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Full-Field Analysis of a Functionally Graded
Magnetoelectroelastic Nonhomogeneous Layered

Half-Plane
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Abstract: In this study, the two-dimensional problem of elastic, electric, and
magnetic fields induced by generalized line forces and screw dislocations applied
in a functionally graded magnetoelectroelastic layered half-plane is analyzed. It is
assumed that the material properties vary exponentially along the thickness direc-
tion. The full-field solutions for the transversely isotropic magnetoelectroelastic
nonhomogeneous layered half-plane are obtained using the Fourier-transform tech-
nique. For the case that material properties are continuous at the interface, it is
shown that all magnetoelectroelastic fields are continuous at the interface. Further-
more, this functionally graded layered half-plane has the identical contour slopes
for the generalized stress σσσ

( j)
y across the interface. Numerical results for the full-

field distributions of generalized stresses and strains are presented and discussed in
detail.

Keywords: Functionally graded material, magnetoelectroelastic material, lay-
ered half-plane, full-field solution, nonhomogeneous, interface

1 Introduction

In the recent decade, magnetoelectroelastic solids have been drawn considerable
attentions for their promise potential in various applications such as transducer
and sensors due to the coupling effect between mechanical, electric, and magnetic
fields. For most engineering applications, multilayered structures are often used in
the design of magnetoelectroelastic materials. However, the distinct material prop-
erties of each layer in laminated composite structures always induce the discontinu-
ous stresses along the interfaces. The interfacial cracks are usually generated at the
layer interfaces during service. Therefore, the analysis of the interfacial fracture
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problem is of great important in multilayered structures. Currently, functionally
graded magnetoelectroelastic materials with properties continuously varying in the
space are developed to overcome the sharp interface and reduce stress concentra-
tions.

For a layered half-plane problem, the elastic deformations, electric fields, and mag-
netic fields in magnetoelectroelastic solids are usually produced by generalized line
forces or dislocations. Guan and He (2005) obtained expressions of elastic dis-
placement, stress, electric displacement, electric potential, magnetic induction, and
magnetic potential for a two-dimensional plane problem of a transversely isotropic
magnetoelectroelastic half-plane medium subjected to a point force. Hao and Liu
(2006) investigated the interaction between a screw dislocation and a semi-infinite
interfacial crack in a transversely isotropic magnetoelectroelastic bimaterial. Li
and Kardomateas (2006) investigated the mode III interface crack problem for dis-
similar piezoelectromagnetoelastic bimaterial media. The problem for an antiplane
interface crack between two dissimilar magnetoelectroelastic layers was analyzed
by Wang and Mai (2006). For a magnetoelectroelastic layer sandwiched between
dissimilar half spaces, the antiplane crack problem subjected to longitudinal load-
ings was carried out by Hu, Qin and Kang (2007). Analytical full-field solutions
of a magnetoelectroelastic layered half-plane subjected to generalized concentrated
forces and screw dislocations were presented by Lee and Ma (2007). The solution
obtained was then used to derive image forces of screw dislocations in a layered
half-plane by Ma and Lee (2007).

With the help of the development in high-tech electronic devices, the important con-
cept of the functionally graded material with position-dependent properties have
been widely used to reduce internal stresses and increase its reliability. A mesh-
less method based on the local Petrov-Galerkin approach was proposed by Sladek,
Sladek, Tan and Atluri (2008) to investigate the steady-state and transient heat
conduction problems in a functionally graded anisotropic material. Ou and Chue
(2006) studied two mode III internal cracks located within two bonded functionally
graded piezoelectric half planes. The electroelastic behavior of an antiplane shear
crack in a functionally graded piezoelectric strip was investigated by Kwon (2003)
and Ma, Wu, Zhou and Guo (2005). The mixed-mode problem of a finite crack em-
bedded in a semi-infinite strip of a nonhomogeneous piezoelectric material under
uniform electrical displacement loadings was considered by Ueda (2006). For the
sandwich structural system, the dynamic and static antiplane shear problems for a
cracked functionally graded piezoelectric interlayer bonded between two dissimilar
homogeneous piezoelectric half planes were analyzed by Chen, Liu and Zou (2003)
and Hu, Zhong and Jin (2005), respectively. Recently, magnetoelectroelastic struc-
tures with functionally graded material properties have attracted many researchers’
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attentions. The magnetoelectroelastic behavior of a crack in functionally graded
piezoelectric/piezomagnetic materials subjected to an antiplane shear stress load-
ing was investigated by Zhou, Wu and Wang (2005). Recently, Zhou and Wang
(2008) investigated an interface crack between two functionally graded piezoelec-
tric/piezomagnetic materials subjected to harmonic antiplane shear stress waves.
The fracture problem for an embedded crack perpendicular to the boundary of a
functionally graded magnetoelectroelastic strip was studied by Feng and Su (2006)
and Ma, Li, Abdelmoula and Wu (2007). Pan and Han (2005) derived an exact
solution for the simple supported laminated plates made of anisotropic and func-
tionally graded magnetoelectroelastic materials. By semi-analytical finite element
method, static analysis of functionally graded magnetoelectroelastic plates have
been carried out by Bhangale and Ganesan (2006). It was shown that the advantage
of functionally graded material model over the layered model is that there is no
discontinuity between the electric potential, magnetic potential, electric displace-
ments, and magnetic inductions between the layers. The two-dimensional fracture
problem of nonhomogeneous magneto-electro-thermo-elastic materials under dy-
namically thermal loading was investigated by Feng, Han and Li (2009) using the
meshless local Petrov-Galerkin method.

In this study, an effective mathematical method is developed to construct the analyt-
ical full-field solutions for the two-dimensional functionally graded magnetoelec-
troelastic layered half-plane problem. This layered half-plane is subjected to gener-
alized antiplane forces and screw dislocations applied either in the thin layer or the
half-plane. Because of the mathematical difficulties, the solution for the function-
ally graded magnetoelectroelastic layered half-plane subjected antiplane loadings
is not easy to obtain. We assume that all the material properties considered in this
study have the same exponential variations. By using the Fourier integral trans-
form technique, the full-field solutions of this nonhomogeneous magnetoelectroe-
lastic layered half-plane problem are presented. Based on the analytical solutions,
four different combinations of functionally graded parameters will be used to in-
vestigate the interesting phenomenon near the interface. For the special case of a
nonhomogeneous layered half-plane with continuous material constants at the in-
terface, it is shown in this study that all magnetoelectroelastic fields are continuous
through the interface. Furthermore, it is also proved that the contour curves for the
generalized stress σσσ

( j)
y at the interface have the same slopes (first derivative). For

the computational results, the full-field distributions of the generalized stresses and
strains in the nonhomogeneous layered half-plane subjected to line forces or screw
dislocations are presented with different functionally graded parameters.
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2 Formulations and Governing Equations

For the two-dimensional functionally graded magnetoelectroelastic layered half-
plane problem, the solid is assumed to be antiplane deformation in conjunction
with the in-plane electric field and in-plane magnetic field as shown in Fig. 1. The
thin layer (0 ≤ y ≤ h) with thickness h is occupied by material 1 and is perfectly
bonded to the half-plane (h≤ y < ∞) occupied by material 2. The x axis is taken to
be the free surface of the thin layer. In the case of a transversely isotropic magne-
toelectroelastic medium with the polarized axis in the z direction, the out-of-plane
displacement w( j) is coupled with the in-plane electric potential ϕ( j) and in-plane
magnetic potential φ ( j). These field quantities depend on x and y only and are
expressed as

w( j) = w( j)(x, y), j = 1, 2,

ϕ
( j) = ϕ

( j)(x, y), (1)

φ
( j) = φ

( j)(x, y).

yh
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Figure 1: Configuration and coordinate system of a functionally graded magneto-
electroelastic layered half-plane.

The superscripts ( j) on the field quantities are employed to label materials j. The
shear strains (γ( j)

xz and γ
( j)
yz ), in-plane electric fields (E( j)

x and E( j)
y ), and in-plane

magnetic fields (H( j)
x and H( j)

y ) are defined as follows:

γ
( j)
xz =

∂w( j)

∂x
, γ

( j)
yz =

∂w( j)

∂y
,

E( j)
x =−∂ϕ( j)

∂x
, E( j)

y =−∂ϕ( j)

∂y
, (2)



Full-Field Analysis 91

H( j)
x =−∂φ ( j)

∂x
, H( j)

y =−∂φ ( j)

∂y
.

For the nonhomogeneous magnetoelectroelastic problem, the material properties
are assumed to vary continuously along the y direction, and the constitutive rela-
tions are expressed asτ

( j)
xz

D( j)
x

B( j)
x

=

c( j)
44 (y) e( j)

15 (y) q( j)
15 (y)

e( j)
15 (y) −k( j)

11 (y) −d( j)
11 (y)

q( j)
15 (y) −d( j)

11 (y) −µ
( j)
11 (y)


 γ

( j)
xz

−E( j)
x

−H( j)
x

 , (3a)

τ
( j)
yz

D( j)
y

B( j)
y

=

c( j)
44 (y) e( j)

15 (y) q( j)
15 (y)

e( j)
15 (y) −k( j)

11 (y) −d( j)
11 (y)

q( j)
15 (y) −d( j)

11 (y) −µ
( j)
11 (y)


 γ

( j)
yz

−E( j)
y

−H( j)
y

 , (3b)

where τ
( j)
xz (and τ

( j)
yz ), D( j)

x (and D( j)
y ), and B( j)

x (and B( j)
y ) denote the shear stresses,

electrical displacements, and magnetic inductions, respectively. c( j)
44 (y), k( j)

11 (y),
µ

( j)
11 (y), e( j)

15 (y), q( j)
15 (y), and d( j)

11 (y) are the elastic modulus, dielectric permittivity,
magnetic permeability, piezoelectric stress coefficient, piezomagnetic stress coeffi-
cient, and magnetoelectric coefficient, respectively.

In this study, it is convenient to introduce the following vectors for the generalized
displacement (u( j)), stresses (σσσ ( j)

x and σσσ
( j)
y ), and strains (γγγ( j)

x and γγγ
( j)
y ) as

u( j) =

w( j)

ϕ( j)

φ ( j)

 , σσσ
( j)
x =

τ
( j)
xz

D( j)
x

B( j)
x

 , σσσ
( j)
y =

τ
( j)
yz

D( j)
y

B( j)
y

 ,

γγγ
( j)
x =

 γ
( j)
xz

−E( j)
x

−H( j)
x

 , γγγ
( j)
y =

 γ
( j)
yz

−E( j)
y

−H( j)
y

 . (4)

Then, the constitutive equations (3a) and (3b) can be rewritten as

σσσ
( j)
x = A( j)

γγγ
( j)
x , σσσ

( j)
y = A( j)

γγγ
( j)
y , (5)

where

A( j) =

c( j)
44 (y) e( j)

15 (y) q( j)
15 (y)

e( j)
15 (y) −k( j)

11 (y) −d( j)
11 (y)

q( j)
15 (y) −d( j)

11 (y) −µ
( j)
11 (y)

 . (6)
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In addition, we consider that the variation of the material properties has an expo-
nential form in the y direction, and the material coefficients in the nonhomogeneous
magnetoelectroelastic layered half-plane can be described by

A( j) = α
( j)eβ ( j)(y−h)A(0), (7)

where

A(0) =

c(0)
44 e(0)

15 q(0)
15

e(0)
15 −k(0)

11 −d(0)
11

q(0)
15 −d(0)

11 −µ
(0)
11

 .

Here A(0) is a 3× 3 real and symmetric matrix, which includes six independent
magnetoelectroelastic material constants (i.e., c(0)

44 , k(0)
11 , µ

(0)
11 , e(0)

15 , q(0)
15 , and d(0)

11 ).
In which α( j) is a positive constant (α( j) > 0 for positive define) and β ( j) is the
functionally graded factor which represents the degree of the material gradient in
the y direction.

In the absence of body force, electric charge density, and electric current density,
the generalized equilibrium equation is given as

σσσ
( j)
x,x +σσσ

( j)
y,y = 0. (8)

Substitution of Eqs. (5) and (7) into Eq. (8), the governing equation for an antiplane
functionally graded magnetoelectroelastic problem can be expressed as

∇
2u( j) +β

( j) ∂u( j)

∂y
= 0, (9)

where ∇2 = ∂ 2/∂x2 +∂ 2/∂y2 represents the two-dimensional Laplace operator for
the variables x and y. This problem will be solved by the Fourier transform tech-
nique. Take the Fourier transform pairs of the generalized displacement u( j)(x,y)
defined as

ũ( j)(ω,y) =
∫

∞

−∞

u( j)(x,y)e−iωxdx, u( j)(x,y) =
1

2π

∫
∞

−∞

ũ( j)(ω,y)eiωxdω, (10)

where ω is the transform parameter and i =
√
−1. Then, the governing differential

equation (9) becomes an ordinary differential equation of order two as follows:

∂ 2ũ( j)

∂y2 +β
( j) ∂ ũ( j)

∂y
−ω

2ũ( j) = 0. (11)
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The general solutions in the Fourier-transform domain for materials 1 (thin layer)
and 2 (half-plane) can be expressed as

ũ( j)(ω, y) = c( j)es( j)
1 y +d( j)es( j)

2 y, (12)

σ̃σσ
( j)
y (ω, y) = α

( j)eβ ( j)(y−h)A(0)[s( j)
1 c( j)es( j)

1 y + s( j)
2 d( j)es( j)

2 y], (13)

where

c( j) =

c( j)
1

c( j)
2

c( j)
3

 , d( j) =

d( j)
1

d( j)
2

d( j)
3

 .

Here c( j) and d( j) are undetermined coefficients and can be obtained by applying the
jump, continuity, and boundary conditions. By substituting the general solutions
into Eq. (11) yields a characteristic equation for s( j)

k (k = 1, 2), the characteristic
roots are readily known to be

s( j)
1 =−β ( j)

2
+Q( j), s( j)

2 =−β ( j)

2
−Q( j), (14)

with

Q( j) =

√
(
β ( j)

2
)2 +ω2. (15)

Because the positive nature of the quantity Q( j) in the transform domain, it is noted
that the roots s( j)

1 and s( j)
2 must be positive and negative, respectively.

3 Solutions of a Functionally Graded Magnetoelectroelastic Layered Half-
Plane

Consider a functionally graded magnetoelectroelastic layer half-plane subjected to
a generalized line force F = [ fz,−q,− j]T and a generalized screw dislocation B =
[bz,bϕ ,bφ ]T as shown in Fig. 1, where fz, q, and j denote the strength of a line
force, a line electric charge, and a line electric current, respectively, and bz, bϕ , and
bφ represent a screw dislocation, an electric-potential dislocation, and a magnetic-
potential dislocation, respectively. A generalized line force F and a generalized
screw dislocation B are applied at (x,y) = (x0,y0), y0 ≥ 0, which may be located in
the thin layer(0 ≤ y0 ≤ h)or the half-plane(h ≤ y0 < ∞) of the layered half-plane.



94 Copyright © 2009 Tech Science Press CMES, vol.54, no.1, pp.87-120, 2009

The full-field solutions for the thin layer and the half-plane will be presented in this
section. The boundary conditions on the top surface (y = 0) of the thin layer are

σσσ
(1)
y (x,0) = 0. (16)

From Eq. (16), c(1) and d(1) in Eq. (13) are related as

s(1)
1 c(1) + s(1)

2 d(1) = 0. (17)

The continuity conditions of the generalized displacement and stress at the interface
y = h are

u(1)(x,h) = u(2)(x,h), σσσ
(1)
y (x,h) = σσσ

(2)
y (x,h). (18)

From Eq. (18), the relations between c(1), d(1), c(2), and d(2) can be established as

c(1)es(1)
1 h +d(1)es(1)

2 h = c(2)es(2)
1 h +d(2)es(2)

2 h, (19)

α
(1)[s(1)

1 es(1)
1 hc(1) + s(1)

2 es(1)
2 hd(1)] = α

(2)[s(2)
1 es(2)

1 hc(2) + s(2)
2 es(2)

2 hd(2)]. (20)

For ω > 0, the bounded conditions of the generalized stresses in the infinite of the
half-plane require that

c(2) = 0. (21)

There are two situations for this nonhomogeneous problem, i.e., the applied load-
ings are located in the interior of the thin layer or in the half-plane will be discussed
in detail.

3.1 The loadings are applied in the thin layer (0≤ y0 ≤ h)

Consider a nonhomogeneous magnetoelectroelastic layered half-plane subjected to
a generalized line force and screw dislocation applied at (x,y) = (x0,y0) in the
thin layer. If we take the positive x axis as the slip plane (x > x0, y = y0) of the
dislocations, the jumps of the generalized displacement and stress across the slip
plane are

u(1−)(x,y−0 )−u(1+)(x,y+
0 ) = BH(x− x0), (22)

σσσ
(1−)
y (x,y−0 )−σσσ

(1+)
y (x,y+

0 ) = Fδ (x− x0), (23)

where H( ) is the Heaviside function and δ ( ) is the Delta function. In Eqs. (22)
and (23), superscripts ‘–’ and ‘+’ indicate the field quantities above and below the
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plane of the applied generalized force and screw dislocation in the thin layer. From
Eqs. (22) and (23), c(1) and d(1) have the relations

(c(1−)− c(1+))es(1)
1 y0 +(d(1−)−d(1+))es(1)

2 y0 =
1

iω
Be−iωx0 , (24)

eβ (1)(y0−h)[s(1)
1 (c(1−)− c(1+))es(1)

1 y0 + s(1)
2 (d(1−)−d(1+))es(1)

2 y0 ]

=
1

α(1) (A
(0))−1Fe−iωx0 , (25)

With the aid of boundary conditions (17) and (21) and continuity conditions (19)
and (20), the constants c( j) and d( j) can be determined as follows:

d(1+) =
1

s(1)
1 − s(1)

2

e−iωx0(1−Ω1Ω2e−(s(1)
1 −s(1)

2 )h)−1

×
[

1
α(1) e−β (1)(y0−h)(e−s(1)

2 y0−Ω1e−s(1)
1 y0)(A(0))−1F− 1

iω
s(1)

1 (e−s(1)
2 y0− e−s(1)

1 y0)B
]
,

c(1+) =−Ω2e−(s(1)
1 −s(1)

2 )hd(1+),

c(1−) =
1

α(1)(s(1)
1 − s(1)

2 )
e−iωx0−β (1)(y0−h)

×
[
e−s(1)

1 y0−Ω2e−(s(1)
1 −s(1)

2 )h(1−Ω1Ω2e−(s(1)
1 −s(1)

2 )h)−1(e−s(1)
2 y0−Ω1e−s(1)

1 y0)
]

×(A(0))−1F− 1

iω(s(1)
1 − s(1)

2 )
e−iωx0

×
[
s(1)

2 e−s(1)
1 y0− s(1)

1 Ω2e−(s(1)
1 −s(1)

2 )h(1−Ω1Ω2e−(s(1)
1 −s(1)

2 )h)−1(e−s(1)
2 y0− e−s(1)

1 y0)
]

B,

d(1−) =−Ω1c(1−), d(2) = (1−Ω2)e(s(1)
2 −s(2)

2 )hd(1+), (26)

where

Ω1 =
s(1)

1

s(1)
2

=
β (1)−2Q(1)

β (1) +2Q(1) ,
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Ω2 =
α(1)s(1)

2 −α(2)s(2)
2

α(1)s(1)
1 −α(2)s(2)

2

=
α(1)(β (1) +2Q(1))−α(2)(β (2) +2Q(2))
α(1)(β (1)−2Q(1))−α(2)(β (2) +2Q(2))

.

For ω < 0, the derivation and results are similar. After substituting the coefficients
c( j) and d( j) into Eqs. (12) and (13) and perform the inverse Fourier transformation,
the analytical full-field solutions of the generalized displacement and stresses for
the functionally graded magnetoelectroelastic layered half-plane are presented as
follows:w(1−)

ϕ(1−)

φ (1−)

=
1

2π
e−

β (1)
2 (y+y0−2h)

∫
∞

0

1
α(1)Q(1) cosω(x− x0)(A(0))−1F

×


[
eQ(1)(y−y0)−Ω1e−Q(1)(y+y0)

]
−Ω2(1−Ω1Ω2e−2Q(1)h)−1

×
[
(eQ(1)(y+y0−2h)−Ω1eQ(1)(y−y0−2h))−Ω1(e−Q(1)(y−y0+2h)

−Ω1e−Q(1)(y+y0+2h))
]

dω

+
1

4π
e−

β (1)
2 (y−y0)

∫
∞

0

1
ω

β (1) +2Q(1)

Q(1) sinω(x− x0)B

×


[
eQ(1)(y−y0)−Ω1e−Q(1)(y+y0)

]
−Ω1Ω2(1−Ω1Ω2e−2Q(1)h)−1

×
[
(eQ(1)(y+y0−2h)− eQ(1)(y−y0−2h))

−Ω1(e−Q(1)(y−y0+2h)− e−Q(1)(y+y0+2h))
]

dω, (27a)

τ
(1−)
xz

D(1−)
x

B(1−)
x

= (α(1)eβ (1)(y−h))A(0)

 γ
(1−)
xz

−E(1−)
x

−H(1−)
x


=− 1

2π
e

β (1)
2 (y−y0)

∫
∞

0

ω

Q(1) sinω(x− x0)F

×


[
eQ(1)(y−y0)−Ω1e−Q(1)(y+y0)

]
−Ω2(1−Ω1Ω2e−2Q(1)h)−1

×
[
(eQ(1)(y+y0−2h)−Ω1eQ(1)(y−y0−2h))−Ω1(e−Q(1)(y−y0+2h)

−Ω1e−Q(1)(y+y0+2h))
]

dω
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+
1

4π
e

β (1)
2 (y+y0−2h)

∫
∞

0

α(1)(β (1) +2Q(1))
Q(1) cosω(x− x0)A(0)B

×


[
eQ(1)(y−y0)−Ω1e−Q(1)(y+y0)

]
−Ω1Ω2(1−Ω1Ω2e−2Q(1)h)−1

×
[
(eQ(1)(y+y0−2h)− eQ(1)(y−y0−2h))

−Ω1(e−Q(1)(y−y0+2h)− e−Q(1)(y+y0+2h))
]

dω, (27b)

τ
(1−)
yz

D(1−)
y

B(1−)
y

= (α(1)eβ (1)(y−h))A(0)

 γ
(1−)
yz

−E(1−)
y

−H(1−)
y


=− 1

4π
e

β (1)
2 (y−y0)

∫
∞

0

β (1)−2Q(1)

Q1
cosω(x− x0)F

×


[
eQ(1)(y−y0)− e−Q(1)(y+y0)

]
−Ω2(1−Ω1Ω2e−2Q(1)h)−1

×
[
(eQ(1)(y+y0−2h)−Ω1eQ(1)(y−y0−2h))− (e−Q(1)(y−y0+2h)

−Ω1e−Q(1)(y+y0+2h))
]

dω

− 1
8π

e
β (1)

2 (y+y0−2h)
∫

∞

0

α(1)

ω

(β (1))2−4(Q(1))2

Q(1) sinω(x− x0)A(0)B

×


[
eQ(1)(y−y0)− e−Q(1)(y+y0)

]
−Ω1Ω2(1−Ω1Ω2e−2Q(1)h)−1

×
[
(eQ(1)(y+y0−2h)− eQ(1)(y−y0−2h))− (e−Q(1)(y−y0+2h)

−e−Q(1)(y+y0+2h))
]

dω, (27c)

w(1+)

ϕ(1+)

φ (1+)

=
1

2π
e−

β (1)
2 (y+y0−2h)

∫
∞

0

1
α(1)Q(1) cosω(x− x0)(A(0))−1F

×(1−Ω1Ω2e−2Q(1)h)−1

×
[
(e−Q(1)(y−y0)−Ω1e−Q(1)(y+y0))−Ω2(eQ(1)(y+y0−2h)−Ω1eQ(1)(y−y0−2h))

]
dω

+
1

4π
e−

β (1)
2 (y−y0)

∫
∞

0

1
ω

β (1)−2Q(1)

Q(1) sinω(x− x0)B

×(1−Ω1Ω2e−2Q(1)h)−1
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×
[
(e−Q(1)(y−y0)− e−Q(1)(y+y0))−Ω2(eQ(1)(y+y0−2h)− eQ(1)(y−y0−2h))

]
dω, (28a)

τ
(1+)
xz

D(1+)
x

B(1+)
x

= (α(1)eβ (1)(y−h))A(0)

 γ
(1+)
xz

−E(1+)
x

−H(1+)
x


=− 1

2π
e

β (1)
2 (y−y0)

∫
∞

0

ω

Q(1) sinω(x− x0)F

×(1−Ω1Ω2e−2Q(1)h)−1

×
[
(e−Q(1)(y−y0)−Ω1e−Q(1)(y+y0))−Ω2(eQ(1)(y+y0−2h)−Ω1eQ(1)(y−y0−2h))

]
dω

+
1

4π
e

β (1)
2 (y+y0−2h)

∫
∞

0

α(1)(β (1)−2Q(1))
Q(1) cosω(x− x0)A(0)B

×(1−Ω1Ω2e−2Q(1)h)−1

×
[
(e−Q(1)(y−y0)− e−Q(1)(y+y0))−Ω2(eQ(1)(y+y0−2h)− eQ(1)(y−y0−2h))

]
dω, (28b)

τ
(1+)
yz

D(1+)
y

B(1+)
y

= (α(1)eβ (1)(y−h))A(0)

 γ
(1+)
yz

−E(1+)
y

−H(1+)
y



=− 1
4π

e
β (1)

2 (y−y0)
∫

∞

0

β (1) +2Q(1)

Q1
cosω(x− x0)F

×(1−Ω1Ω2e−2Q(1)h)−1

×
[
(e−Q(1)(y−y0)−Ω1e−Q(1)(y+y0))−Ω1Ω2(eQ(1)(y+y0−2h)−Ω1eQ(1)(y−y0−2h))

]
dω

+
1

8π
e

β (1)
2 (y+y0−2h)

∫
∞

0

α(1)

ω

4(Q(1))2− (β (1))2

Q(1) sinω(x− x0)A(0)B

×(1−Ω1Ω2e−2Q(1)h)−1

×
[
(e−Q(1)(y−y0)− e−Q(1)(y+y0))−Ω1Ω2(eQ(1)(y+y0−2h)− eQ(1)(y−y0−2h))

]
dω, (28c)



Full-Field Analysis 99

w(2)

ϕ(2)

φ (2)

=− 2
π

e−
1
2 (β (2)y+β (1)y0−(β (1)+β (2))h)

×
∫

∞

0

1
α(1)(β (1)−2Q(1))−α(2)(β (2) +2Q(2))

cosω(x− x0)(A(0))−1F

×(1−Ω1Ω2e−2Q(1)h)−1

×
[
e−(Q(2)y−Q(1)y0+(Q(1)−Q(2))h)−Ω1e−(Q(2)y+Q(1)y0+(Q(1)−Q(2))h)

]
dω

− 1
π

e−
1
2 (β (2)y−β (1)y0+(β (1)−β (2))h)

×
∫

∞

0

1
ω

α(1)(β (1)−2Q(1))
α(1)(β (1)−2Q(1))−α(2)(β (2) +2Q(2))

sinω(x− x0)B

×(1−Ω1Ω2e−2Q(1)h)−1

×
[
e−(Q(2)y−Q(1)y0+(Q(1)−Q(2))h)− e−(Q(2)y+Q(1)y0+(Q(1)−Q(2))h)

]
dω, (29a)

τ
(2)
xz

D(2)
x

B(2)
x

= (α(2)eβ (2)(y−h))A(0)

 γ
(2)
xz

−E(2)
x

−H(2)
x


=

2
π

e
1
2 (β (2)y−β (1)y0+(β (1)−β (2))h)

×
∫

∞

0

α(2)ω

α(1)(β (1)−2Q(1))−α(2)(β (2) +2Q(2))
sinω(x− x0)F

×(1−Ω1Ω2e−2Q(1)h)−1

×
[
e−(Q(2)y−Q(1)y0+(Q(1)−Q(2))h)−Ω1e−(Q(2)y+Q(1)y0+(Q(1)−Q(2))h)

]
dω

− 1
π

e
1
2 (β (2)y+β (1)y0−(β (1)+β (2))h)

×
∫

∞

0

α(1)α(2)(β (1)−2Q(1))
α(1)(β (1)−2Q(1))−α(2)(β (2) +2Q(2))

cosω(x− x0)A(0)B

×(1−Ω1Ω2e−2Q(1)h)−1
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×
[
e−(Q(2)y−Q(1)y0+(Q(1)−Q(2))h)− e−(Q(2)y+Q(1)y0+(Q(1)−Q(2))h)

]
dω, (29b)

τ
(2)
yz

D(2)
y

B(2)
y

= (α(2)eβ (2)(y−h))A(0)

 γ
(2)
yz

−E(2)
y

−H(2)
y


=

1
π

e
1
2 (β (2)y−β (1)y0+(β (1)−β (2))h)

×
∫

∞

0

α(2)(β (2) +2Q(2))
α(1)(β (1)−2Q(1))−α(2)(β (2) +2Q(2))

cosω(x− x0)F

×(1−Ω1Ω2e−2Q(1)h)−1

×
[
e−(Q(2)y−Q(1)y0+(Q(1)−Q(2))h)−Ω1e−(Q(2)y+Q(1)y0+(Q(1)−Q(2))h)

]
dω

+
1

2π
e

1
2 (β (2)y+β (1)y0−(β (1)+β (2))h)

×
∫

∞

0

1
ω

α(1)α(2)(β (1)−2Q1)(β (2) +2Q(2))
α(1)(β (1)−2Q(1))−α(2)(β (2) +2Q(2))

sinω(x− x0)A(0)B

×(1−Ω1Ω2e−2Q(1)h)−1

×
[
e−(Q(2)y−Q(1)y0+(Q(1)−Q(2))h)− e−(Q(2)y+Q(1)y0+(Q(1)−Q(2))h)

]
dω. (29c)

The inverse term (1−Ω1Ω2e−2Q(1)h)−1 in Eqs. (27a)–(29c) control the convergence
of the solutions. It can be shown that Ω1Ω2e−2Q(1)h < 1 for ω < 0 and ω > 0. If
α(1) = α(2) and β (1) = β (2) 6= 0, i.e., Ω2 = 0, the solutions presented in Eqs. (27a)–
(29c) for materials 1 and 2 are reduced to the results for the nonhomogeneous half-
plane medium with the applied loadings located at (x,y) = (x0,y0).

3.2 The loadings are applied in the half-plane (h≤ y0 < ∞)

If the applied loadings are located in material 2 (half-plane), then the jump condi-
tions are given as

u(2−)(x,y−0 )−u(2+)(x,y+
0 ) = BH(x− x0), (30)

σσσ
(2−)
y (x,y−0 )−σσσ

(2+)
y (x,y+

0 ) = Fδ (x− x0), (31)
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In terms of the unknown constants c(2) and d(2), we have

(c(2−)− c(2+))es(2)
1 y0 +(d(2−)−d(2+))es(2)

2 y0 =
1

iω
Be−iωx0 , (32)

eβ (2)(y0−h)[s(2)
1 (c(2−)− c(2+))es(2)

1 y0 + s(2)
2 (d(2−)−d(2+))es(2)

2 y0 ]

=
1

α(2) (A
(0))−1Fe−iωx0 , (33)

With the boundary conditions expressed in Eqs. (17) and (21) and the continuity
conditions in Eqs. (19) and (20), the constants c( j) and d( j) are obtained as

c(1) =
α(2)

α(1)s(1)
1 −α(2)s(2)

2

(1−Ω1Ω2e−2Q(1)h)−1e−iωx0−(s(1)
1 −s(2)

1 )h−s(2)
1 y0

[
1

α(2) eβ (2)(h−y0)(A(0))−1F− 1
iω

s(2)
2 B

]
,

d(1) =−Ω1c(1),

c(2−) =
1

s(2)
1 − s(2)

2

e−iωx0−s(2)
1 y0

[
1

α(2) eβ (2)(h−y0)(A(0))−1F− 1
iω

s(2)
2 B

]
,

d(2−) =
α(1)(s(1)

1 − s(1)
2 )

α(1)s(1)
1 −α(2)s(2)

2

e(s(1)
2 −s(2)

2 )hd(1)−Ω4e(s(2)
1 −s(2)

2 )hc(2−),

d(2+) = d(2−) +
1

s(2)
1 − s(2)

2

e−iωx0−s(2)
2 y0

[
1

α(2) eβ (2)(h−y0)(A(0))−1F− 1
iω

s(2)
1 B

]
, (34)

where

Ω3 =
s(2)

2

s(2)
1

=
β (2) +2Q(2)

β (2)−2Q(2) ,

Ω4 =
α(1)s(1)

1 −α(2)s(2)
1

α(1)s(1)
1 −α(2)s(2)

2

=
α(1)(β (1)−2Q(1))−α(2)(β (2)−2Q(2))
α(1)(β (1)−2Q(1))−α(2)(β (2) +2Q(2))

.

Then, the full-field solutions of field variables for the functionally graded magne-
toelectroelastic layered half-plane are expressed explicitly as follows:w(1)

ϕ(1)

φ (1)

=− 2
π

e−
1
2 (β (1)y+β (2)y0−(β (1)+β (2))h)
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×
∫

∞

0

1
α(1)(β (1)−2Q(1))−α(2)(β (2) +2Q(2))

cosω(x− x0)(A(0))−1F

×(1−Ω1Ω2e−2Q(1)h)−1

×
[
e(Q(1)y−Q(2)y0−(Q(1)−Q(2))h)−Ω1e−(Q(1)y+Q(2)y0+(Q(1)−Q(2))h)

]
dω

− 1
π

e−
1
2 (β (1)y−β (2)y0−(β (1)−β (2))h)

×
∫

∞

0

1
ω

α(2)(β (2) +2Q(2))
α(1)(β (1)−2Q(1))−α(2)(β (2) +2Q(2))

sinω(x− x0)B

×(1−Ω1Ω2e−2Q(1)h)−1

×
[
e(Q(1)y−Q(2)y0−(Q(1)−Q(2))h)−Ω1e−(Q(1)y+Q(2)y0+(Q(1)−Q(2))h)

]
dω, (35a)

τ
(1)
xz

D(1)
x

B(1)
x

= (α(1)eβ (1)(y−h))A(0)

 γ
(1)
xz

−E(1)
x

−H(1)
x


=

2
π

e
1
2 (β (1)y−β (2)y0−(β (1)−β (2))h)

×
∫

∞

0

α(1)ω

α(1)(β (1)−2Q(1))−α(2)(β (2) +2Q(2))
sinω(x− x0)F

×(1−Ω1Ω2e−2Q(1)h)−1

×
[
e(Q(1)y−Q(2)y0−(Q(1)−Q(2))h)−Ω1e−(Q(1)y+Q(2)y0+(Q(1)−Q(2))h)

]
dω

− 1
π

e
1
2 (β (1)y+β (2)y0−(β (1)+β (2))h)

×
∫

∞

0

α(1)α(2)(β (2) +2Q(2))
α(1)(β (1)−2Q(1))−α(2)(β (2) +2Q(2))

cosω(x− x0)A(0)B

×(1−Ω1Ω2e−2Q(1)h)−1

×
[
e(Q(1)y−Q(2)y0−(Q(1)−Q(2))h)−Ω1e−(Q(1)y+Q(2)y0+(Q(1)−Q(2))h)

]
dω, (35b)

τ
(1)
yz

D(1)
y

B(1)
y

= (α(1)eβ (1)(y−h))A(0)

 γ
(1)
yz

−E(1)
y

−H(1)
y


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=
1
π

e
1
2 (β (1)y−β (2)y0−(β (1)−β (2))h)

×
∫

∞

0

α(1)(β (1)−2Q(1))
α(1)(β (1)−2Q(1))−α(2)(β (2) +2Q(2))

cosω(x− x0)F

×(1−Ω1Ω2e−2Q(1)h)−1

×
[
e(Q(1)y−Q(2)y0−(Q(1)−Q(2))h)− e−(Q(1)y+Q(2)y0+(Q(1)−Q(2))h)

]
dω

+
1

2π
e

1
2 (β (1)y+β (2)y0−(β (1)+β (2))h)

×
∫

∞

0

1
ω

α(1)α(2)(β (1)−2Q(1))(β (2) +2Q(2))
α(1)(β (1)−2Q(1))−α(2)(β (2) +2Q(2))

sinω(x− x0)A(0)B

×(1−Ω1Ω2e−2Q(1)h)−1

×
[
e(Q(1)y−Q(2)y0−(Q(1)−Q(2))h)− e−(Q(1)y+Q(2)y0+(Q(1)−Q(2))h)

]
dω, (35c)

w(2−)

ϕ(2−)

φ (2−)

=
1
π

e−
β (2)

2 (y+y0−2h)
∫

∞

0

1
2α(2)Q(2) cosω(x− x0)(A(0))−1F

×

 eQ(2)(y−y0)−Ω4e−Q(2)(y+y0−2h)

− 16Ω1α(1)α(2)Q(1)Q(2)

(α(1)(β (1)−2Q(1))−α(2)(β (2)+2Q(2)))2 (1−Ω1Ω2e−2Q(1)h)−1

×e−(Q(2)(y+y0)+2(Q(1)−Q(2))h)

dω

+
1

2π
e−

β (2)
2 (y−y0)

∫
∞

0

1
ω

β (2) +2Q(2)

2Q(2) sinω(x− x0)B

×

 eQ(2)(y−y0)−Ω4e−Q(2)(y+y0−2h)

− 16Ω1α(1)α(2)Q(1)Q(2)

(α(1)(β (1)−2Q(1))−α(2)(β (2)+2Q(2)))2 (1−Ω1Ω2e−2Q(1)h)−1

×e−(Q(2)(y+y0)+2(Q(1)−Q(2))h)

dω, (36a)

τ
(2−)
xz

D(2−)
x

B(2−)
x

= (α(2)eβ (2)(y−h))A(0)

 γ
(2−)
xz

−E(2−)
x

−H(2−)
x


=− 1

π
e

β (2)
2 (y−y0)

∫
∞

0

ω

2Q(2) sinω(x− x0)F
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×

 eQ(2)(y−y0)−Ω4e−Q(2)(y+y0−2h)

− 16Ω1α(1)α(2)Q(1)Q(2)

(α(1)(β (1)−2Q(1))−α(2)(β (2)+2Q(2)))2 (1−Ω1Ω2e−2Q(1)h)−1

×e−(Q(2)(y+y0)+2(Q(1)−Q(2))h)

dω

+
1

2π
e

β (2)
2 (y+y0−2h)

∫
∞

0

α(2)(β (2) +2Q(2))
2Q(2) cosω(x− x0)A(0)B

×

 eQ(2)(y−y0)−Ω4e−Q(2)(y+y0−2h)

− 16Ω1α(1)α(2)Q(1)Q(2)

(α(1)(β (1)−2Q(1))−α(2)(β (2)+2Q(2)))2 (1−Ω1Ω2e−2Q(1)h)−1

×e−(Q(2)(y+y0)+2(Q(1)−Q(2))h)

dω, (36b)

τ
(2−)
yz

D(2−)
y

B(2−)
y

= (α(2)eβ (2)(y−h))A(0)

 γ
(2−)
yz

−E(2−)
y

−H(2−)
y


=− 1

π
e

β (2)
2 (y−y0)

∫
∞

0

β (2)−2Q(2)

4Q(2) cosω(x− x0)F

×

 eQ(2)(y−y0)−Ω3Ω4e−Q(2)(y+y0−2h)

− 16Ω1Ω3α(1)α(2)Q(1)Q(2)

(α(1)(β (1)−2Q(1))−α(2)(β (2)+2Q(2)))2 (1−Ω1Ω2e−2Q(1)h)−1

×e−(Q(2)(y+y0)+2(Q(1)−Q(2))h)

dω

− 1
2π

e
β (2)

2 (y+y0−2h)
∫

∞

0

α(2)

ω

(β (2))2−4(Q(2))2

4Q(2) sinω(x− x0)A(0)B

×

 eQ(2)(y−y0)−Ω3Ω4e−Q(2)(y+y0−2h)

− 16Ω1Ω3α(1)α(2)Q(1)Q(2)

(α(1)(β (1)−2Q(1))−α(2)(β (2)+2Q(2)))2 (1−Ω1Ω2e−2Q(1)h)−1

×e−(Q(2)(y+y0)+2(Q(1)−Q(2))h)

dω, (36c)

w(2+)

ϕ(2+)

φ (2+)

=
1
π

e−
β (2)

2 (y+y0−2h)
∫

∞

0

1
2α(2)Q(2) cosω(x− x0)(A(0))−1F

×

 e−Q(2)(y−y0)−Ω4e−Q(2)(y+y0−2h)

− 16Ω1α(1)α(2)Q(1)Q(2)

(α(1)(β (1)−2Q(1))−α(2)(β (2)+2Q(2)))2 (1−Ω1Ω2e−2Q(1)h)−1

×e−(Q(2)(y+y0)+2(Q(1)−Q(2))h)

dω

+
1
π

e−
β (2)

2 (y−y0)
∫

∞

0

1
ω

β (2)−2Q(2)

4Q(2) sinω(x− x0)B
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×

 e−Q(2)(y−y0)−Ω3Ω4e−Q(2)(y+y0−2h)

− 16Ω1Ω3α(1)α(2)Q(1)Q(2)

(α(1)(β (1)−2Q(1))−α(2)(β (2)+2Q(2)))2 (1−Ω1Ω2e−2Q(1)h)−1

×e−(Q(2)(y+y0)+2(Q(1)−Q(2))h)

dω, (37a)

τ
(2+)
xz

D(2+)
x

B(2+)
x

= (α(2)eβ (2)(y−h))A(0)

 γ
(2+)
xz

−E(2+)
x

−H(2+)
x


=− 1

π
e

β (2)
2 (y−y0)

∫
∞

0

ω

2Q(2) sinω(x− x0)F

×

 e−Q(2)(y−y0)−Ω4e−Q(2)(y+y0−2h)

− 16Ω1α(1)α(2)Q(1)Q(2)

(α(1)(β (1)−2Q(1))−α(2)(β (2)+2Q(2)))2 (1−Ω1Ω2e−2Q(1)h)−1

×e−(Q(2)(y+y0)+2(Q(1)−Q(2))h)

dω

+
1
π

e
β (2)

2 (y+y0−2h)
∫

∞

0

α(2)(β (2)−2Q(2))
4Q(2) cosω(x− x0)A(0)B

×

 e−Q(2)(y−y0)−Ω3Ω4e−Q(2)(y+y0−2h)

− 16Ω1Ω3α(1)α(2)Q(1)Q(2)

(α(1)(β (1)−2Q(1))−α(2)(β (2)+2Q(2)))2 (1−Ω1Ω2e−2Q(1)h)−1

×e−(Q(2)(y+y0)+2(Q(1)−Q(2))h)

dω, (37b)

τ
(2+)
yz

D(2+)
y

B(2+)
y

= (α(2)eβ (2)(y−h))A(0)

 γ
(2+)
yz

−E(2+)
y

−H(2+)
y


=− 1

2π
e

β (2)
2 (y−y0)

∫
∞

0

β (2) +2Q(2)

2Q(2) cosω(x− x0)F

×

 e−Q(2)(y−y0)−Ω4e−Q(2)(y+y0−2h)

− 16Ω1α(1)α(2)Q(1)Q(2)

(α(1)(β (1)−2Q(1))−α(2)(β (2)+2Q(2)))2 (1−Ω1Ω2e−2Q(1)h)−1

×e−(Q(2)(y+y0)+2(Q(1)−Q(2))h)

dω

− 1
2π

e
β (2)

2 (y+y0−2h)
∫

∞

0

α(2)

ω

(β (2))2−4(Q(2))2

4Q(2) sinω(x− x0)A(0)B

×

 e−Q(2)(y−y0)−Ω3Ω4e−Q(2)(y+y0−2h)

− 16Ω1Ω3α(1)α(2)Q(1)Q(2)

(α(1)(β (1)−2Q(1))−α(2)(β (2)+2Q(2)))2 (1−Ω1Ω2e−2Q(1)h)−1

×e−(Q(2)(y+y0)+2(Q(1)−Q(2))h)

dω. (37c)
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It is interesting to note that when α(1) = α(2) and β (1) = β (2) 6= 0, i.e., Ω1Ω3 =
1 and Ω2 = Ω4 = 0, the solutions presented in Eqs. (35a)–(37c) for materials 1
and 2 are reduced to the results for the nonhomogeneous half-plane problem. The
solutions for the degenerate case of a homogeneous half-plane can be obtained by
setting α(1) = α(2) and β (1) = β (2) = 0, i.e., Ω1 = Ω3 =−1 and Ω2 = Ω4 = 0.

If the loadings are applied on the free surface (y0 = 0) of material 1 or at the inter-
face (y0 = h), their corresponding solutions can also be obtained directly from the
results presented in this section. If the loadings are applied at the free surface of
material 1, the complete solutions can be obtained from Eqs. (27a)–(29c) by setting
y0 = 0. However, when the loadings are applied at the interface, the solutions can
be constructed either from case A (the loadings are applied in the thin layer, i.e.,
Eqs. (27a)–(29c)) or case B (the loadings are applied in the half-plane, i.e., Eqs.
(35a)–(37c)) by setting y0 = h.

4 The Characteristics of Magnetoelectroelastic Fields at the Interface for
Continuous Material Constants

For the magnetoelectroelastic composites with homogeneous material properties
subjected to the mechanical or electromagnetic loadings, the discontinuous stresses
are always generated at the layer interfaces due to the jump magnetoelectroelastic
properties between the component materials. Therefore, the development of the
functionally graded material is a need to increase fracture toughness at interface.
In addition, the full-field solutions for a nonhomogeneous magnetoelectroelastic
layered half-plane subjected generalized loadings applied in the thin layer are pre-
sented in Eqs. (27a)–(29c). In this section, we will show that the functionally
graded magnetoelectroelastic layered half-plane has a general feature that all mag-
netoelectroelastic fields are continuous at the interface if material constants are
continuous at the interface. There are four cases for different functionally graded
parameters α( j) and β ( j) will be investigated and discussed in detail.

Case (A), the material constants are continuous at the interface (i.e., α(1) = α(2)).
We consider a nonhomogeneous functionally graded magnetoelectroelastic layer
bonded to a dissimilar nonhomogeneous half-plane (i.e., β (1) 6= β (2) 6= 0). From the
solutions presented in Eqs. (27a)–(29c), it is found that the magnetoelectroelastic
fields are all continuous at the interface (y = h) even for the generalized stress σσσ

( j)
x ,

i.e.,

σσσ
(1)
x (x,h) = σσσ

(2)
x (x,h)

=
1
π

∫
∞

0

1
(β (1)−β (2))−2(Q(1) +Q(2))

(1−Ω1Ω2e−2Q(1)h)−1e−Q(1)(y0+h)
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×
[
2ωe−

1
2 β (1)(y0−h)(e2Q(1)y0−Ω1)sinω(x− x0)F

+α
(1)e

1
2 β (1)(y0−h)(e2Q(1)y0−1)(2Q(1)−β

(1))cosω(x− x0)A(0)B
]

dω, (38a)

σσσ
(1)
y (x,h) = σσσ

(2)
y (x,h)

=
1
π

∫
∞

0

β (2) +2Q(2)

(β (1)−β (2))−2(Q(1) +Q(2))
(1−Ω1Ω2e−2Q(1)h)−1e−Q(1)(y0+h)

×
[
e−

1
2 β (1)(y0−h)(e2Q(1)y0−Ω1)cosω(x− x0)F

−α(1)

2ω
e

1
2 β (1)(y0−h)(e2Q(1)y0−1)(2Q(1)−β

(1))sinω(x− x0)A(0)B

]
dω. (38b)

It is indicated in Eq. (18) for the continuity conditions that only the generalized
stress σσσ

( j)
y is required to be continuous at the interface. However, both σσσ

( j)
x and

σσσ
( j)
y are found to be continuous at the interface. Furthermore, the first derivative

of the generalized stress σ
( j)
y is continuous at the interface. We have the following

interesting results

σσσ
(1)
x,x (x,h)

σσσ
(1)
x,y (x,h)

6= σσσ
(2)
x,x (x,h)

σ
(2)
x,y (x,h)

, (39a)

σσσ
(1)
y,x (x,h)

σσσ
(1)
y,y (x,h)

=
σσσ

(2)
y,x (x,h)

σ
(2)
y,y (x,h)

, (39b)

where

σσσ
(1)
y,x (x,h) = σσσ

(2)
y,x (x,h)

=− 1
π

∫
∞

0

β (2) +2Q(2)

(β (1)−β (2))−2(Q(1) +Q(2))
(1−Ω1Ω2e−2Q(1)h)−1e−Q(1)(y0+h)

×
[
ωe−

1
2 β (1)(y0−h)(e2Q(1)y0−Ω1)sinω(x− x0)F

+
α(1)

2
e

1
2 β (1)(y0−h)(e2Q(1)y0−1)(2Q(1)−β

(1))cosω(x− x0)A(0)B

]
dω, (40a)

σσσ
(1)
y,y (x,h) = σσσ

(2)
y,y (x,h)
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=− 1
π

∫
∞

0

1
(β (1)−β (2))−2(Q(1) +Q(2))

(1−Ω1Ω2e−2Q(1)h)−1e−Q(1)(y0+h)

×
[
2ω

2e−
1
2 β (1)(y0−h)(e2Q(1)y0−Ω1)cosω(x− x0)F

−α
(1)

ωe
1
2 β (1)(y0−h)(e2Q(1)y0−1)(2Q(1)−β

(1))sinω(x− x0)A(0)B
]

dω. (40b)

For case (B), one nonhomogeneous magnetoelectroelastic thin layer is bonded to
a homogeneous magnetoelectroelastic half-plane, i.e., α(1) = α(2), β (1) 6= 0, and
β (2) = 0, is considered. From the expressions (38a)–(40b), it is interesting to find
that the generalized stresses σσσ

( j)
x and σ

( j)
y are both continuous at the interface. Fur-

thermore, the first derivative of the generalized stress σσσ
( j)
y is continuous at the in-

terface. Similar interfacial continuous characteristics are also found in case (C) that
one homogeneous magnetoelectroelastic thin layer bonded to a nonhomogeneous
magnetoelectroelastic half-plane (i.e., α(1) = α(2), β (1) = 0, and β (2) 6= 0).

Finally, the degenerate case (D) of a homogeneous magnetoelectroelastic layered
half-plane, i.e., α(1) 6= α(2) and β (1) = β (2) = 0, subjected to the generalized load-
ings applied at (x0,y0) in the thin layer (material 1) is investigated. The analytical
full-field solutions are explicitly presented as follows (Lee and Ma (2007)):w(1)

ϕ(1)

φ (1)

=− 1
2π

×

{ 1
α(1)

[
ln((x− x0)2 +(y− y0)2)1/2 + ln((x− x0)2 +(y+ y0)2)1/2

]
(A(0))−1F

−
[
tan−1 y−y0

x−x0
− tan−1 y+y0

x−x0

]
B

}

− 1
2π

∞

∑
n=0

Qn+1


1

α(1)

[
ln((x− x0)2 +(y− y0±2(n+1)h)2)1/2

+ ln((x− x0)2 +(y+ y0±2(n+1)h)2)1/2

]
(A(0))−1F

−
[
tan−1 y−y0±2(n+1)h

x−x0
− tan−1 y+y0±2(n+1)h

x−x0

]
B

 ,

(41a)

τ
(1)
xz

D(1)
x

B(1)
x

= α
(1)A(0)

 γ
(1)
xz

−E(1)
x

−H(1)
x


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=− 1
2π


[

x−x0
(x−x0)2+(y−y0)2 + x−x0

(x−x0)2+(y+y0)2

]
F

+α(1)
[

y−y0
(x−x0)2+(y−y0)2 − y+y0

(x−x0)2+(y+y0)2

]
A(0)B


− 1

2π

∞

∑
n=0

Qn+1


[

x−x0
(x−x0)2+(y−y0±2(n+1)h)2 + x−x0

(x−x0)2+(y+y0±2(n+1)h)2

]
F

+α(1)
[

y−y0±2(n+1)h
(x−x0)2+(y−y0±2(n+1)h)2 − y+y0±2(n+1)h

(x−x0)2+(y+y0±2(n+1)h)2

]
A(0)B

 ,

(41b)

τ
(1)
yz

D(1)
y

B(1)
y

= α
(1)A(0)

 γ
(1)
yz

−E(1)
y

−H(1)
y



=− 1
2π


[

y−y0
(x−x0)2+(y−y0)2 + y+y0

(x−x0)2+(y+y0)2

]
F

−α(1)
[

x−x0
(x−x0)2+(y−y0)2 − x−x0

(x−x0)2+(y+y0)2

]
A(0)B


− 1

2π

∞

∑
n=0

Qn+1


[

y−y0±2(n+1)h
(x−x0)2+(y−y0±2(n+1)h)2 + y+y0±2(n+1)h

(x−x0)2+(y+y0±2(n+1)h)2

]
F

−α(1)
[

x−x0
(x−x0)2+(y−y0±2(n+1)h)2 − x−x0

(x−x0)2+(y+y0±2(n+1)h)2

]
A(0)B

 ,

(41c)

w(2)

ϕ(2)

φ (2)

=

− 1
2π

∞

∑
n=0

(1+Q)Qn


1

α(1)

[
ln((x− x0)2 +(y− y0 +2nh)2)1/2

+ ln((x− x0)2 +(y+ y0 +2nh)2)1/2

]
(A(0))−1F

−
[
tan−1 y−y0+2nh

x−x0
− tan−1 y+y0+2nh

x−x0

]
B

,

(42a)

τ
(2)
xz

D(2)
x

B(2)
x

= α
(2)A(0)

 γ
(2)
xz

−E(2)
x

−H(2)
x


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=−α(2)

2π

∞

∑
n=0

(1+Q)Qn


1

α(1)

[
x−x0

(x−x0)2+(y−y0+2nh)2 + x−x0
(x−x0)2+(y+y0+2nh)2

]
F

+
[

y−y0+2nh
(x−x0)2+(y−y0+2nh)2 − y+y0+2nh

(x−x0)2+(y+y0+2nh)2

]
A(0)B

,

(42b)

τ
(2)
yz

D(2)
y

B(2)
y

= α
(2)A(0)

 γ
(2)
yz

−E(2)
y

−H(2)
y



=−α(2)

2π

∞

∑
n=0

(1+Q)Qn


1

α(1)

[
y−y0+2nh

(x−x0)2+(y−y0+2nh)2 + y+y0+2nh
(x−x0)2+(y+y0+2nh)2

]
F

−
[

x−x0
(x−x0)2+(y−y0+2nh)2 − x−x0

(x−x0)2+(y+y0+2nh)2

]
A(0)B

,

(42c)

where Q = (α(1)−α(2))/(α(1) + α(2)) is the reflection coefficient and 1 + Q =
2α(1)/(α(1) +α(2)) is the refraction coefficient for the homogeneous magnetoelec-
troelastic layered half-plane. It is noted that the generalized stress σσσ

( j)
y is continu-

ous at the interface due to the continuity condition; however, the generalized stress
σ

( j)
x is discontinuous at the interface, and the results are

σσσ
(1)
x (x,h) 6= σσσ

(2)
x (x,h), (43a)

σσσ
(1)
y (x,h) = σσσ

(2)
y (x,h) =− 1

2π

∞

∑
n=0

α
(2)(1+Q)Qn

×


1

α(1)

[
(2n+1)h−y0

(x−x0)2+((2n+1)h−y0)2 + (2n+1)h+y0
(x−x0)2+((2n+1)h+y0)2

]
F

−
[

x−x0
(x−x0)2+((2n+1)h−y0)2 − x−x0

(x−x0)2+((2n+1)h+y0)2

]
A(0)B

 . (43b)

In short, if the material constants are continuous at the interface, then both gen-
eralized stresses σσσ

( j)
x and σ

( j)
y are continuous at the interface, moreover, the first

derivative of σσσ
( j)
y is also continuous at the interface. According to the results pre-

sented in this section, it is noted that the interfacial continuous characteristics of
the generalized stresses can reduce the mismatch of stresses at the interface which
can significantly prevent the interfacial fracture problem in more complicated mul-
tilayered structures.
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For numerical illustrations, the functionally graded magnetoelectroelastic layered
half-plane subjected to a concentrated force or a screw dislocation will be pre-
sented. Furthermore, the influence of functionally graded factor of the nonhomo-
geneous magnetoelectroelastic material is demonstrated, which will be useful for
the future design and manufacturing of the functionally graded structures. The full-
field distributions of the generalized stresses and strains with different functionally
graded parameters will be presented and discussed in detail in the next section.

5 Numerical Results and Discussions

This section presents the full-field distributions of field quantities in the nonho-
mogeneous magnetoelectroelastic layered half-plane subjected to a line force or a
screw dislocation. The interfacial continuous characteristics of the magnetoelec-
troelastic fields will be discussed. A computational program for the numerical cal-
culation is conducted by using the analytical formulation of the solutions presented
in previous sections. The magnetoelectroelastic material constants [Lee and Ma
(2007)] for the numerical calculation are indicated as follows :

A(0) =

4.5×1010 N/m 1.16 C / m2 496 N / Am
1.16 C / m2 −1.19×10−9 C2/Nm2 −5×10−12 Ns/VC
496 N / Am −5×10−12 Ns/VC −5.3×10−4 Ns2/C2


The contours of normalized shear stresses τxz and τyz for the nonhomogeneous lay-
ered half-plane subjected to a line force fz at (x,y) = (0,0.7h) with the functionally
graded factors α(1) = 1, α(2) = 2, β (1) = 3, and β (2) = −1 are indicated in Figs.
2(a) and 2(b), respectively. From Fig. 2(b), the continuity condition along the
interface for τyz is satisfied, and the contour is symmetric with respect to the y
axis. This figure also shows that τyz is zero on the free surface and the traction
free boundary condition is satisfied. As we can see that the normalized contour
τxz is zero along the y axis and is discontinuous along the interface due to the fact
that material constants are discontinuous along the interface, i.e., α(1) 6= α(2). Fig-
ures 2(c) and 2(d) show the contours of normalized shear stresses τxzh/c(0)

44 bz and
τyzh/c(0)

44 bz for the nonhomogeneous layered half-plane subjected to a screw dislo-
cation bz at (x,y) = (0,0.7h) with the functionally graded factors α(1) = 1, α(2) = 2,
β (1) = 3, and β (2) =−1, respectively.

In order to demonstrate the continuous characteristics of magnetoelectroelastic
fields at the interface for continuous material constants. We will focus on the cases
that the material constants are continuous at the interface, i.e., α(1) = α(2) = 1.
Figures 3(a)–3(d) show the normalized contours of stresses (τxz and τyz) and elec-
tric fields (Ex and Ey) for the nonhomogeneous layered half-plane subjected to a
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Figure 2: (a): Full-field distribution of shear stress τxz for the layered half-plane
subjected to a concentrated force fz in the layer with α(1) = 1, α(2) = 2, β (1) = 3,
and β (2) = −1. (b): Full-field distribution of shear stress τyz for the layered half-
plane subjected to a concentrated force fz in the layer with α(1) = 1, α(2) = 2,
β (1) = 3, and β (2) = −1. (c): Full-field distribution of shear stress τxz for the
layered half-plane subjected to a screw dislocation bz in the layer with α(1) = 1,
α(2) = 2, β (1) = 3, and β (2) =−1. (d): Full-field distribution of shear stress τyz for
the layered half-plane subjected to a screw dislocation bz in the layer with α(1) = 1,
α(2) = 2, β (1) = 3, and β (2) =−1.
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Figure 3: (a): Full-field distribution of shear stress τxz for the layered half-plane
subjected to a concentrated force fz in the layer with α(1) = α(2) = 1, β (1) = 5, and
β (2) = −5. (b): Full-field distribution of shear stress τyz for the layered half-plane
subjected to a concentrated force fz in the layer with α(1) = α(2) = 1, β (1) = 5, and
β (2) =−5. (c): Full-field distribution of electric field Ex for the layered half-plane
subjected to a concentrated force fz in the layer with α(1) = α(2) = 1, β (1) = 5, and
β (2) =−5. (d): Full-field distribution of electric field Ey for the layered half-plane
subjected to a concentrated force fz in the layer with α(1) = α(2) = 1, β (1) = 5, and
β (2) =−5.
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Figure 4: (a): Full-field distribution of shear stress τxz for the layered half-plane
subjected to a screw dislocation bz in the half-plane with α(1) = α(2) = 1, β (1) = 5,
and β (2) = −5. (b): Full-field distribution of shear stress τyz for the layered half-
plane subjected to a screw dislocation bz in the half-plane with α(1) = α(2) = 1,
β (1) = 5, and β (2) = −5. (c): Full-field distribution of shear strain γxz for the
layered half-plane subjected to a screw dislocation bz in the half-plane with α(1) =
α(2) = 1, β (1) = 5, and β (2) = −5. (d): Full-field distribution of shear strain γyz

for the layered half-plane subjected to a screw dislocation bz in the half-plane with
α(1) = α(2) = 1, β (1) = 5, and β (2) =−5.
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Figure 5: (a): Full-field distribution of shear stress τxz for the layered half-plane
subjected to a concentrated force fz in the layer with α(1) = α(2) = 1, β (1) = −5,
and β (2) = 5. (b): Full-field distribution of shear stress τyz for the layered half-plane
subjected to a concentrated force fz in the layer with α(1) = α(2) = 1, β (1) = −5,
and β (2) = 5. (c): Full-field distribution of shear stress τxz for the layered half-plane
subjected to a screw dislocation bz in the half-plane with α(1) = α(2) = 1, β (1) =
−5, and β (2) = 5. (d): Full-field distribution of shear stress τyz for the layered half-
plane subjected to a screw dislocation bz in the half-plane with α(1) = α(2) = 1,
β (1) =−5, and β (2) = 5.
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Figure 6: (a): Full-field distribution of shear stress τxz for the layered half-plane
subjected to a concentrated force fz on the free surface with α(1) = α(2) = 1, β (1) =
5, and β (2) = 0. (b): Full-field distribution of shear stress τyz for the layered half-
plane subjected to a concentrated force fz on the free surface with α(1) = α(2) = 1,
β (1) = 5, and β (2) = 0.

line force fz at (x,y) = (0,0.5h) with the functionally graded factors β (1) = 5 and
β (2) = −5. Figures 4(a)–4(d) show the normalized contours of shear stresses (τxz

and τyz) and shear strains (γxz and γyz) for the nonhomogeneous layered half-plane
subjected to a screw dislocation bz at (x,y) = (0,1.5h) with the functionally graded
factors β (1) = 5 and β (2) = −5. These figures show that all magnetoelectroelas-
tic fields are continuous at the interface. Furthermore, it is worth noting that the
first derivatives of τyz, Ex, and γxz are continuous at the interface which agrees with
the result presented in Eq. (39b). These continuous characteristics are mainly due
to the interfacial continuous material property (i.e., α(1) = α(2)). For the case of
β (1) = −5 and β (2) = 5, Figs. 5(a) and 5(b) show full-field distributions of shear
stresses τxz and τyz for the nonhomogeneous layered half-plane subjected to a line
force fz at (x,y) = (0,0.5h) in the layer, respectively. Figs. 5(c) and 5(d) show that
the full-field normalized contours of τxz and τyz for the nonhomogeneous layered
half-plane subjected to a screw dislocation bz at (x, y) = (0,1.5h) in the half-plane,
respectively. It is noted that the full-field distributions presented in Figs. 3(a) and
3(b) (Figs. 4(a) and 4(b)) are quite different from Figs. 5(a) and 5(b) (Figs. 5(c)
and 5(d)) due to the switch of the functionally graded factors.
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Figure 7: (a): Full-field distribution of shear stress τxz for the nonhomogeneous
half-plane subjected to a concentrated force fz at the interface with α(1) = α(2) = 1
and β (1) = β (2) = −2. (b): Full-field distribution of shear stress τyz for the non-
homogeneous half-plane subjected to a concentrated force fz at the interface with
α(1) = α(2) = 1 and β (1) = β (2) =−2.

Finally, Figs. 6(a) and 6(b) present the normalized contours of shear stresses τxz

and τyz for a nonhomogeneous magnetoelectroelastic thin layer bonded to a ho-
mogeneous magnetoelectroelastic half-plane (i.e., α(1) = α(2) = 1, β (1) = 5, and
β (2) = 0) subjected to a line force fz applied on the free surface at (x,y) = (0,0),
respectively. Figs. 7(a) and 7(b) show the contours of normalized shear stresses τxz

and τyz of the degenerate case for a nonhomogeneous magnetoelectroelastic half-
plane (α(1) = α(2) = 1 and β (1) = β (2) = −2) subjected to a line force fz applied
at the interface (x,y) = (0,h), respectively.

6 Concluding Remarks

This study presents full-field solutions for a functionally graded magnetoelectroe-
lastic layered half-plane subjected to generalized concentrated forces and screw
dislocations applied either on the layer or on the half-plane. The analytical solu-
tions for the nonhomogeneous magnetoelectroelastic problem are obtained using
the Fourier transform technique. It is indicated in this study that if the functionally
graded magnetoelectroelastic material properties are continuous at the interface,
then the elastic, electric, and magnetic fields are all continuous at the interface.
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Furthermore, the first derivative of the generalized stress σσσ
( j)
y is also continuous at

the interface. If the functionally graded effect is neglected, the results are reduced
to the solutions of the transversely isotropic magnetoelectroelastic homogeneous
layered half-plane problem. A computational program for numerical calculation
of the full field analysis is easily constructed using the analytical solutions. De-
tailed numerical results of full-field distributions with different functionally graded
parameters for applying a concentrated force or a screw dislocation in the nonho-
mogeneous magnetoelectroelastic layered half-plane are presented and discussed
in detail.
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