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Cell Method Analysis of Crack Propagation in Tensioned
Concrete Plates

E. Ferretti1

Abstract: In this study, the problem of finding the complete trajectory of prop-
agation and the limiting load in plates with internal straight cracks is extended to
the non-linear field. In particular, results concerning concrete plates in bi-axial ten-
sile loading are shown. The concrete constitutive law adopted for this purpose is
monotonic non-decreasing, as following according to previous studies of the author
on monotonic mono-axial loading. The analysis is performed in a discrete form,
by means of the Cell Method (CM). The aim of this study is both to test the new
concrete constitutive law in biaxial tensile load and to verify the applicability of the
CM in crack propagation problems for bodies of non-linear material. The discrete
analysis allows us to identify the crack initiation without using the stress intensity
factors.

Keywords: non-linear analysis, concrete, crack initiation, crack trajectory, Cell
Method.

1 Introduction

For finding the crack trajectory and the minimum load required to propagate a
crack (limiting load), the variational principle of the most common crack theories
has been used over the past years [Patron and Morozov (1978)]. Criteria for the
initiation of crack propagation can be obtained on the basis of both energy and force
considerations. Historically, at first an energy fracture criterion was proposed by
A. A. Griffith in 1920 [Griffith (1920)] and G. R. Irwin formulated a force criterion
in 1957 [Irwin (1957, 1958)], while the same time demonstrating the equivalence
of the two criteria. Griffith, Inglis (1913) and Irwin developed the foundations of
linear elastic fracture mechanics.

The Irwin force criterion for crack extension and the equivalent Griffith energy
criterion completely solve the question of the limiting equilibrium state of a cracked
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continuous elastic body. Nevertheless, there exists a number of other formulations
also establishing the limiting equilibrium state of a cracked body. Among these,
the best known models are those of Leonov and Panasyuk [Lenov and Panasyuk
(1959)], Dugdale [Dugdale (1960)], Wells [Wells (1961)], Novozhilov [Novozhilov
(1969)], and McClintock [McClintock (1958)]. Detailed introductions into linear
elastic fracture mechanics can be found in Heckel (1983), Anderson (1991), Rolfe
and Barsom (1987) and Broek (1974).

Sneddon found approximate results for the stress distribution at the crack tip for the
first time [Sneddon (1975)]. Rice and Rosengren (1968) and Hutchinson (1968) de-
veloped solutions for the stress field considering plastic deformations in the crack
tip region [Koenke et al. (1998)]. The stress intensity factor (SIF) is one of the most
important parameters in Fracture Mechanics in order to properly define the stress
field close to the crack tip. Paris and Sih [Paris and Sih (1965)] have collected a
number of solutions in a comprehensive handbook for the three basic modes of SIF,
namely KI KII KIII , for varying crack sizes and relatively simple-shaped structures.
For the more realistic complex shapes encountered in practice, the finite element
method (FEM) is widely used for the evaluation of the stress intensity factors for
mode I II and III for various types of crack configurations and for the solution
of both linear elastic and elasto-plastic fracture problems [Souiyah et al. (2009)].
With the FEM the stresses are computed from the displacements solution, the pri-
mary output of the FE codes, by means of extrapolation techniques. Besides the
classical FEM, various other numerical methods have been used to derive SIFs,
such as Enriched Finite Element Method, deformed Finite Element Method, Finite
Difference Method (FDM), Boundary Element Method (BEM) and energy-based
methods like J-integral, energy release and stiffness derivative methods. Several
numerical analyses of cracks of different shapes have been performed in past years
in order to evaluate SIFs [Bowie (1956), Newman (1971), Owen (1973), Hellen
(1975), Murakami (1978), Chang (1981), De Araújo et al. (2000), Gustavo, Jaime
and Manuel (2000), Yan (2006), Abdelaziz, Abou-bekr and Hamouine (2007), Al-
shoaibi, Hadi and Ariffin (2007), Aour, Rahmani and Nait-Abdelaziz (2007), Ku-
tuka, Atmacab and Guzelbey (2007), Laurencin, Delette and Dupeux (2007), Sha-
hani and Tabatabaei (2008), Stanislav and Zdenek (2008)].

Three prevalent theories have been developed for the determination of the angle at
which a crack would propagate under mixed mode loading conditions. The first
theory, introduced by Erdogan and Sih [Erdogan and Sih (1963)], postulates that
the crack will propagate in the direction normal to the radial line for which the
hoop stress at the crack tip becomes maximum. In the general case of loading by
mode I and II, the angle ϑ0 of crack extension measured from the tip of the crack
with reference to the line to which the straight crack belongs (axis x′ in Fig. 1),
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Figure 1: Load and geometrical set-up of the cracked plate

with ϑ0 counterclockwise positive, is given in terms of KI and KII by means of the
relationship:

ϑ0 = asin

KII

KI±3
√

K2
I +8K2

II

K2
I +9K2

II

 , (1)

which is the solution of the following equation:

KI sinϑ0 +KII (3cosϑ0−1) = 0. (2)

According to the second theory, developed by Sih [Sih, (1974)], the crack will prop-
agate in the direction along which the strain energy density possesses a stationary
(minimum) value while, according to the third theory, developed by Hussain [Hus-
sain Pu and Underwood (1974)], the parameter to predict the incipient crack turning
angle is the maximum energy release rate.

In Fracture Mechanics, the variational problem of finding the limiting load and the
correlated crack propagation direction is reduced to that of finding extreme points
of a function of several variables [Patron and Morozov (1978)]. In the present pa-
per, the variational approach has been abandoned in favor of a discrete formulation
of the crack propagation problem based on the Cell Method (CM) [Tonti (2001a)].
The use of a discrete formulation instead of a variational one is advantageous, since
it does not require the definition of a model for treating the zone ahead of the crack
edge. When studying crack problems for an elastic-perfectly plastic body with the
energy equilibrium criterion, for instance, the solution is usually given in the case
when the plastic deformation is concentrated in a narrow zone ahead of the crack
edge. The thickness of this zone is of the order of elastic displacements. More-
over, when the plastic zone ahead of the edge is thin, the problem is reduced to
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the solution of an elastic problem instead of an elastic-plastic one. This reduction
is based on the fact that, in the linearized formulation, a thin plastic zone may be
schematically replaced by an additional cut along the face of which are applied
forces replacing the action of the plastically deforming material. Attention is then
drawn to the fact that the region of plastic non-linear effects in the model under
consideration varies with the external load and represents a plastically deforming
material in which the state of stress and strain must be determined from the solu-
tion of an elastic-plastic problem. With the discrete formulation, on the contrary, no
hypothesis on the shape and dimensions of the plastic zone is needed, and the calcu-
lation is performed directly, without having to reduce the problem to an equivalent
elastic one.

2 Theoretical basics of the Cell Method

The Cell Method (CM) is a new numerical method for solving field equations [Tonti
(2001a)], aiming at providing a direct finite formulation of field equations, with-
out requiring a differential formulation (Fig. 2). The theoretical basics of the CM
consist in highlighting the geometrical, algebraic and analytical structure which
is common to different physical theories [Tonti (2001a), Ferretti (2005)]. This
leads to a unified description of Physics and allows for using the CM for the
solution of problems in different fields of physics science and engineering, such
as acoustics [Tonti (2001b)], electrostatics [Bettini and Trevisan (2003), Marrone
(2004), Heshmatzadeh and Bridges (2007)], magnetostatics [Alotto and Perugia
(2004), Marrone (2004), Trevisan and Kettunen (2004), Alotto et al. (2006), Giuf-
frida Gruosso and Repetto (2006)], Eddy currents [Specogna and Trevisan (2005),
Alotto et al. (2008), Codecasa Specogna and Trevisan (2008)], electromagnetism
in the time-domain [Marrone and Mitra (2004)] and in the frequency-domain [Mar-
rone Grassi and Mitra (2004)], elastostatics [Cosmi (2001), Tonti and Zarantonello
(2009)], fracture mechanics [Ferretti (2003), Ferretti (2004a), Ferretti (2004c), Fer-
retti (2005), Ferretti and Di Leo (2003), Ferretti Casadio and Di Leo (2008)], elas-
todynamics [Cosmi (2005), Cosmi (2008)] and fluid dynamics [Straface Troisi and
Gagliardi (2006)]. The CM has been also applied to thermal conduction [Bullo
et al. (2006) Bullo et al. (2007)], diffusion [Bottauscio et al. (2004)], biome-
chanics [Cosmi and Dreossi (2007), Taddei at al. (2008), Cosmi et al. (2009)],
heterogeneous materials modeling [Ferretti (2005), Ferretti Casadio and Di Leo
(2008)], mechanics of porous materials [Cosmi (2003), Cosmi and Di Marino
(2001)] and structural mechanics [Nappi and Tin-Loi (2001), Ferretti Casadio and
Di Leo (2008)] problems.

As far as the common geometrical structure is concerned, the fundamental obser-
vation on which the CM is built is that the geometrical referent of the physical vari-
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Figure 2: How to achieve the solution through the Cell Method, a truly discrete
formulation, and the methods for which the discrete formulation is induced by the
differential formulation

ables of any physical theory, which are global variables, is not necessarily a point.
The physical variables are also associated to lines (voltage, stretching, velocity cir-
culation), surfaces (charge flow, discharge, heat, surface force), and volumes (mass
content, momentum content). This put the limit process of the differential formu-
lation – whose effect consists in reducing the global variables to field variables
defined in the point by performing densities and rates – under discussion from the
physical point of view. The CM relates the physical variables to their geometrical
referent directly by associating them to the nodes, edges, surfaces and volumes of
two cell complexes, in dual relationship by each other (Fig. 2) and not to the points
of a coordinate system, as one does for the differential formulation.

As discussed in Ferretti (2005), the main difference between the differential and
the discrete approaches concerns the nonlocal description of the continuum. The
different description of nonlocality comes just from performing (differential ap-
proach) or not performing (CM) the limit process. Since in the first case the global
variables are reduced to point (and instant) variables, the metrics is lost and must be
reintroduced a-posteriori, by means of a length scale, if one wants to describe the
nonlocal effects. This also happens for the direct or physical approach, the vertex-
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based scheme of the Finite Volume Method, and the Finite Differences Method.
Both could be considered very similar to the CM while they start from point-wise
conservation equations and derive the discrete formulation by the differential for-
mulation (Fig. 2). With the CM, oppositely, we do not need to recover the length
scale since it is preserved by avoiding the limit process (Fig. 2). As a consequence,
the CM allows for obtaining a nonlocal formulation by using local constitutive
laws.

Recently, Heshmatzadeh and Bridges (2007) have compared in detail CM and FEM
in electrostatics, proving the equivalence of the coefficient matrices for a Voronoi
dual mesh and linear shape functions in the FEM, also showing that the use of
linear shape functions in FEM is equivalent to the use of a barycentric dual mesh
for charge vectors.

The numerical code for crack trajectory analysis with the CM has been developed
by the author [Ferretti (2003, 2008)]. In this study, the code has been extended
to provide results in the case of a concrete plate tensioned at infinity by a load of
intensity px = kp0 parallel to the x-axis and py = p0 parallel to the y-axis (Fig. 1).
The plate has an initial straight crack of length 2l0 oriented at an angle α0 to the
x-axis (β0 to the y-axis). The crack trajectory and the minimum load required to
propagate the crack from the ends of the cut are provided for various values of k
and α0.

3 Crack extension criterion

The minimum load required to propagate a crack (limiting load) can be deduced by
using a variety of criteria:

• maximal normal stress criterion;

• maximal strain criterion;

• minimum strain energy density fracture criterion;

• maximal strain energy release rate criterion;

• damage law criteria.

In the present paper, the crack extension condition is studied in the Mohr-Coulomb
plane. The limiting load is computed as the load satisfying the condition of tan-
gency between the Mohr’s circle representing the stress field in the neighborhood
of the tip and the Leon limit surface (Fig. 3). With c being the cohesion, fc the
compressive strength, ftb the tensile strength, τn and σn, respectively, the shear
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and normal stress on the attitude of external normal n, the Leon criterion in the
Mohr-Coulomb plane is expressed as:

τ
2
n =

c
fc

(
ftb
fc

+σn

)
. (3)
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analysis at the crack tip

The Mohr’s circle for the tip neighborhood is identified by means of the physical
significance associated with the CM domain discretization: the CM divides the do-
main by means of two cell complexes, in such a way that each cell of the first cell
complex, which is a simplicial complex, contains one, and one only, node of the
second cell complex (in this study, a Delaunay/Voronoi mesh generator is used to
generate the two meshes in two-dimensional domains). The primal mesh (the De-
launay mesh) is obtained by subdividing the domain into triangles, so that for each
triangle of the triangulation the circumcircle of that triangle is empty of all other
sites (Fig. 4). The dual mesh (the Voronoi mesh) is formed by the polygons whose
vertexes are at the circumcenters of the primal mesh (Fig. 4). For each Voronoi
site, every point in the region around that site is closer to that site than to any of
the other Voronoi sites. Now, the conservation law is enforced on the dual poly-
gon of every primal vertex [Ferretti (2003)] and the stresses are computed on the
nodes of the dual mesh. Thus, not only the displacements, like in the FEM, but also
the stresses are primary outputs of a CM code and it is no longer necessary to use
point matching techniques to determine stresses and SIFs. The crack propagation
direction is then derived in the Mohr/Coulomb plane directly as the line joining the
Mohr’s pole to the point in which the circle of Mohr is tangent to the limit surface.
In effect, both lines joining one of the two tangent points at the limiting stage to
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the Mohr’s pole identify propagation directions. For the plate in Fig. 1, due to the
biaxial state of tensile stress at the ends of the cut, the Mohr’s circle of the atti-
tudes making bundle around the z-axis is fully contained in the positive half-plane
of the normal stress. It follows that the Mohr’s circle at the limiting stage is tangent
to the limit surface of Leon in just one point, the vertex of the parabola of Leon
(Fig. 3). Consequently, just one propagation direction activates at each stage of
the propagation process.

In order to identify the Mohr’s circle for the tip neighborhood, a hexagonal element
has been inserted at the tip ([Ferretti (2003)], Fig. 4). When the mesh generator is
activated, the hexagonal element is divided into equilateral Delaunay triangles and
a quasi-regular tip Voronoi cell is generated (the cell filled in gray in Fig. 4). This
allow us to establish a correspondence between the tip stress field and the attitudes
corresponding to the sites of the tip Voronoi cell. It has been shown [Ferretti (2003)]
that the tension points correctly describe the Mohr’s circle in the Mohr-Coulomb
plane, for rotation of the hexagonal element around the tip.

The used crack propagation technique is the intra-element technique with nodal
relaxation and subsequent re-meshing. Extension of this technique to the activation
of two propagation directions is provided in Ferretti (2008) even for the case in
which crack bifurcation occurs during propagation.

4 Constitutive Assumption

The concrete constitutive law adopted in this study is monotonic non-decreasing,
in accordance with the identification procedure for concrete in mono-axial load
provided in Ferretti (2005) (Fig. 5). It was shown [Ferretti (2004b, 2005)] how
this constitutive law turned out to be size insensitive for mono-axial compressive
load. This result has made it possible to formulate a new concrete law in mono-
axial loading, the effective law, which can be considered more representative of the
material physical properties than the softening laws are. Now, the effective law is
tested for applications in bi-axial tensile load. The tensile branch has been here
identified starting from the compressive one, in the assumption that a homothetic
relationship exists between the two branches (Fig. 5). A ratio between tensile and
compressive strength of 1/12, 1/8, 1/6, 1/4, 1/3 and 1/2 has been considered. The
best accordance between analytical and experimental results has been obtained for
the ratio equal to 1/8.

5 Parametric analysis of the limiting load

Numerical results concerning the limiting load for the concrete plate loaded as
shown in Fig. 1 are here presented. For symbols and conventions, refer to Fig. 1.
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Figure 5: Adopted constitutive law for concrete in mono-axial load

The py mapping for k = 0 and α0 = π/4, plotted on the deformed configuration of
a finite area around the crack, is shown in Fig. 6 for the initial straight crack. In
this figure, the darker red color corresponds to the maximal tensile stress, while the
darker green color corresponds to the value py = 0.

 

Figure 6: 2D py mapping for the initial straight crack with k = 0, α0 = π/4

In Fig. 7, the py mapping is provided in 3D, with the level lines plotted also in
the neutral plane, py = 0. The significance of colors is the same as in Fig. 6. The
3D plot correctly shows how py reaches a value numerically close to 0 near the
crack boundary. The boxed area in the plane py = 0 of Fig. 7 is the plot area of
Fig. 6. As all the level lines are internal to the boxed area, it can be assumed with
good approximation that this area represents the stress extinction zone for the initial
straight crack.
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Neutral plane 

Figure 7: 3D py mapping and lines of equal py for the initial straight crack with
k = 0, α0 = π/4

The normalized limiting load in the direction of the y-axis for a prefixed value of
the load ratio k:

p̄ylim (α0,k)|k=const =
pylim (α0,k)|k=const

pymax

, (4)

with:

pymax = max
α0,k

pylim (α0,k) , (5)

is plotted in Fig. 8 in function of the angle α0 (or, which is the same, in function
of β0 = π/2−α0) for the factor k equal to 0, 1/4, 1/2, 3/4 and 1. The figure
exhibits a p̄ylim limiting load increasing with α0 for each constant value of k in the
field 0≤ k < 1, stating that the value α0 = 0 gives the critical crack orientation for
all the biaxial load conditions, the x-component being lower than the y-component.
The constant behavior of the relationship obtained for k = 1 is in good agreement
with the homogeneous state of stress represented by this load condition. In this
case, all the crack orientations to the x-axis return the same limiting load.

The limiting load pylim for a given load ratio k = k̄ and a given crack inclination
α0 = ᾱ0 is the same as the limiting load pxlim for the reciprocal load ratio k = 1/k̄
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Figure 8: Normalized limiting load p̄ylim in function of the crack inclinations α0
and β0 for 0≤ k ≤ 1

and the complementary crack inclination β0 = ᾱ0. By defining the ideal limiting
load pidlim as:

pidlim =
√

p2
xlim

+ p2
ylim

= p0lim

√
k2 +1, (6)

it follows that pidlim assumes the same values for load conditions and crack incli-
nations which both are symmetric with respect to the bisector of the first quadrant,
y = x, with x and y the axes in Fig. 1.

The line y = x superimposes to the crack when the crack is oriented at the angle
α0 = π/4 (or, which is the same, at the angle β0 = π/4). Thus, in the plane α0/pidlim

(or β0/pidlim) the curves of the ideal limiting load for the given value k̄ of k and
its reciprocal value k = 1/k̄ are symmetric with respect to the line α0 = π/4 (or
β0 = π/4).

In Fig. 9, the curves of the normalized ideal limiting load for a prefixed value of
the load ratio k:

p̄idlim (α0,k)|k=const =
pidlim (α0,k)|k=const

pidmax

, (7)

with:

pidmax = max
α0,k

pidlim (α0,k) , (8)
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are plotted in function of the angles α0 and β0 for the load factor k equal to k̄ =
0,1/4,1/2,3/4,1 (solid lines) and its reciprocal values k = 1/k̄ = ∞,4,2,4/3,1
(dotted lines). Even in the plane α0/p̄idlim (β0/ p̄idlim), each couple of p̄idlim curves
plotted for reciprocal values of the load factor, k = k̄ and k = 1/k̄, are symmetric
with respect to the line α0 = β0 = π/4 (Fig. 9), of course. Each curve in Fig. 9
represents the function:

fk = fk (α0) = p̄idlim (α0,k)|k=k̄ , 0≤ α0 ≤
π

2
(9)

returning the relationship between p̄idlim and α0 at the given value k̄ of k. The locus
of the fk curves for the whole range of variability of the load factor, 0 ≤ k ≤ +∞,
is the function of two variables:

Ω = Ω(α0,k) = p̄idlim (α0,k) 0≤ α0 ≤
π

2
, 0≤ k ≤ ∞, (10)

which is a surface of the space of axes α0, k and p̄idlim defining the value of normal-
ized ideal limiting load in function of the crack orientation and the ratio between
the loads in direction of the x- and y-axis.
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Figure 9: Normalized ideal limiting load p̄idlim in function of the crack inclinations
α0 and β0 for 0≤ k ≤+∞

The thick line in Fig. 9, lower envelope of the fk curves in the plane α0/ p̄idlim (or
β0/ p̄idlim), is the plot of the function wα0k:

wα0k = wα0k (α0) = min
α0=ᾱ0
0≤k≤∞

Ω(α0,k) = min
α0=ᾱ0
0≤k≤∞

p̄idlim (α0,k) , (11)
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with:

0≤ α0 ≤
π

2
. (12)

Each point of the function (11) is obtained for different values of the load factor
k and, thus, belongs to different fk curves. Consequently, wα0k is the projection
on the plane α0/p̄idlim (or β0/ p̄idlim) of a 3D function of the space of axes α0, k
and p̄idlim , named ωα0 , where α0 and k are not independent variables since they
are bonded by the condition (11) of minimum load. Said kcr

lim = kcr
lim (α0) the load

factor providing the minimum value of normalized ideal limiting load p̄idlim for each
assigned α0 = ᾱ0:

kcr
lim (α0) = k : p̄idlim |α0=ᾱ0

k=kcr
lim

= min
α0=ᾱ0
0≤k≤∞

p̄idlim (α0,k) , 0≤ α0 ≤
π

2
(13)

the function ωα0 returning the minimum p̄idlim for a given α0 = ᾱ0 and 0≤ k≤+∞

can be written as:

ωα0 = ωα0 (α0,kcr
lim) = min

α0=ᾱ0
0≤k≤∞

Ω(α0,k) = min
α0=ᾱ0
0≤k≤∞

p̄idlim (α0,k) , (14)

with:

0≤ α0 ≤
π

2
. (15)

The function (13), where kcr
lim is the ratio between pcr

x and pcr
y at the limit state, is

provided by the projection of ωα0 on the plane α0/k, said wα0 p (Fig. 10):

wα0 p = wα0 p (α0) = kcr
lim (α0) . (16)

kcr
lim can be also expressed as the solution of the following differential problem:

kcr
lim = kcr

lim (α0) = k :
∂ p̄idlim (α0,k)

∂k

∣∣∣∣α0=ᾱ0
k=kcr

lim

= 0,
∂ 2 p̄idlim (α0,k)

∂k2

∣∣∣∣α0=ᾱ0
k=kcr

lim

> 0 (17)

In the aim to plot the 3D surface of the normalized ideal limiting load given by
Eq. (10) for the whole range of variability of the load factor, 0 ≤ k ≤ +∞, the
second independent variable of Ω, k, has been substituted by the variable ψ defined
as follows:

ψ = ψ (k) = 1− e−k, 0≤ k ≤+∞. (18)
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Figure 10: Load factor kcr
lim providing the minimum value of p̄idlim for each assigned

α0 = ᾱ0

With the change of variable (18), the surface of the normalized ideal limiting load
is given by the function:

Ω̂ = Ω̂(α0,ψ) = p̄idlim (α0,ψ) , 0≤ α0 ≤
π

2
, 0≤ ψ ≤ 1, (19)

which substitutes Eq. (10). The Eq. (19) gives a finite 3D representation of p̄id ,
in function of α0 (or β0) and ψ , since the ranges of variability of its independent
variables are finite ranges (Eq. (19)).

Some plots of Ω̂ obtained for different axes orientation are given in Fig. 11. In
particular, Fig. 11.a is the 3D equivalent representation of Fig. 9. Each line in
Fig. 11.a represents the function:

f̂ψ = f̂ψ (α0) = p̄idlim (α0,ψ)|
ψ=ψ̄

, 0≤ α0 ≤
π

2
, (20)

returning the relationship between p̄idlim and α0 at the given value ψ̄ of ψ . Since the
difference between the two surfaces Ω and Ω̂ stands in the change of the variable
plotted along the axis which is orthogonal both to the planes of Fig. 9 and Fig. 11.a
(Eq. (18)), it follows that the plot of the function fk is equal to that of the function
f̂ψ :

fk (α0)|k=k̄ = f̂ψ (α0)
∣∣
ψ=ψ̄=1−e−k̄ , 0≤ α0 ≤

π

2
. (21)
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Figure 11: Some examples of finite 3D representation of p̄idlim , in function of β0
and ψ
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The lower envelope of the f̂ψ curves in the plane α0/p̄idlim (or β0/p̄idlim) is the
function ŵα0ψ (Fig. 11.a):

ŵα0ψ = ŵα0ψ (α0) = min
α0=ᾱ0
0≤ψ≤1

Ω̂(α0,ψ) = min
α0=ᾱ0
0≤ψ≤1

p̄idlim (α0,ψ) , (22)

with:

0≤ α0 ≤
π

2
. (23)

Once more, from Eq. (18) it follows that:

wα0k (α0)|k=k̂ = ŵα0ψ (α0)
∣∣
ψ=ψ̂=1−e−k̄ , 0≤ α0 ≤

π

2
. (24)
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Figure 12: Load factors ψcr
lim and kcr

lim providing the minimum value of p̄idlim for
each assigned α0 = ᾱ0

ŵα0ψ is the projection on the plane α0/ p̄idlim (or β0/p̄idlim) of the 3D function ω̂α0

of the space of axes α0, ψ and p̄idlim( Fig. 11.a,c), with α0 and ψ bonded by the
condition (22) of minimum p̄idlim . Said ψcr

lim = ψcr
lim (α0) the value of ψ providing

the minimum value of normalized ideal limiting load p̄idlim for a given α0 = ᾱ0:

ψ
cr
lim (α0) = ψ : p̄idlim | α0=ᾱ0

ψ=ψcr
lim

= min
α0=ᾱ0
0≤ψ≤1

p̄idlim (α0,ψ) , 0≤ α0 ≤
π

2
(25)
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the function ω̂α0 can be written as:

ω̂α0 = ω̂α0 (α0,ψ
cr
lim) = min

α0=ᾱ0
0≤ψ≤1

Ω̂(α0,ψ) = min
α0=ᾱ0
0≤ψ≤1

p̄idlim (α0,ψ) , (26)

with:

0≤ α0 ≤
π

2
. (27)

The projection of the function ω̂α0 on the plane α0/ψ , named ŵα0 p in Fig. 11.c,
returns the relationship between ψcr

lim and α0 (Fig. 12):

ŵα0 p = ŵα0 p (α0) = ψ
cr
lim (α0) . (28)

In Fig. 12 also the axis of the load factor kcr
lim is plotted in order to make it possible

to evaluate the effect of the change of variable (18) on the law of the minimum
p̄idlim , by comparing the two functions given by Eqs. 16, plotted in Fig. 10, and 28,
plotted in Fig. 12.

The function ψcr
lim can be also expressed as the solution of the following differential

problem:

ψ
cr
lim = ψ

cr
lim (α0) = ψ :

∂ p̄idlim (α0,ψ)
∂ψ

∣∣∣∣ α0=ᾱ0
ψ=ψcr

lim

= 0,
∂ 2 p̄idlim (α0,ψ)

∂ψ2

∣∣∣∣ α0=ᾱ0
ψ=ψcr

lim

> 0

(29)

The Fig. 11.f is obtained by a 90˚ rotation of the Ω̂ surface around the p̄id-axis.
This last plot represents the locus of the functions:

f̂α0 = f̂α0 (ψ) = p̄idlim (α0,ψ)|
α0=ᾱ0

, 0≤ ψ ≤ 1 (30)

returning the relationship between p̄idlim and ψ for each assigned value ᾱ0 of α0.
The functions f̂α0 are the meridians of the surface in Fig. 11.f.

The lower envelope of the f̂α0 functions gives the function (Fig. 11.f):

ŵψα0 = ŵψα0 (ψ) = min
0≤α0≤ π

2
ψ=ψ̄

Ω̂(α0,ψ) = min
0≤α0≤ π

2
ψ=ψ̄

p̄idlim (α0,ψ) , (31)

with:

0≤ ψ ≤ 1. (32)
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ŵψα0 is the projection on the plane ψ/p̄idlim of the 3D function ω̂ψ plotted in Figs.
11.d,f:

ω̂ψ = ω̂ψ (αcr
0 ,ψ) = min

0≤α0≤ π

2
ψ=ψ̄

Ω̂(α0,ψ) = min
0≤α0≤ π

2
ψ=ψ̄

p̄idlim (α0,ψ) , (33)

where:

α
cr
0 = α

cr
0 (ψ) = α0 : p̄idlim |α0=αcr

0
ψ=ψ̄

= min
0≤α0≤ π

2
ψ=ψ̄

p̄idlim (α0,ψ) , 0≤ ψ ≤ 1 (34)

is the crack inclination minimizing the normalized ideal limiting load p̄idlim for
each assigned load factor ψ = ψ̄ . That is to say, as for ωα0 and ω̂α0 also the two
variables of ω̂ψ are bonded by a condition of minimum load. αcr

0 is the solution of
the following differential problem:

α
cr
0 = α

cr
0 (ψ) = α0 :

∂ p̄idlim (α0,ψ)
∂α0

∣∣∣∣α0=αcr
0

ψ=ψ̄

= 0,
∂ 2 p̄idlim (α0,ψ)

∂α2
0

∣∣∣∣
α0=αcr

0
ψ=ψ̄

> 0

(35)

As can be seen in Fig. 11.f, all the f̂α0 functions intersect in one point, of first
coordinate:

ψ = 1− 1
e
∼= 0.63. (36)

From Eqs. (36) and (18) it follows that the intersection point of all the f̂α0 functions
is found for the value of the load ratio:

k =− log(1−ψ) = 1. (37)

Since the f̂α0 functions do not have any other point in common, the α0 = αcr
0 min-

imizing p̄idlim at a given ψ turns out to be equal to:

α
cr
0 =


0 0≤ ψ < 1− 1

e , 0≤ k < 1[
0, π

2

]
ψ = 1− 1

e , k = 1
π

2 1− 1
e < ψ ≤ 1, 1 < k ≤+∞

(38)

which means that, as already observed in Fig. 8:

α
cr
0 =


0 px < py

[0,π/2] px = py

π/2 px > py

(39)
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Eq. (38), gives the values of the function ŵψ p, projection of ω̂ψ on the plane ψ/α0
(Fig. 11.d):

ŵψ p = ŵψ p (ψ) = α
cr
0 (ψ) . (40)

The two functions ω̂α0 and ω̂ψ have just one point in common (Fig. 11.c,d), the
point for which both functions are stationary:

α0 = β0 =
π

4
, ψ = 1− 1

e
. (41)

Actually, in a point in which both functions are stationary, looking for the minimum
p̄idlim at constant α0 is equal to looking for the minimum p̄idlim at constant ψ:

min
α0= π

4
0≤ψ≤1

p̄idlim (α0,ψ) = min
0≤α0≤ π

2
ψ=1− 1

e

p̄idlim (α0,ψ) = min
0≤α0≤ π

2
k=1

p̄idlim (α0,k) . (42)

6 Parametric analysis of the propagation path

In Fig. 13 and Fig. 14, the 2D and 3D py analysis for k = 0 and α0 = π/4 is
shown for a generic crack propagation step. The lighter colors of Figs. 13 and 14
with respect to those of Figs. 6 and 7 are representative of the progressive plate
downloading corresponding to the crack propagation. For the same reason, the
values in the third axis of Fig. 14 are smaller than those of Fig. 7. Moreover, in
Fig. 13 it can be observed how a mono-axial compressive state of stress of small
entity (cyan color) arises in the plate, due to the geometrical effect of the non-
straight crack deformation in Mode I.

The crack trajectory is plotted in Fig. 15 for the value of the angle α0 equal to
π/6, π/4 and π/3, and for the factor k equal to 0, 1/4, 1/2, 3/4 and 1. In this
figure, also the two meshes of Delaunay-Voronoi were plotted for k = 0, in order
to show how the adaptive mesh generator recreates the meshes for a generic crack
propagation step (Delaunay mesh in red and Voronoi mesh in blue, as indicated
in Fig. 4). Fig. 15 shows that the crack trajectory tends to approach an asymptote
perpendicular to the external tensile load for all the three cases with k = 0. The
asymptotic behavior is also evident for k > 0, but the asymptote is now oriented at
an angle γ to the x-axis which depends on k:

γ = f (k) . (43)

The angle γ does not depend on the inclination α0 of the initial straight crack, since
the crack tends to propagate perpendicularly to the tensile principal direction of the
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Figure 13: 2D py mapping for a generic propagation step with k = 0, α0 = π/4

 

Figure 14: 3D py mapping and lines of equal py for a generic propagation step with
k = 0, α0 = π/4

uncracked plate. For k = 1, the angle γ assumes the value π/4, in good accordance
with the homogeneous state of stress represented by this load condition:

γ|k=1 =
π

4
. (44)

The plot of the function γ = f (k) is provided in Fig. 16 for the range of values



Cell Method Analysis of Crack Propagation 273

 

 

 

 

 

α0=π/6
k=0 k=0

α0=π/4
k=0
α0=π/3

α0=π/3
k=0.75

α0=π/6
k=0.75

α0=π/3
k=0.5

α0=π/4
k=0.5

α0=π/4
k=0.25 k=0.25

α0=π/3α0=π/6
k=0.25

α0=π/6
k=0.5

α0=π/4
k=0.75

k=1
α0=π/6 α0=π/4

k=1
α0=π/3
k=1

Figure 15: Crack trajectory for α0 =π/6, π/4, π/3, and k =0, 1/4, 1/2, 3/4, 1
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0≤ k≤ 1. The plot of γ for the complete range of values 0≤ k≤+∞ (Fig. 17) can
be provided by means of the change of variable given by Eq. (18).
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Figure 17: Relationship between the angle γ and the variable ψ

If the behavior of the function γ = f (k) for 0 ≤ k ≤ 1 is known, the behavior of
γ = f (k) for 1 < k ≤ +∞ is also known. Actually, the asymptotes of the crack
trajectory for a given k and its reciprocal value, 1/k, are symmetric with respect to
the bisector of the first quadrant in Fig. 1, y = x (Fig. 18). That is to say, the value
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Figure 18: Crack trajectories for a given k and 1/k

assumed by γ for a given k is equal to the complementary angle of γ for 1/k:

γ

(
1
k

)
=

π

2
− γ (k) . (45)

Naming ϕ the clockwise positive angle in Fig. 18, with:

ϕ =
π

4
− γ, (46)

from Eqs. 45 and 46, it follows that:

ϕ

(
1
k

)
=−ϕ (k) . (47)

7 Conclusions

A first study on tensioned concrete plates was presented, based on an innovative
size-insensitive constitutive law.

The numerical model adopted, based on the CM, allows analysis in the discrete.
The crack propagation is then studied without using the stress intensity factors and
without having to define a model to treat the zone ahead of the crack tip. This allows
one to employ the same numerical code for bodies of different dimensions, geome-
tries and boundary conditions, and for materials of different constitutive laws. As
an example of the code versatility in front of the geometrical set-up, the interaction
between two or more cracks oriented at any inclination and propagating in plate
of finite/infinite dimensions can be easily investigated. As far as the versatility in
front of the constitutive law is concerned, the numerical analysis can be indiffer-
ently performed in the linear and non-linear field, with no adjunctive computational
burdens.
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The stress intensity factors of the variational approach can be estimated a-posteriori,
since the code allows us to evaluate the compliance decrement following from crack
propagation. A comparison between the variational and discrete formulation is then
possible, and it will be investigated in future studies.

In this paper, it was shown how the numerical results for plates in bi-axial loading
are satisfactory with respect to the load and geometrical parameters.

The crack trajectory exhibits an asymptotic behavior which only depends on the
ratio between the load parallel to the x- and the y-axis, k, being insensitive to the
inclination α0 of the initial straight crack. The crack always tends to propagate per-
pendicularly to the tensile principal direction of the uncracked plate. The numeri-
cal law of the asymptotic inclination, said γ = f (k), was provided for the complete
variability range of k, k = [0,+∞].
The plausibility of the founded crack trajectories in dependence on the parameter
k indirectly gives a validation of the adopted constitutive law for bi-axial tensile
loading.

It was also shown how the numerical crack trajectory for a solid of finite dimensions
is highly accurate.

Finally, it is remarkable how the analysis for finite solids is performed directly,
without having to apply corrective factors to the solution on an infinite geometry in
the same load conditions.
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