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An Iterative Time-Domain Algorithm for
Acoustic-Elastodynamic Coupled Analysis Considering

Meshless Local Petrov-Galerkin Formulations

Delfim Soares Jr.1

Abstract: In this work, meshless methods based on the local Petrov-Galerkin
approach are employed for the time-domain analysis of interacting fluid and solid
systems. For the spatial discretization of the acoustic fluid and elastodynamic solid
sub-domains involved in the coupled analyses, MLPG formulations adopting Gaus-
sian weight functions as test functions are considered, as well as the moving least
square method is used to approximate the incognita fields. For time discretization,
the Houbolt’s method is adopted. The fluid-solid coupled analysis is accomplished
by an iterative algorithm. In this iterative approach, each sub-domain of the global
model is analysed independently (as an uncoupled model) and a successive re-
newal of the variables at the common interfaces is performed, until convergence is
achieved. At the end of the paper, numerical applications illustrate the accuracy
and potentialities of the proposed techniques.
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1 Introduction

The investigation of interacting fluid and solid systems (e.g., fluids, such as air,
water, lubricants, blood etc., coupled with structural elements, such as buildings,
dams, offshore structures, mechanical components, pressure vessels, live organs
etc.) is a research field of particular importance in engineering and science. In
many cases, this interaction is quite expressive and must not be neglected, other-
wise the related analyses may only represent a very crude approximation of the real
model (this is particularly true in the case of a heavy fluid, such as water, interact-
ing with a rather light solid, such as a membrane type structure). Up to now, al-
though a considerable amount of publications is available concerning the numerical
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modelling of fluid-solid coupled systems (see, for instance, Belytschko and Geers,
1977; Mathews, 1986; von Estorff and Antes, 1991; Maman and Farhat, 1995;
Farhat et al., 1998; Lie et al., 2001; Park et al., 2001; Czygan and von Estorff,
2002; Lombard and Piraux, 2004; Soares et al., 2005, 2007, 2010a; etc.) – sev-
eral of them even considering the coupling of different numerical procedures – few
publications concentrate on the topic when meshless techniques are focused; and,
as far as the author is concerned, there are no publications on the matter consider-
ing meshless local Petrov-Galerkin (MLPG) formulations (for some key references
concerning the MLPG, the reader is referred to Atluri and Zhu, 1998; Atluri and
Shen, 2002a-b; Atluri, 2004; etc.; for some interesting applications of the MLPG to
solid and fluid analyses, the reader is referred to Han et al., 2005, 2006; Ma, 2005;
Mohammadi, 2008; Long et al., 2008; etc.).

In the beginning of the decade, Beckert and Wendland (2001) presented a multi-
variate interpolation scheme for coupling fluid (CFD) and structural models (FE)
in three-dimensional space using radial basis functions, applying the procedure to
analyse typical static aeroelastic problems. Latter on, Ahrem et al. (2006) pre-
sented a meshless spatial coupling scheme for large-scale fluid-structure interaction
problems, allowing the coupling of arbitrary meshes on fluid and structure sides.
The scheme was based upon a multivariate scattered data interpolation approach,
radial basis functions and partition of unity methods. Some years latter, Rendall
and Allen (2008) presented a multivariate interpolation scheme, using radial basis
functions, which removed all volume/structural mesh and flow-solver type depen-
dence, allowing all operations to be performed on totally arbitrary point clouds.
Recently, this procedure has been improved by the authors, taking into account
localized implementation (Rendall and Allen, 2009).

In this work, the coupling of acoustic fluids and elastodynamic solids modelled
by MLPG formulations is discussed. In order to deal with the coupled analysis in
focus, a time-domain iterative coupling algorithm is adopted, allowing each fluid
and solid sub-domain of the global model to be analysed independently. This is a
quite attractive approach for fluid-solid coupled analyses, since it avoids the com-
putation (as well as the solution) of the rather big and complex coupled system of
equations that is related to these kind of models. This alternative iterative coupling
methodology was first developed, to analyse two-dimensional fluid-solid coupled
systems, taking into account finite element – boundary element coupled formu-
lations (Soares et al., 2005). Later on, it was extended to analyse more generic
fluid-solid coupled models (Soares and Mansur, 2006; Warszawski et al., 2008;
Soares, 2008, 2009).

The present paper is organized as follows: first (section 2), the governing equa-
tions for the fluid and solid sub-domains are presented, as well as their coupling
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equations. In the sequence, the spatial and temporal discretizations for the different
sub-domains are briefly described (section 3) and the iterative coupling algorithm
is discussed (section 4). At the end of the paper (section 5), numerical results are
presented, illustrating the accuracy and potentialities of the proposed methodology.

2 Governing Equations

In the present section, acoustic and elastic wave equations are briefly presented.
These wave propagation models are used to model the fluid and solid sub-domains
of the global problem, respectively. At the end of the section, basic equations
concerning the coupling of acoustic and elastic sub-domains are described.

2.1 Fluid sub-domains

If the influence of gravity on the dynamic behavior of the fluid is neglected, the hy-
drodynamic equilibrium and continuity fluid equations lead to the so-called scalar
wave equation:

(κ p,i),i−ρ p̈+S = 0 (1)

which describes the irrotational small-amplitude motions of the fluid particles. In
equation (1), p(X , t) stands for hydrodynamic pressure distribution and S(X , t) for
body source terms. Inferior commas (indicial notation is adopted) and over dots in-
dicate partial space (p,i = ∂ p/∂xi) and time ( ṗ = ∂ p/∂ t) derivatives, respectively.
ρ(X) stands for the mass density and κ(X) is the bulk modulus of the medium. In
homogeneous media, ρ and κ are constant and the classical wave equation can be
written as:

p,ii− (1/c2)p̈+ s = 0 (2)

where c =
√

κ/ρ is the wave propagation velocity. The boundary and initial con-
ditions of the problem are given by:

(i) Boundary conditions (t > 0, X ∈ Γ where Γ = Γ1∪Γ2)

p(X , t) = p̄(X , t) for X ∈ Γ1 (3a)

q(X , t) = p, j(X , t)n j(X) = q̄(X , t) for X ∈ Γ2 (3b)

(ii) Initial conditions (t = 0, X ∈ Γ∪Ω):

pi(X ,0) = p̄i0(X) (4a)

ṗ(X ,0) = ˙̄p0(X) (4b)
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where the prescribed values are indicated by over bars and q represents the flux
along the boundary whose unit outward normal vector components are represented
by n j. The boundary of the model is denoted by Γ(Γ1 ∪Γ2 = Γ and Γ1 ∩Γ2 = 0)
and the domain by Ω.

2.2 Solid sub-domains

The elastic wave equation for homogenous media is given by:

(c2
d− c2

s )u j, ji + c2
s ui, j j− üi +bi = 0 (5)

where ui and bi stand for the displacement and the body force distribution com-
ponents, respectively. The notation for time and space derivatives employed in
equation (1) is once again adopted. In equation (5), cd is the dilatational wave ve-
locity and cs is the shear wave velocity, they are given by: c2

d = (λ + 2µ)/ρ and
c2

s = µ/ρ , where ρ is the mass density and λ and µ are the Lamé’s constants of
the medium. Equation (5) can be obtained from the combination of the following
basic mechanical equations (proper to model heterogeneous media):

σi j, j−ρ üi +ρbi = 0 (6a)

σi j = λδi jεkk +2µεi j (6b)

εi j = 1
2(ui, j +u j,i) (6c)

where σi j and εi j are, respectively, stress and strain tensor components and δi j is
the Kronecker delta (δ i j = 1, for i = j and δ i j = 0, for i 6=j). Equation (6a) is the
momentum equilibrium equation; equation (6b) represents the constitutive law of
the model and equation (6c) stands for kinematical relations. The boundary and
initial conditions of the elastodynamic problem are given by:

(i) Boundary conditions (t > 0, X ∈ Γ where Γ = Γ1∪Γ2)

ui(X , t) = ūi(X , t) for X ∈ Γ1 (7a)

τi(X , t) = σi j(X , t)n j(X) = τ̄i(X , t) for X ∈ Γ2 (7b)

(ii) Initial conditions (t = 0, X ∈ Γ∪Ω)

ui(X ,0) = ūi0(X) (8a)

u̇i(X ,0) = ˙̄ui0(X) (8b)

where, once again, the prescribed values are indicated by over bars and τi denotes
the traction vector along the boundary (n j, as indicated previously, stands for the
components of the unit outward normal vector).
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2.3 Fluid-solid interacting interfaces

On the fluid-solid interface boundaries, the elastic sub-domain normal (normal to
the interface) accelerations (ün) are related to the acoustic sub-domain fluxes (q),
and the acoustic sub-domain hydrodynamic pressures (p) are related to the elastic
sub-domain normal tractions (τn). These relations are expressed by the following
equations:

ün− (1/ρ)q = 0 (9a)

τn + p = 0 (9b)

where in equations (9) the sign of the different sub-domain outward normal direc-
tions is taken into account (outward normal vectors on the same interface point
are opposite for each sub-domain). In equation (9a), ρ is the mass density of the
interacting fluid sub-domain.

3 Numerical discretization

In this section, the numerical discretization of the fluid and solid sub-domains by
meshless local Petrov-Galerkin formulations is briefly discussed. First, in sub-
section 3.1, the moving least square (MLS) approximation is described and, next
(sub-sections 3.2 and 3.3), the local weak-forms for the fluid and solid sub-domains,
as well as their spatial discretizations taking into account MLS approximations, are
discussed. In sub-section 3.4, time-marching procedures based on the Houbolt’s
method are presented, allowing the time-domain solution of the matricial systems
of equations that arise.

3.1 Moving least square approximation

In general, a meshless method uses a local approximation to represent the trial
function in terms of nodal unknowns which are either the nodal values of real field
variables or fictitious nodal unknowns at some randomly located nodes. The mov-
ing least squares approximation may be considered as one of such schemes, and it
is used here.

Consider a sub-domain Ωx, the neighbourhood of a point X and denoted as the
domain of definition of the MLS approximation for the trial function at X , which
is located in the problem domain Ω (see Fig.1). Also consider a generic field φ ,
which represents the hydrodynamic pressure field p, in case of fluid sub-domains
analyses, or the displacement field ui, in case of solid sub-domains modelling. To
approximate the distribution of function φ in Ωx, over a number of randomly lo-
cated nodes, the MLS approximation of φ can be defined by (Atluri and Shen,
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Figure 1: Local boundaries, sub-domains and domain of definition of the MLS
approximation for the trial function at node X .

2002a; Atluri, 2004):

φ(X , t)≈Π
T (X)Φ̂(t) =

N

∑
a=1

η
a(X)φ̂ a(t) (10)

where φ̂ is the fictitious nodal value of φ and N is the number of points in the sub-
domain Ωx. The shape matrix ΠT (X) = [η1(X),η2(X), . . . ,ηN(X)] is computed
by:

Π
T (X) = pT (X)A−1(X)B(X) (11)

where

A(X) =
N

∑
a=1

wa(X)p(Xa)pT (Xa) (12a)

B(X) = [w1(X)p(X1), w2(X)p(X2), ...., wN(X)p(XN)] (12b)

and pT (X) = [p1(X), p2(X), . . . , pm(X)] is a complete monomial basis of order m.
wa(X) is the weight function associated with node a. The Gaussian weight function
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is adopted here, and it is given by:

wa(X) =
exp[−(da/ca)2k]− exp[−(ra/ca)2k]

1− exp[−(ra/ca)2k]
(1−H[da− ra]) (13)

where da = ||X−Xa|| is the distance between the sampling point X and node Xa, ca

is a constant controlling the shape of the weight function and ra is the radius of the
circular support of the weight function. The Heaviside unit step function is defined
as H[z] = 1 for z > 0 and H[z] = 0 for z≤ 0. The size of the weight function support
should be large enough to have a sufficient number of nodes covered in the domain
of definition to ensure the regularity of matrix A.

3.2 Fluid discretization

Instead of writing the global weak-form for the governing equations described in
section 2, the MLPG method constructs a weak-form over local fictitious sub-
domains, such as Ωs, which is a small region taken for each node inside the global
domain (see Fig.1). The local sub-domains overlap each other, and cover the whole
global domain Ω. The geometrical shape and size of local sub-domains can be ar-
bitrary. In the present work, the local sub-domains are taken to be of circular shape.
The local weak-form of the governing equations described in sub-section 2.1 can
be written as:

∫
∂Ωs

ϕκqdΓ−
∫
Ωs

ϕ,iκ p,idΩ+
∫
Ωs

ϕ(S−ρ p̈)dΩ+β

∫
Γs1

ϕ(p− p̄)dΓ = 0 (14)

where ϕ is a test function and β is a penalty parameter, which is introduced here
in order to impose essential prescribed boundary conditions in an integral form.
In equation (14), ∂Ωs is the boundary of the local sub-domain, which consists of
three parts, in general: ∂Ωs = Ls ∪Γs1 ∪Γs2. Here, Ls is the local boundary that
is totally inside the global domain, Γs2 is the part of the local boundary which
coincides with the global natural boundary, i.e., Γs2 = ∂Ωs∩Γ2, and similarly Γs1
is the part of the local boundary that coincides with the global essential boundary,
i.e., Γs1 = ∂Ωs∩Γ1 (see Fig.1).

Equation (14) can be rewritten by taking into account approximation (10) and by
defining the local integral sub-domain as the circle Ωc, centred at node Xcand de-
scribed by radius rc. The expression that arises, considering the test functions spec-
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ified as ϕ = wc (Gaussian weight function), is given by:

N

∑
a=1

∫
Ωc

wc
ρη

adΩ

 ¨̂pa−

β

∫
Γc

1

wc
η

adΓ+
∫
Γc

1

wc
κniη

a
,idΓ−

∫
Ωc

wc
,iκη

a
,idΩ

 p̂a

=

=
∫
Γc

2

wc
κ q̄dΓ +

∫
Ωc

wcSdΩ−β

∫
Γc

1

wc p̄dΓ (15)

By collecting all nodal unknown fictitious values p̂a(t) into vector P̂, the system of
the discretized equations (15) can be rewritten into matrix form, as follows:

M ¨̂P+KP̂ = F (16)

where M is the matrix evaluated taking into account the first integral term on the
l.h.s. of equations (15); K is the matrix computed considering the second terms
on the l.h.s. of equations (15); and F is the vector evaluated considering the terms
on the r.h.s. of equations (15). Once the second order ordinary differential matrix
equation (16) is established, its solution in the time-domain is discussed in sub-
section 3.4, taking into account finite difference procedures.

3.3 Solid discretization

The local weak-form of the governing equations described in sub-section 2.2 is
written as:∫

∂Ωs

ϕikσi jn jdΓ−
∫
Ωs

ϕik, jσi jdΩ+
∫
Ωs

ϕik(ρ bi−ρ üi)dΩ+β

∫
Γs1

ϕik(ui− ūi)dΓ = 0

(17)

where, once again, ϕik is a test function and β is a penalty parameter.

Analogously to equation (14), equation (17) can be rewritten taking into account
approximation (10) and specifying the local integral sub-domain as the circle Ωc

centred at node Xc. Considering the test functions specified as ϕik = δikwc (Gaus-
sian weight function) and adopting Voigt notation, the expression that arises is
given by:

N

∑
a=1

∫
Ωc

wc
ρη

adΩ

 ¨̂ua−

β

∫
Γc

1

wc
η

adΓ+
∫
Γc

1

wcNDBadΓ−
∫
Ωc

WcDBadΩ

 ûa

=

=
∫
Γc

2

wc
τ̄dΓ +

∫
Ωc

wc
ρ bdΩ−β

∫
Γc

1

wc ūdΓ (18)
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where N is the normal matrix, D is the constitutive matrix, Ba is the strain matrix
(defined by a combination of the spatial derivatives of the interpolation functions
ηa) and Wc is defined by a combination of the spatial derivatives of the weight
functions wc (analogously to the definition of the transpose of the strain matrix).

By collecting all nodal unknown fictitious displacements ûa(t) into vector Û, the
system of the discretized equations (18) can be rewritten into matrix form, as fol-
lows:

M ¨̂U+KÛ = F (19)

where the definitions of the matrices and vectors specified in equation (19) are
analogous to those of equation (16).

3.4 Temporal discretization

The Houbolt’s method is considered here to solve the systems of second order or-
dinary differential equations (16) and (19) in the time-domain (Houbolt, 1950). It
is important to observe that the Houbolt’s method provides high-frequency dissi-
pation, eliminating the contribution of spurious modes, which is of great impor-
tance considering MLPG formulations, in order to avoid unstable results. In the
Houbolt’s method, the following finite difference expression is considered in order
to approximate ¨̂

Φ (once again, Φ̂ is here employed to generically represent P̂ or Û)
at time tn+1:

¨̂
Φ

n+1
= (2Φ̂

n+1−5Φ̂
n +4Φ̂

n−1− Φ̂
n−2)/∆t2 (20)

where ∆t is a selected time-step.

After introducing relation (20) into the systems of equations (16) or (19), the fol-
lowing system of equations arises, which allows the computation of the fictitious
nodal values φ̂ at each time-step:

ĀΦ̂
n+1 = B̄ (21)

where Ā and B̄ are the Houlbot’s effective matrix and vector, respectively, given
by:

Ā = (2/∆t2)M+K (22a)

B̄ = Fn+1 +(1/∆t2)M(5Φ̂
n−4Φ̂

n−1 + Φ̂
n−2) (22b)
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4 Fluid-solid coupling

In order to perform the coupling of the fluid/solid sub-domains, each sub-domain is
analysed independently here (i.e., as an uncoupled model) and a successive renewal
of the variables at the common interfaces is performed through an iterative proce-
dure until convergence is achieved. As previously reported (Soares et al., 2005),
several advantages arise from iterative coupling approaches considering fluid-solid
interacting models, as for instance: (i) simpler, smaller and better-conditioned sys-
tems of equations are obtained, leading to more efficient numerical analyses; (ii)
only interface routines are required when one wishes to use existing codes to build
coupling algorithms; (iii) nonlinearities can be taken into account in the same itera-
tion loop needed for the coupling and, as a consequence, consideration of nonlinear
models (not focused on this work) does not introduce a relevant CPU time increase;
etc.

In the next sub-section, the calculus of the coupling matrices and forces is de-
scribed, taking into account MLPG formulations. In the sequence, the fluid-solid
iterative coupling algorithm is discussed in detail.

4.1 Coupling matrices and forces

In the iterative coupling approach being considered, natural boundary conditions
are prescribed, at the common interfaces, for each sub-domain. The accelerations
evaluated at the solid sub-domains are used to obtain the fluxes (prescribed inter-
face boundary condition) for the fluid sub-domains (equation (9a)) and the pres-
sures evaluated at the fluid sub-domains are used to obtain the tractions (prescribed
interface boundary condition) for the solid sub-domains (equation (9b)).

Taking into account equation (9a), the coupling forces acting on a fluid sub-domain,
due to an interacting solid sub-domain, can be written locally (i.e., at the local
integral circle sub-domain centred at the interface node X i) as:

fü =
∫
Γi

2

wi
κ q̄dΓ =

∫
Γi

2

wi
κρnT üdΓ =

N

∑
a=1

∫
Γi

2

wi
κρnT

η
adΓ

 ¨̂ua
(23)

where n = [n1,n2]T is the solid sub-domain unit outward normal vector. By collect-
ing all nodal values into global vectors, equation (23) can be rewritten into matrix
form, as follows:

Fü = Qü
¨̂U (24)

where Qü is the fluid-solid coupling matrix.
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Taking into account equation (9b), the coupling forces acting on a solid sub-domain,
due to an interacting fluid sub-domain, can be written locally as:

fp =
∫
Γi

2

wi
τ̄dΓ =

∫
Γi

2

win pdΓ =
N

∑
a=1

∫
Γi

2

winη
adΓ

 p̂a (25)

where n is the fluid sub-domain unit outward normal vector. Analogously to equa-
tion (23), equation (25) can be rewritten into matrix form, as follows:

Fp = QpP̂ (26)

where Qp is the solid-fluid coupling matrix.

Taking into account the coupling forces Fü and Fp, the fluid and solid discrete
governing equations (16) and (19) can be rewritten together as:

M ¨̂P+KP̂ = F+Fü (27a)

M ¨̂U+KÛ = F+Fp (27b)

where in the coupled equations (27) the effects of the interacting sub-domains are
being considered.

4.2 Iterative coupling algorithm

Initially, in the fluid-solid iterative coupling algorithm, the solid sub-domain is
analysed and the solid displacements and accelerations are evaluated taking into

account equations (27b) and (20), respectively (i.e., (k+α)Ûn+1 and (k+α) ¨̂U
n+1

are
computed, where left superscripts stand for iterative steps. For the first iterative
step of each time step, (0)Fn+1

p = QpP̂n is assumed). In the sequence, a relaxation
parameter α (0 < α ≤ 1) is introduced in order to ensure and/or to speed up con-
vergence, such that:

(k+1) ¨̂U
n+1

= (α)(k+α) ¨̂U
n+1

+(1−α)(k) ¨̂U
n+1

(28)

Once (k+1) ¨̂U
n+1

is calculated, the fluid coupling force (k+1)Fn+1
ü is evaluated ac-

cording to equation (24). Taking into account the effects of force (k+1)Fn+1
ü , the

fluid sub-domain is analysed, as described by equation (27a), and the hydrody-
namic pressures (k+1)P̂n+1 are computed. Once (k+1)P̂n+1 is computed, the solid
coupling force (k+1)Fn+1

p is evaluated according to equation (26) and the solid sub-
domain is once again analysed considering the effects of (k+1)Fn+1

p , reinitiating the
iterative cycle.
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The following convergence criterion may be considered for the iterative procedure:

||(k+1)
Φ̂

n+1− (k)
Φ̂

n+1||/||(k)Φ̂n+1|| ≤ ξ (29)

where ξ stands for a pre-selected tolerance error and Φ̂ represents the displace-
ments at the solid sub-domains, the hydrodynamic pressures at the fluid sub-domains,
or both.

5 Numerical aspects and applications

Two numerical applications are considered here, illustrating the discussed method-
ologies. In the first application, a fluid-solid column is analysed and the obtained re-
sults are compared to analytical answers. In the second application, a dam-reservoir
system is studied and the computed responses are compared to those provided by a
FEM-BEM coupled analysis.

In the present work, the radii of the influence domain and of the local sub-domain
are set to θxd3

i and θsd1
i , respectively; where d3

i and d1
i are the distances to the

third and first nearest points from node i, respectively. In all the applications that
follow, θx = 4.0 and θs = 1.0 are selected. Taking into account the number of terms
in the definition of the basis vector p, m = 6 is considered (quadratic basis). The
M matrix is adopted diagonal (it is diagonalized by a row-sum technique), which
allows a very efficient time-marching procedure, once the computational cost of the
effective vector evaluation is considerably reduced (see equation (22b)). Regarding
the iterative process, for all the applications that follow, a tight tolerance error of
ξ = 10−6 is adopted.

L

2L 2L
f(t)

FLUID SOLID 

C B A 

 
Figure 2: Sketch of the fluid-solid column.
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5.1 Fluid-solid column

In this sub-section, a fluid-solid column is analysed (Soares et al., 2007; Warsza-
wski et al., 2008). A sketch of the problem is depicted in Fig.2. The geometry of the
model is defined by L = 1.0m and the column is submitted to a time Heavisite force
acting at one of its ends. The physical properties of the media are: (i) fluid sub-
domain – κ = 100N/m2 (bulk modulus) and ρ = 1kg/m3 (density); (ii) solid sub-
domain – E = 100N/m2 (Young modulus), ν = 0 (Poisson rate) and ρ = 1kg/m3

(density). Two spatial-temporal discretizations are considered to analyse the model,
namely: (i) discretization 1 – 153 nodes are employed to spatially discretize each
sub-domain, in a regular equally spaced 9x17 (vertical and horizontal, respectively)
distribution, and the time-step adopted is ∆t = 0.0025s; (ii) discretization 2 – 561
nodes are employed to spatially discretize each sub-domain, in a regular equally
spaced 17x33 (vertical and horizontal, respectively) distribution, and the time-step
adopted is ∆t = 0.00125s.

In Fig.3, displacement time-history results at points A and B of the solid sub-
domain are plotted, considering discretizations 1 and 2. In Fig.4, analogous time-
history results are depicted at points B and C, considering hydrodynamic pressures
at the fluid sub-domain. Analytical time-histories (Miles, 1961) are also depicted
in Figs. 3 and 4, highlighting the good accuracy of the numerical results.

Table 1: Average number of iterations per time-step considering different relaxation
parameters for the fluid-solid column analyses

Relaxation Parameter Discretization 1 Discretization 2
1.0 5.02 4.90
0.9 4.84 4.67
0.8 6.04 5.87
0.7 7.23 6.98
0.6 8.59 8.25
0.5 10.23 9.82

The oscillatory behaviour depicted in Fig.4 is typical for the present column anal-
ysis, even considering acoustic or elastodynamic uncoupled models analysed by
different numerical procedures (e.g., finite elements, boundary elements etc.). In
fact, the application in focus is a very important benchmark since the analytical an-
swer is known and it represents a rather complex numerical computation (in spite
of its geometrical and load simplicity) once there are successive reflections occur-
ring at the model extremities and these multiple reflections can emphasize some
numerical aspects, such as instabilities and excessive numerical damping.
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Figure 3: Time-history results for the horizontal displacements at points A and B:
(a) discretization 1; (b) discretization 2.
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Figure 4: Time-history results for the hydrodynamic pressures at points B and C:
(a) discretization 1; (b) discretization 2.



216 Copyright © 2009 Tech Science Press CMES, vol.54, no.2, pp.201-221, 2009

  

 f
 

(t) 

   

   
  35    

  50  

  10  

  10 

 H 

 

 
 

 

 

A 

 ∞ 

FLUID SOLID 

 

 Figure 5: Sketch of the dam-reservoir system.
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Figure 6: Time-history results for vertical displacements at point A considering H
= 35m and H = 50m.
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Table 2: Average number of iterations per time-step considering different relaxation
parameters for the dam-reservoir system analyses

Relaxation Parameter H=35 H=50
1.0 8.49 8.33

0.75 6.79 6.47
0.50 11.61 11.08
0.25 23.94 21.13

In Table 1, the average number of iterations per time step is presented, consider-
ing different relaxation parameter values. As one can observe, few iterations are
necessary for the iterative algorithm to converge, once an appropriate relaxation
parameter is selected (one should keep in mind that a tight tolerance error is being
considered).

5.2 Dam-reservoir system

In this second example, a dam-reservoir system (von Estorff and Antes, 1991;
Soares et al. 2005), as depicted in Fig. 5, is analysed. The structure is subjected to
a sinusoidal distributed vertical load on its crest, acting with an angular frequency
w = 18 rad/s. The material properties of the dam are: E =3.437·109N/m2, ν = 0.25
and ρ = 2000 kg/m3. The adjacent water is characterized by c =1436m/s and ρ =
1000 kg/m3 (water levels defined by H = 50 m and H = 35 m are considered). 113
nodes are employed to discretize the dam and the fluid is discretized by a regular
equally spaced (horizontally sufficiently extended) distribution of nodes. Regard-
ing temporal discretization, the time-step adopted for the analyses is ∆t = 0.002s.

Fig.6 depicts the vertical displacement time-histories at the dam crest (point A),
taking into account the present MLPG coupled formulation and FEM-BEM cou-
pled procedures (Soares et al. 2005). As one can observe, the time responses are
quite similar considering these two different methodologies. In Table 2, once again
the average number of iterations per time step is presented, considering different
relaxation parameter values.

6 Conclusions

In the present work, numerical analyses of fluid-solid coupled problems, taking
into account MLPG formulations, are presented for the first time. The coupling of
interacting acoustic fluids and elastodynamic solids are carried out here by means
of a time domain iterative algorithm. This numerical procedure not only is easy to
implement (it only requires interface routines), but also it is very efficient, allowing
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each sub-domain of the global model to be analysed independently. As a conse-
quence, smaller, simpler and better conditioned systems of equations arise, which
are easier and faster to be computed and solved.

The framework presented in this paper is also appropriate to analyse more com-
plex physical models, as for instance, models governed by geometrical and mate-
rial nonlinear formulations. In this case: (i) non-linear numerical analyses can be
taken into account in the same iterative loop needed for the fluid-solid coupling;
(ii) meshless techniques may be considered very appropriate, not only to evaluate
the current state of stresses properly (Soares et al., 2009, 2010b), but also to avoid
detrimental element distortions (usual in Lagrangian finite element approaches).
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