

3 , b2k,k−1 =−d(k)
2 , b3k,k−1 =−d(k)

3 , b4k,k−1 =−d(k)
1 ,

(k = 2, ...,K)

and b11,K = 2d(1)
2 +2d(1)

3 , b1K,1 =−2d(K)
2 −2d(K)

3 , b21,K =−d(1)
2 , b2K,1 = d(K)

2 , b31,K =

−d(1)
3 , b3K,1 = d(K)

3 , b41,K =−d(1)
1 , b4K,1 = d(K)

1 . The nonzero entries in the matrices

C(i, j)
1 = (c(i, j)

1m,n), C(i, j)
2 = (c(i, j)

2m,n) and C(i, j)
3 = (c(i, j)

3m,n) (i = 1,2, ..., I, j = 1,2, ...,J)
are

c(i, j)
1k,k

= −2e(i, j,k)
4 , c(i, j)

2k,k
=−2e(i, j,k)

2 + e(i, j,k)
8 , c(i, j)

3k,k
=−2e(i, j,k)

1 + e(i, j,k)
7 ,

(k = 1, ...,K)

c(i, j)
1k,k+1

= −2e(i, j,k)
3 + e(i, j,k)

4 +e(i, j,k)
9 , c(i, j)

2k,k+1
= e(i, j,k)

2 + e(i, j,k)
6 , c(i, j)

3k,k+1
= e(i, j,k)

1 +e(i, j,k)
5 ,

(k = 1, ...,K−1)

c(i, j)
1k,k−1

= 2e(i, j,k)
3 + e(i, j,k)

4 −e(i, j,k)
9 , c(i, j)

2k,k−1
= e(i, j,k)

2 − e(i, j,k)
6 , c(i, j)

3k,k−1
= e(i, j,k)

1 −e(i, j,k)
5 ,

(k = 2, ...,K)

c(i, j)
1k,k+2

= e(i, j,k)
3 , (k = 1, ...,K−2), c(i, j)

1k,k−2
=−e(i, j,k)

3 , (k = 3, ...,K)

and c(i, j)
11,K−1

= −e(i, j,1)
3 , c(i, j)

12,K
= −e(i, j,2)

3 , c(i, j)
11,K

= 2e(i, j,1)
3 + e(i, j,1)

4 −e(i, j,1)
9 , c(i, j)

1K−1,1
=

e(i, j,K−1)
3 , c(i, j)

1K,2
= e(i, j,K)

3 , c(i, j)
1K,1

=−2e(i, j,K)
3 +e(i, j,K)

4 +e(i, j,K)
9 , c(i, j)

21,K
= e(i, j,1)

2 −e(i, j,1)
6 ,

c(i, j)
2K,1

= e(i, j,K)
2 + e(i, j,K)

6 , c(i, j)
31,K

= e(i, j,1)
1 −e(i, j,1)

5 , c(i, j)
3K,1

= e(i, j,K)
1 +e(i, j,K)

5 .

In equation (8), υ̃ is the column matrix, each row of which consists of an unknown
υ̃ i, j,k with the order

υ̃1,1,1, υ̃1,1,2, ..., υ̃1,1,K , υ̃1,2,1, υ̃1,2,2, ..., υ̃1,2,K , ..., υ̃1,J,1, υ̃1,J,2, ..., υ̃1,J,K,

υ̃1,1,1, υ̃1,1,2, ..., υ̃1,1,K , υ̃1,2,1, υ̃1,2,2, ..., υ̃1,2,K , ..., υ̃1,J,1, υ̃1,J,2, ..., υ̃1,J,K,

...

υ̃ I,1,1, υ̃ I,1,2, ..., υ̃ I,1,K , υ̃ I,2,1, υ̃ I,2,2, ..., υ̃ I,2,K , ..., υ̃ I,J,1, υ̃ I,J,2, ..., υ̃ I,J,K (9)

and b is the column matrix, which consists of the values Fi, j,k.
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By solving the matrix equation (8), we get the approximation υ̃ i, j,k at I× J×K
mesh points of Ω. So, the approximate values of u can be easily obtained by set-
ting ũi, j,k = exp(υ̃ i, j,k + Gi, j,k), where Gi, j,k = G(x1i,x2 j,ϕk). With the use of the
centered difference formulas in (5), the difference equations

υ̃ i+1, j,k− υ̃ i−1, j,k

2∆x1
cos(ϕk)+

υ̃ i, j+1,k− υ̃ i, j−1,k

2∆x2
sin(ϕk)

+
υ̃ i, j,k+1− υ̃ i, j,k−1

2∆ϕ
( f2i, j cos(ϕk)− f1i, j sin(ϕk)) = µ̃ i, j,k +Fi, j,k (10)

(i = 1,2, ..., I , j = 1,2, ...,J , k = 1,2, ...,K)

are obtained, where µ̃ i, j,k is the approximation to µ(x1i,x2 j,ϕk) = µ(a + i∆x1,c +
j∆x2,k∆ϕ ) and Fi, j,k = F(x1i,x2 j,ϕk). By using the approximate values υ̃ i, j,k and
known values f1i, j, f2i, j and Fi, j,k, equation (10) is used to approximate the function
µ . So the approximation to the solution (u,µ) of Problem 1 is obtained and the
algorithm, which is used to compute these approximate values, is the following:

Algorithm 1 (Finite Difference Approximation)

INPUT : Functions f1 (x1,x2), f2 (x1,x2) and G(x1,x2,ϕ),
real numbers a,b,c,d, integers I,J,K.

OUTPUT : Approximation ũ for u and µ̃ for µ at I× J×K mesh points of Ω.

Step 1 Set step sizes ∆x1 = b−a
I+1 , ∆x2 = d−c

J+1 , ∆ϕ = 2π

K ,

Set inner and boundary mesh points (x1i,x2 j,ϕk) = (a+ i∆x1,c+ j∆x2,k∆ϕ);
Step 2 Construct the column matrix b, consisting of Fi, j,k,

Construct the block tridiagonal matrix Ã,

Solve the system of linear equations Ãυ̃= b,

Set ũi, j,k = exp(υ̃ i, j,k +Gi, j,k) Output (ũi, j,k)

Step 3 Compute µ̃ from (10) using υ̃ Output (µ̃ i, j,k)

End.

3.2 Symbolic Approximation

Computation of approximate solution VN of the Problem 5 is made by writing it in

the form VN =
N

∑
i, j,k=0

(
α i, j,kvi, j,k +β i, j,kwi, j,k

)
η , where the function η defined in D

is selected such that it vanishes on the boundary and outside of D.
{

vi, j,k
}N

i, j,k=0

and
{

wi, j,k
}N

i, j,k=0 are complete systems in L2 (Ω) where vi, j,k = xi
1x j

2 sin(kϕ) and
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wi, j,k = xi
1x j

2 cos(kϕ). Unknown coefficients α i, j,k and β i, j,k, i, j,k = 0, ...,N, are
determined from the following system of linear algebraic equations;

N

∑
i, j,k=0

(
A
(
α i, j,kvi, j,k +β i, j,kwi, j,k

)
η ,vi′, j′,k′η

)
L2(Ω)

=
(
F ,vi′, j′,k′η

)
L2(Ω) , (11)

N

∑
i, j,k=0

(
A
(
α i, j,kvi, j,k +β i, j,kwi, j,k

)
η ,wi′, j′,k′η

)
L2(Ω)

=
(
F ,wi′, j′,k′η

)
L2(Ω) , (12)

where i′, j′,k′ = 0, ...,N. The approximation to u is obtained by setting UN =
exp(VN + G) and by using VN in (5) we obtain µN and the algorithm to obtain
symbolic approximation (UN ,µN) to the solution of Problem 1, is given below.

Algorithm 2 (Symbolic Approximation)

INPUT : Functions f1 (x1,x2), f2 (x1,x2) and G(x1,x2,ϕ), integer N.

OUTPUT : UN and µN symbolic approximations to u and µ.

Step 1 Construct the left side of (11a) and (11b)
Procedure SysA(i′, j′,k′) for i, j,k = 0, ...,N

Le f t := Le f t +
(
A
(
α i, j,kvi, j,k +β i, j,kwi, j,k

)
η , vi′, j′,k′η

)
L2(Ω)

;

Procedure SysB(i′, j′,k′) for i, j,k = 0, ...,N

Le f t := Le f t +
(
A
(
α i, j,kvi, j,k +β i, j,kwi, j,k

)
η , wi′, j′,k′η

)
L2(Ω)

;

Step 2 Construct the system of equations (11)
Procedure SY S Set := {}, F :=−LG, F := L̂F, for i′, j′,k′ = 0, ...,N

Set := Set ∪
{

SysA(i′, j′,k′) =
(
F , vi′, j′,k′η

)
L2(Ω) ,

SysB(i′, j′,k′) =
(
F , wi′, j′,k′η

)
L2(Ω)

}
;

Step 3 Solve the system of equations (11)
Solve

(
SY S,

{
α i, j,k

}
,
{

β i, j,k
})

for i, j,k = 0, ...,N

VN = VN +
(
α i, j,kvi, j,k +β i, j,kwi, j,k

)
η;

UN = exp(VN +G), µN = L(VN)−F Output (UN ,µN)
End.

3.3 Implementation of the Approximation Algorithms

We have made some numerical experiments related to the proposed approximation
algorithms for the solution of Problem 1 under different boundary conditions and
the functions f1 and f2, and implementation of Algorithm 1 and 2 is presented on
the following example.
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Example 1 Consider the problem on the domain Ω = (0,1/2)×(0,1/2)×(0,2π),
where f1 (x1,x2) = f2 (x1,x2) = 2(x1 + x2) and

u0 (x1,x2,ϕ) =



exp
(
exp(x2)2(cosϕ + sinϕ)

)
,

x1 = 0,x2 ∈ [0,1/2] ,ϕ ∈ (0,2π)
exp
(
exp(x2 +1/2)2(cosϕ + sinϕ)

)
,

x1 = 1/2,x2 ∈ [0,1/2] ,ϕ ∈ (0,2π)
exp
(
exp(x1)2(cosϕ + sinϕ)

)
,

x2 = 0,x1 ∈ [0,1/2] ,ϕ ∈ (0,2π)
exp
(
exp(x1 +1/2)2(cosϕ + sinϕ)

)
,

x2 = 1/2,x1 ∈ [0,1/2] ,ϕ ∈ (0,2π)
are given. Under these conditions, it can be easily verified that the pair of functions
(u,µ), where

u(x1,x2,ϕ) = exp
(
exp(x1 + x2)2(cosϕ + sinϕ)

)
,

µ(x1,x2) = 4(x1 + x2)exp(x1 + x2)2,

is the exact solution of Problem 1. The obtained results from Algorithm 1 and 2 are
compared with the exact solution in Figures 1-3. In the computations, we choose
the function G ∈ C3

π(Ω̄) (see Section 2) as G(x1,x2,ϕ) = exp(x1 + x2)2(cosϕ +
sinϕ)− x1x2 (1/2− x1)(1/2− x2) and for the symbolic approximation we take

η = η (x1,x2) =
{

x1x2 (1/2− x1)(1/2− x2) , (x1,x2) ∈ D
0, (x1,x2) /∈ D

.

Figure 1: Finite difference approximation at ϕ1 = π/4; (a) Approximate values of
u; (b) Approximate values of µ .
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Figure 2: Symbolic approximation at ϕ = π/4; (a) Approximate u; (b) Approxi-
mate µ .

Figure 3: Exact solution at ϕ = π/4; (a) Exact u; (b) Exact µ .

MATLAB program is used for Algorithm 1 and MAPLE program is used for Al-
gorithm 2, and the computations are performed on a PC with Intel Core 2 T7200
2.00 GHz CPU, 1 Gb memory, running under Windows Vista. In finite difference
approximations we take I = J = 10 and K = 8 (see Figure 1) and the presented
symbolic approximations in Figure 2 are computed for N = 2. Since u is a function
of three variables, the comparison of the results are presented at a selected value ϕ

(ϕ = π/4).

The results of computational experiments show that the proposed approximation
methods in Section 3.1 and 3.2 are feasible to solve Problem 1 numerically.
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