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Cusp-Catastrophe Interpretation of the Stick-Slip
Behaviour of Rough Surfaces

A. Carpinteri1, M. Paggi1,2 and G. Zavarise3

Abstract: The stick-slip instability is a typical manifestation of the nonlinearity
of the frictional response of rough surfaces. As recently demonstrated by several
researchers, the problem of contact loss is also inherently connected to the stick-slip
instability and it has been detected both in elastically soft materials, such as rubber
or gelatine, and in elastic stiff materials, such as for earthquake faults. Treating
the problem of tangential contact in the framework of micromechanical contact
models, the effect of the phenomenon of contact loss on the micro-slip behavior of
rough surfaces is herein investigated. To this aim, the stick and slip components
of the total applied tangential force and of the total real contact area are properly
determined as functions of the total applied tangential force. A comparison with
the behavior of smooth surfaces, such as spheres, cylinders and flat surfaces, is
presented. Then, simulating the problem of tangential loading followed by a reduc-
tion of the applied normal force, it will be shown that the phenomenon of contact
loss gives rise to energy release due to snap-back instability in the diagram relating
the tangential force to the sliding displacement. This result provides for the very
first time an explanation to the phenomenon of stick-slip according to the Catastro-
phe Theory, in close analogy with the cusp-catastrophe instability of Mode I crack
propagation in cohesive solids.

Keywords: Contact Mechanics, rough surfaces, mechanical instability, stick-slip,
contact loss.

1 Introduction

The problem of contact between two solids with rough boundaries is a complex
nonlinear phenomenon where the multiscale properties of rough surfaces play a
fundamental role (Persson, 2001; Borri-Brunetto et al., 2006a; Nosonovsky and
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Bhushan, 2007; Yao and Gao, 2007; Ciavarella et al., 2008; Sainsot et al., 2002;
Willner, 2009; Chen and Atkinson, 2009; Galli and Oyen, 2009; García-Aznar,
Pérez and Moreo, 2009). As an example regarding the normal contact problem, the
surface waviness makes unstable the detachment process of an elastic half-space
from a rigid solid in the presence of adhesion, as recently demonstrated in (Guduru,
2007; Guduru and Bull, 2007).

As far as the tangential contact problem is concerned, a fundamental evidence of
nonlinearity and discontinuity in the tangential contact behaviour is represented
by the so-called phenomenon of stick-slip (Kikuchi and Oden, 1988; Song et al.
2005). Since the static friction force is greater than the kinetic friction force, in a
situation when a steadily increasing tangential force is applied to a body, sticking
of two bodies results into a steadily increase of the applied force. When the applied
force exceeds the static friction, the resistance instantaneously drops to the value of
the kinetic friction. This results into a decrease in the applied shear force and a de-
celeration until the body sticks again, giving rise to an alternation of stick and slip
phases. From the experimental point of view, the typical frictional forces observed
in the different dynamical regimes are shown in Fig. 1. For lower sliding ve-
locities, the stick-slip motion can be clearly observed, whereas such an instability
disappears for higher sliding velocities and reverts to smooth sliding. For elasti-
cally soft materials such as rubber, elastic instabilities responsible for the stick-slip
motion are the so-called Schallamach waves (Persson, 2001). At a high enough
sliding velocity, the rubber surface in front of an asperity undergoes a buckling
that gives rise to detachment waves, propagating like wrinkles in a carpet. Using
a state-and-rate dependent friction law and performing a linear stability analysis,
Persson (2001) proved that the Schallamach waves can be considered as a stress
relieving mechanism limiting the buildup of friction with speed. It is interesting to
note that the interfacial stick-slip phenomenon can also occur in elastically stiffer
materials, such as for earthquake faults, where again a state-and-rate dependent
friction law can be adopted for the study of their chaotic response (Putelat et al,
2007). In such large-scale systems, the experimental evidence of the phenomenon
of contact loss, already observed by Persson (2001) on a smaller scale connected
to the propagation of the Schallamach wawes, was recently obtained by Bouissou
et al. (1998). In their tests, a shear load was transmitted to two rough surfaces by
a testing machine which imposed a global relative movement at a constant sliding
velocity. Under these conditions, energy dissipations take place, like during the
stick-slip motion of a fault, and a relative opening displacement in the direction
normal to the interface was experimentally measured.

The stick-slip instability seems therefore inherently connected to the phenomenon
of contact loss, giving prominence to the pioneering investigations by Comninou
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Figure 1: Typical stick-slip instability of a mechanical system (adapted from
Yoshizawa et al. (1993)).

and Dundurs (1978). They theoretically demonstrated that, when two smooth elas-
tic solids are pressed together and at the same time sheared, they can undergo a
sliding motion without slip at the interface, due to the occurrence of contact loss,
as occurs for the propagation of a carpet fold. A possible explanation of contact
loss in rigid body systems was recently provided by Frémond and Isabella-Valenzi
(2006). When a rigid body slides over a frictional surface, hopping motion is very
often observed. The motion of rigid bodies in the presence of friction introduces
reaction forces that depend on the vertical and sliding velocities through algebraic
or differential equations. For certain kinematic and geometric conditions, it is pos-
sible to have infinite reaction forces. In such a situation, the smooth evolution is
no longer possible and contact loss can take place. For instance, this is the case of
the Painlevé sthenic incompatibility, observed when moving a piece of chalk on a
blackboard (Frémond and Isabella-Valenzi, 2006).

In the present contribution, starting from the preliminary results by Paggi et al.
(2007), the effect of a partial or complete contact loss on the tangential motion
of elastic bodies is analyzed in the context of rough contact surfaces in the ab-
sence of adhesion effects. In this framework, frictional dissipation starts growing
for shear forces lower than the nominal static threshold. In fact, when an increas-
ing tangential force is applied, small relative displacements occur locally along the
contacting surface (micro-slip), before sliding (also referred to as full-slip) takes
place. Micro-slip regime is important in different fields and also presents a fun-
damental interest related to the understanding of the microscopic mechanisms re-
sponsible for the observed size-scale effects on the macroscopic friction (Carpinteri
and Paggi, 2005; Carpinteri and Paggi, 2008). So far, most of the research focused
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on the energy dissipation occurring when two bodies are subjected to a constant
normal force and an oscillating shear force (Kirsonava, 1967; Desai et al., 1985;
Rooke and Edwards, 1988; Harnoy et al., 1994). From the mathematical point of
view, this problem was firstly addressed by Mindlin and Deresiewicz (1953), ac-
cording to the well-known Cattaneo-Mindlin’s analogy (Cattaneo, 1938; Mindlin,
1949). They investigated the frictional phenomena occurring at the contact sur-
faces of elastic spheres subjected to a variety of applied forces. These theoretical
predictions were also experimentally confirmed by Goodman and Brown (1962).
More recently, Ciavarella (1998) and, independently, Jäger (1998) extended the va-
lidity of the Cattaneo-Mindlin’s analogy, originally conceived for smooth contact
surfaces, to the more applicative case of rough surfaces. Following this approach,
a generalization of the Mindlin and Deresiewicz approach for cyclic loading was
also recently proposed by Borri-Brunetto et al. (2006b).

Considering the problem of tangential contact with a quasi-static increase of the
applied tangential force from zero up to a maximum value below the limit of full-
sliding, we propose an analytical approach based on the Greenwood and Williamson
contact model (Greenwood and Williamson, 1966) (see also Zavarise et al. (2004);
Zavarise et al. (2007) for a detailed description of the micromechanical model,
its input parameters and outcomes). This micromechanical model, originally de-
veloped for the analysis of the normal contact problem, is herein applied to the
analysis of contact in the tangential direction. A spherical shape for the contacting
asperities is assumed, consistently with the hypotheses of the original Greenwood
and Williamson model, and also put forward by Bureau et al. (2003). In our treat-
ment, we focus the attention on the evaluation of the stick and slip components of
the applied tangential force and the corresponding stick and slip portions of the real
contact area. The closed-form solutions obtained using this model are presented in
a useful non-dimensional form and are compared with the analogous results for
smooth surfaces. To this end, the well-known solutions for the tangential contact
of spheres, cylinders and ideal smooth planes reported in the fundamental book
by Johnson (1985) are profitably extended to put into evidence the stick and slip
components of the applied tangential force and of the contact area.

Finally, with these results in hand, we analyze the problem of tangential loading
followed by a reduction in the applied normal force, simulating a partial or com-
plete phenomenon of contact loss. As a main result, it will be shown that the
phenomenon of contact loss can give rise to energy release due to snap-back in-
stability in the tangential force vs. sliding displacement diagram. These results
demonstrate that the stick-slip instability may also occur during the micro-slip mo-
tion of rough surfaces and manifests itself as a catastrophic snap-back instability,
in close analogy with the unstable behavior of Mode I crack propagation in cohe-
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sive solids (Carpinteri, 1989). The analysis proposed in the present work provides
a mechanical interpretation of the instability responses found in the experimental
tests where the relative tangential displacement of the blocks in contact is the con-
trol variable. This is for instance the case of the tests by Bouissou et al. (1998),
where the applied relative tangential displacement is a steadily increasing function
of time. On the other hand, if one is interested in the problem of sliding of a block
over a rough surface with given prescribed initial conditions (for instance the slid-
ing velocity), then the dynamic behaviour of the system has to be explicitly taken
into account. This can be done by solving the equation of motion of the mechanical
system considering its actual mass, stiffness, as well as the nonlinear relationship
between tangential force and relative tangential displacement as in this work. Of
course, these properties may depend on the specific mechanical application being
considered.

2 Tangential contact of elastic rough surfaces

Let us consider the problem of normal contact between two rough surfaces having
an identical r.m.s. roughness, σ , elastic modulus, E, and Poisson’s ratio, ν . Taking
advantage of the concept of composite topography introduced by Brown and Scholz
(1985), we shall consider, without any loss of generality, the problem of contact
between a composite rough surface and a rigid, ideally flat, reference plane. The
composite topography is obtained by computing the difference between the max-
imum gaps and the current gaps of two corresponding points in the undeformed
condition. This problem is mathematically analogous to the original one, provided
that we use in the computations an equivalent r.m.s. roughness, σ∗ =

√
2σ , an

equivalent radius of curvature of the asperity tips, ρ∗ = ρ/
√

2, and an effective
elastic modulus of the composite surface E∗ = E/[2(1−ν2)].
We also consider, in the framework of the Greenwood and Williamson’s microme-
chanical contact model (Greenwood and Williamson, 1966), rough surfaces whose
summit heights follow a given statistical distribution, Φ(z), which is usually the
Gaussian or the exponential one. The expressions of the derived equations are re-
ported in the sequel for a general statistical distribution. In this general case, how-
ever, the required integrations have to be performed numerically. To obtain useful
closed-form solutions, the formulae are also particularized to the special case of the
exponential distribution

Φ(z) =
1

σ∗
exp
(
− z

σ∗

)
(1)

where z is the summit height measured perpendicular to the mean plane of the rough
surface (see Fig. 2).
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For a given applied normal force, let us denote by d the distance between the mean
plane of the rough surface and the reference plane (see Fig. 2). Therefore, each
asperity in contact of height z > d will experience a closure equal to gN,i = z−d.

 

Figure 2: Contact between a composite rough surface and a smooth rigid plane.

When the remote (relative to distant points in the undeformed region of each body)
tangential displacement, gT, is progressively increased during the loading process,
from zero up to a maximum value, say gmax

T , it is possible to determine the interface
response under the assumption of spherical capped asperities. Thus, we can com-
bine the well-known Hertz formulae for the normal contact with the relationship
between the tangential displacement, gT, and the applied shear force, FT (Johnson,
1985)

gT =
3(2−ν)µgN

8Ga

[
1−
(

1− FT

µFN

)2/3
]

(2)

where G is the shear modulus, ν the Poisson’s ratio, a is the Hertz contact radius,
FN is the normal load and µ is the friction coefficient.

More specifically, the Hertz contact radius for the i-th microcontact, ai, and the
corresponding normal force, FN,i, can be computed as functions of the normal gap,
gN,i = z−d, as follows

ai =
√

ρ∗ (z−d) (3a)

FN,i =
4
3

E∗

ρ∗
a3

i =
2
3

E
(1−ν2)

√
ρ∗ (z−d)3/2 (3b)

Introducing these expressions into Eq. (2), and using G = E/ [2(1+ν)], we obtain(
1− FT,i

µFN,i

)2/3

= 1− gTσ∗

µλ (z−d)
(4)

where the symbol λ = σ∗ (2−ν)/ [2(1−ν)] has been introduced to shorten nota-
tion. It is important to observe that the right hand side of Eq. (4) is positive, i.e. it
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expresses a stick state, if and only if the following inequality holds

gN,i = z−d ≥ gTσ∗

µλ
= gN,0 (5)

Therefore, microcontacts whose closure is such that gN,i > gN,0 would support a
stick tangential force FT,i ≤ µFN,i. On the other hand, microcontacts having gN,i ≤
gN,0 are sliding, i.e. FT,i = µFN,i. Hence, for the microcontacts having gN,i > gN,0,
Eq. (4) combined with Eq. (3b) leads to the stick force

FT,i = µ
2E

3(1−ν2)

√
ρ∗(z−d)3/2

[
1−
(

1− gTσ∗

µλ (z−d)

)3/2
]

(6)

Therefore, the total tangential force supported by a unit area of the contact domain
in stick condition, FST

T , can be obtained by integration over the height distribution

FST
T = µ

2E
3(1−ν2)

√
ρ∗nsAn

∞∫
d0

[
(z−d)3/2−

(
z−d− gTσ∗

µλ

)3/2
]

Φ(z) dz (7)

where the parameter d0 is given by the condition (5), i.e. d0 = d +gN,0.

On the other hand, the total tangential force applied to the system is given by the
sum of the stick and the slip, FSL

T , ones

FT = FST
T +FSL

T = µ
2E

3(1−ν2)

√
ρ∗nsAn

∞∫
d0

[
(z−d)3/2−

(
z−d− gTσ∗

µλ

)3/2
]

Φ(z) dz+
d0∫

d

(z−d)3/2
Φ(z) dz

 (8)

where the second integral in braces corresponds to the contribution due to the con-
tact domain in slip condition, which is obtained from Eq. (3b) multiplied by the
friction coefficient, i.e., FSL

T,i = µFN,i. Integrating Eq. (8), we derive the follow-
ing closed-form relationship between the total tangential force and the sliding dis-
placement, provided that an exponential distribution of asperity heights, like the
one given by Eq. (1), is considered

FT = µFN

[
1− exp

(
−gN,0

σ∗

)]
= µFN

[
1− exp

(
− gT

µλ

)]
(9)

Comparing Eqs. (7) and (8), it is possible to determine the following relationship
between the stick component of the tangential force, FST

T , and the total tangential
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force, FT

FST
T = FT−FSL

T = FT−µ
2E

3(1−ν2)

√
ρ∗nsAn

d0∫
d

(z−d)3/2
Φ(z) dz (10)

Recalling that the total normal load on the interface is given by (Greenwood and
Williamson, 1966)

FN =
4
3

E∗
√

ρ∗nsAn

∞∫
d

(z−d)3/2
Φ(z) dz (11)

it is possible to recast the relationship between FST
T and FT in a nondimensional

form. For the case of an exponential distribution of the asperity heights, from Eqs.
(10) and (11) we have

F̂ST
T =

FST
T

µFN
=

FT

µFN
−

d0∫
d

(z−d)3/2Φ(z) dz

∞∫
d

(z−d)3/2Φ(z) dz
= F̂T−

d0∫
d

(z−d)3/2Φ(z) dz

∞∫
d

(z−d)3/2Φ(z) dz
=

= F̂T−
exp
(
− gT

µλ

)
3
√

π

[
−4
(

gT

µλ

)3/2

−6
(

gT

µλ

)1/2
]
− erf

[(
gT

µλ

)1/2
]

=

= F̂T−
1− F̂T

3
√

π

−4

[√
− ln

(
1− F̂T

)]3

−6
√
− ln

(
1− F̂T

)−
− erf

[√
− ln

(
1− F̂T

)]}
(12)

where the nondimensional terms F̂T = FT/µFN and F̂ST
T = FST

T /µFN have been
introduced, together with the relationship between gT/µλ and F̂T given in Eq. (9).

Similarly, the real contact area is given by the following formula (Greenwood and
Williamson, 1966)

Ar = πρ
∗nsAn

∞∫
d

(z−d)Φ(z) dz (13)

and its part in stick condition can now be determined as

AST = Ar−πρ
∗nsAn

d0∫
d

(z−d)Φ(z) dz (14)
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Hence, after some algebra, it is possible to establish a relationship between the
nondimensional contact area in stick condition, ÂST = AST/Ar, where Ar is the total
real contact area, and the nondimensional applied tangential force, F̂T

ÂST =
AST

Ar
= 1−

d0∫
d

(z−d)Φ(z) dz

∞∫
d

(z−d)Φ(z) dz
=

= exp
(
− gT

µλ

)(
1+

gT

µλ

)
=
(

1− F̂T

)[
1− ln

(
1− F̂T

)]
(15)

where, again, the relationship between gT/µλ and F̂T given by Eq. (9) has been
used.

3 Tangential contact of smooth surfaces

3.1 Spheres

Two identical spherical bodies pressed into contact by a normal force, FN, develop
a circular area of contact. Its radius, a, and the ellipsoidal pressure distribution
are given by the Hertz theory. If a suitably applied tangential force FT < µFN is
successively applied in the x direction at the interface level (see Fig. 7.1 in Chapt.
7 of Johnson, 1985), causing elastic deformation without slip at the interface, then
the tangential displacement of all the points in the contact area is the same. Corre-
spondingly, the distribution of tangential tractions, qx(r), is radially symmetric in
magnitude and everywhere parallel to the x-axis (see e.g. Mindlin and Deresiewicz,
1953; Johnson, 1985, pag. 216)

qx(r) = µ
3FN

2πa2

[
1−
( r

a

)2
]−1/2

(16)

This tangential traction corresponding to full-stick condition rises to a theoretically
infinite value at the periphery of the contact circle, so that micro-slip is inevitable
at the edge of contact, i.e. for r→ a (see Fig. 3).

The axial symmetry of the tangential tractions qx(r) suggests that the stick region
might be circular and concentric with the contact circle, whereas an annulus of slip
is expected to develop inwards from the periphery of the contact area. In the case
of partial slip, the Cattaneo-Mindlin’s technique (Cattaneo, 1938; Mindlin, 1949)
can profitably be applied and shows that the traction distribution along the contact
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Figure 3: Distribution of tangential tractions for spheres in the case of full-stick
condition.

area can be obtained by superposition of the following traction distributions

q1(r) = µ
3FN

2πa2

√
1−
( r

a

)2
, 0≤ r ≤ a (17a)

q2(r) =−µ
3FN

2πa2
c
a

√
1−
( r

c

)2
, 0≤ r ≤ c (17b)

that are plotted in Fig. 4. The parameter c denotes the radius of the stick contact
circle, whose value can be found from the condition of equivalence between the
resultant of the traction distribution and the applied tangential force

FT =
a∫

0

2πq1r dr +
c∫

0

2πq2r dr = µFN

[
1−
( c

a

)3
]

(18)

whence:

c
a

= 3

√
1− FT

µFN
=

3
√

1− F̂T (19)

Therefore, the resultant tangential traction acts parallel to the x-axis at all points
and is given by q1(r) in the annulus c ≤ r ≤ a and by q1(r)+ q2(r) in the central
circle 0 ≤ r ≤ c. It is also interesting to note that the applied tangential force can
be decomposed into two parts: the former supported by the contact domain in stick
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Figure 4: Traction distributions for spheres under partial slip conditions (c/a=0.6).

condition, FST
T , and the latter supported by the remaining part in slip condition,

FSL
T = FT−FST

T . As for rough surfaces, this decomposition is an original procedure
and the derived formulae cannot be found elsewhere. Focusing our attention on the
stick contribution, we can write

FST
T =

c∫
0

2πq1r dr +
c∫

0

2πq2r dr = µFN

{
1−
[

1−
( c

a

)2
]3/2

−
( c

a

)3
}

(20)

which can also be expressed as a function of the applied tangential force, using the
relationship between c/a and F̂T in Eq. (19)

F̂ST
T = F̂T−

[
1−
(

1− F̂T

)2/3
]3/2

(21)

where the previously defined nondimensional variables F̂T and F̂ST
T have been used.

Finally, it is possible to establish a relationship between the nondimensional contact
area in stick condition, ÂST, and the nondimensional applied tangential force, F̂T

ÂST =
πc2

πa2 =
( c

a

)2
=
(

1− F̂T

)2/3
(22)

where again we have introduced the relationship between c/a and F̂T.
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3.2 Cylinders

Let us consider two identical and parallel cylinders in contact and pressed by a
normal force per unit length, FN. Both the contact line and their axes are parallel
to the y-axis. A tangential force FT < µFN per unit length is subsequently applied
at the interface level (see Fig. 7.1 in Chapt. 7 of Johnson, 1985). Also in this case,
the contact area represented by the contact strip of extension 2a and the pressure
distribution are given by the Hertz theory. In full-stick condition, the distribution
of tangential tractions is everywhere parallel to the x-axis and is given by (Johnson,
1985, pag. 214)

q(x) =
FT

πa

[
1−
( x

a

)2
]−1/2

(23)

This tangential traction corresponding to full-stick condition rises to a theoretically
infinite value at the edge of the contact strip, so that micro-slip is inevitable at the
edge of contact, i.e. for x→±a. Note that this traction distribution has the same
trend as that for spheres (see Eq. (15)), provided that the variable r is substituted
with x.

From the physical point of view, these high tangential tractions at the edge of the
contact area cannot be sustained, since it would be required an infinite value of the
friction coefficient. Therefore, micro-slip should take place starting from the edges
of the contact strip. On the other hand, a stick region is expected in the centre of
the strip where the tangential traction is lower and the normal pressure is higher.
Applying again the Cattaneo-Mindlin’s technique (Cattaneo, 1938; Mindlin, 1949),
the traction distribution along the contact area in partial slip condition can be ob-
tained by superposition of the following traction distributions:

q1(x) = µ
2FN

πa

√
1−
( x

a

)2
, −a≤ x≤ a (24a)

q2(x) =−µ
2FN

πa
c
a

√
1−
(x

c

)2
, −c≤ x≤ c, (c < a) (24b)

where, in this case, c denotes one half of the width of the strip in stick condition,
whose value can be found from the condition of equivalence between the resultant
of the traction distribution and the applied tangential force

FT =
a∫
−a

q1(x) dx+
c∫
−c

q2(x) dx = µFN

[
1−
( c

a

)2
]

(25)
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whence:

c
a

=

√
1− FT

µFN
=
√

1− F̂T (26)

From a comparison between Eqs. (17) and (24) we recognize that q1(x) and q2(x)
for cylinders have the same dependence on x as the corresponding equations for
spheres. Therefore, keeping FN constant and steadily increasing FT from zero,
micro-slip immediately develops at the two edges of the contact area and spreads
inwards according to Eq. (26). As FT approaches µFN, c tends to zero and the
stick region shrinks to a line at x = 0. Any further attempt to increase FT causes the
contact to slide. It is also interesting to note that the applied tangential force can
be decomposed into two parts, as previously shown for spheres and rough surfaces:
the former supported by the contact domain in stick condition, FST

T , and the latter
supported by the remaining part in slip condition, FSL

T = FT− FST
T . Again, the

following results cannot be found elsewhere. Focusing our attention on the stick
contribution, we have

FST
T =

c∫
−c

q1(x) dx+
c∫
−c

q2(x) dx =

=
2
π

µFN

 c
a

√
1−
( c

a

)2
+ arctan

 c
a

1√
1−
( c

a

)2

−µFN

( c
a

)2
(27)

which can also be expressed as a function of the applied tangential force using Eq.
(26)

F̂ST
T =

2
π


√(

1− F̂T

)
F̂T + arctan

√1− F̂T

F̂T

+ F̂T−1 (28)

where also here the nondimensional variables F̂T and F̂ST
T have been suitably intro-

duced.

Finally, it is possible to establish a relationship between the nondimensional contact
area in stick condition, ÂST, and the nondimensional applied tangential force, F̂T

ÂST =
c
a

=
√

1− F̂T (29)
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3.3 Smooth plane surfaces

Let us consider two half spaces in contact along their smooth ideal planes and
compressed by a normal force, FN. This problem corresponds to the limit case
of contact between two ideal flat surfaces. When a tangential force FT < µFN is
subsequently applied at the interface level, all the points belonging to the planes
remain in stick condition. On the other hand, when the tangential force reaches its
critical value, i.e. FT = µFN, full-slip takes place instantaneously along the whole
planes, since all the points in contact support the same normal pressure.

Under these limit conditions, the stick components of the tangential force and of
the contact area are given by (in nondimensional form)

F̂ST
T =

{
F̂T, 0≤ F̂T < 1,

0, F̂T = 1
(30)

ÂST =

{
1, 0≤ F̂T < 1,

0, F̂T = 1
(31)

A comparison between the obtained solutions for rough and smooth surfaces is
proposed in Fig. 5. The nondimensional stick component of the tangential force vs.
the total tangential force curves shown in Fig. 5a have a characteristic bell-shape.
For a given value of the nondimensional applied tangential force, spheres show the
lowest value of tangential force supported by the stick domain. Higher values are
observed for cylinders and rough surfaces, whereas totally flat surfaces provide the
limit situation corresponding to a straight line with a 45˚ slope, being F̂ST

T = F̂T
for 0 ≤ F̂T < 1 while for F̂T = 1 a vertical drop takes place. It is interesting to
note that the above order is maintained in the nondimensional stick contact area vs.
nondimensional total tangential force diagram (see Fig. 5b). In this case, spheres
have the lowest contact area in stick condition for a given applied tangential force
with respect to cylinders and rough surfaces. The limit case of totally flat surfaces
is now represented by a horizontal line corresponding to ÂST = 1 for 0 ≤ F̂T < 1,
while for F̂T = 1 once more a vertical drop takes place.

4 Modelling the problem of contact loss and related instabilities

In order to quantify the effect of contact loss on the tangential motion of rough
surfaces, we propose an analytical model which extends the pioneering results ob-
tained by Mindlin and Deresiewicz (1953) for smooth spheres. Due to the gen-
erality of the proposed methodology, this approach can also be applied to smooth
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 (a) Nondimensional stick tangential force              (b) Nondimensional stick contact area 
 

Figure 5: Nondimensional tangential force dependencies.

surfaces such as cylinders, spheres, or ideally flat surfaces, using the formulae de-
rived in Section 3.

Regardless of the mechanism causing the contact loss, that may vary from a mate-
rial to another, as discussed in the introduction, let us model this phenomenon as a
loading condition consisting in a decreasing normal force followed by an increasing
tangential force. When FN is reduced by an amount ∆FN, with the tangential load
held constant, such a decrease would increase the separation, d, between the rough
surfaces. Correspondingly, the real contact area is reduced from Ar to A′r = Ar−∆Ar
according to Eq. (13). However, the portions of the contact surface related to ∆Ar
would no longer be in contact and would be unable to sustain tangential tractions.
Consequently, before a reduction in normal load may by effected, it is necessary
to remove the existing tangential tractions from this region. This removal can be
accomplished by treating the i-th spherical asperity according to the formulation by
Mindlin and Deresiewicz (1953). Hence, the reduction of the normal load causes a
loss of contact in the annulus anew

i ≤ r ≤ ai. During the removal, the new contact
area r ≤ anew

i will be “frozen”, i.e., no slip is permitted to take place in that region.
Then, a distribution of tractions is added, so that the annulus anew

i ≤ r≤ ai becomes
traction free. As demonstrated by Mindlin and Deresiewicz (1953), this leads to a
resultant traction which will be in equilibrium with (F ′T)i = (FT)i− µ (∆FN)i. As
regards the global behaviour of the rough surface, this will correspond to the sum-
mation of the individual behaviours of each asperities and therefore the resultant
traction distribution will be in equilibrium with the new force F ′T = FT− µ∆FN.
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This new equilibrium configuration would also be characterized by a relative tan-
gential displacement g′T, smaller than gT, obtained by inverting Eq. (9). Now,
holding the normal force constant at F ′N = FN−∆FN, a subsequent increase in the
tangential load would cause an increase in the relative tangential displacement and
a progressive shrink of the stick part of the contact region.

As an illustrative example, let us consider the contact between a microscopically
rough surface depicted in Fig. 2 with σ∗ = 2 µm, ν = 0.3 and µ = 0.1. Results are
shown in Fig. 6.

  
(a) Tangential load vs. relative tangential 
displacement diagram. 

(b) Magnification of the previous diagram 
where snap-back (AD) and snap-through 
(AC) instabilities are shown. 

 Figure 6: Instabilities in the tangential load vs. sliding displacement diagram.

In this analysis, the normal load is kept constant at the value of 1 kN and the tan-
gential displacement is progressively increased up to 0.34 µm, following the path
OA in the tangential force vs. sliding displacement diagram. After reaching point
A, the normal load is progressively reduced down to 0.85 kN and the equilibrium
configurations corresponding to F ′T = Fmax

T − µ∆FN are progressively computed,
step-by-step, for each value of ∆FN. The mechanical response is thus represented
by the nonlinear path AB, where each point corresponds to the solution of a prob-
lem obtained by imposing a reduced normal load F ′N = FN−∆FN and then applying
an increasing tangential force rising from zero up to F ′T (see, e.g., the path OB). Af-
ter point B, the tangential load is increased again, following the ascending branch
BC.

Thus, a reduction in the normal load during tangential loading results into a jagged
mechanical response of the system, with a branch AB with positive slope. This is
a cause of mechanical instability, leading to energy release. In fact, if the driving
parameter is the applied tangential load, then a subsequent increase in the tangen-
tial force FT after point A may cause a snap-through instability, following the path
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AC. The area of the region ABC is then released as a vibrational energy. Similarly,
if the driving parameter is the sliding displacement, then a subsequent increase in
gT after point A will give rise to a vertical drop down to point D, with the occur-
rence of a snap-back instability. Also in this case, the area of the region ABD
would be released as a vibrational energy. This suggests the possibility to apply
the proposed theory to the analysis of the energy released in form of seismic waves
during earthquakes, one of the most notable examples of stick-slip motion in civil
engineering.

From the mechanical point of view, these results allows us to interpret the problem
of stick-slip according to the Catastrophe Theory (Thom, 1975), in close analogy
with the previous studies by Carpinteri (1985, 1989) on the snap-back instability
of Mode I cohesive crack propagation in concrete members. Hence, the post-peak
branch AB does not correspond to a simple elastic unloading and the phenomenon
under consideration shares all the features typical of a cusp-catastrophe instabil-
ity. In fact, in close analogy with the snap-back behavior of Mode I cohesive crack
growth in plane concrete beams tested under three-point bending (Carpinteri, 1985,
1989), where the length of the crack may be used as the driving parameter to fol-
low the unstable branch, the physical quantity which is a monotonically increasing
function is herein represented by the total slipping contact area. On the other hand,
the analogous of the beam deflection is now represented by the imposed sliding
displacement at infinity, i.e., far from the interface. The total slipping contact area
can be computed as the sum of the contact area in slip condition for the actual ap-
plied tangential force, plus the slipped real contact area due to the normal force
reduction, ∆Ar. In nondimensional form we have

ÂSL =
ASL

Ar
=
(

1− ÂST
)

+
∆Ar

Ar
(32)

where ÂST is given by Eq. (15) for rough surfaces with an exponential distribution
of asperity heights (or by Eqs. (20), (29) and (31) for smooth surfaces), Ar is
the initial real contact area before normal force reduction, and ∆Ar represents the
amount of slipped contact area due to normal force reduction. Therefore, although
the equilibrium conditions along the path AB correspond to lower tangential forces,
the total slipped contact area steadily increases, giving rise to a catastrophical
response. Using the total slipped contact area as the driving parameter, the virtual
post-peak branch with positive slope in Fig. 6(a) can be captured (see the path AB
in Fig. 7 which has now a negative slope), the obtained curve being now a single
valued function of ASL/Ar.

It is also interesting to note that the nonlinearity of the post-peak branch AB in Fig.
6(a) depends on the magnitude of the normal load reduction. For a reduction of
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Figure 7: Tangential force vs. nondimensional total slipped contact area.

FN from 1000 N to 800 N, the post-peak path is not far from a straight line (see
Fig. 8), whereas its deviation from linearity is quite significant if further reductions
are considered (see the different curves in Fig. 8, where the post-peak paths are
depicted with dashed line).

 

Figure 8: The nonlinearity of the post-peak paths.

Moreover, according to differential topology, a catastrophic behaviour of a me-
chanical system can be described by the properties of surfaces in many dimensions
(manifolds). By definition, an elementary catastrophe is determined by its state
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variable (the total slipped contact area in this case) and by one or more control vari-
ables. One of the elementary catastrophes is the cusp catastrophe (Thom, 1975).
Here, the catastrophe manifold can be regarded as a three-dimensional response
surface in the parameter space defined by the sliding displacement at infinity, the
tangential force and the friction coefficient. This surface has a pleated shape and
the edges of the pleat define the fold curve. For a given friction coefficient, the
cross-section of the response surface provides a fold curve as those shown in Fig.
9. Note that the snap-back instability is even more severe when higher and higher
friction coefficients are considered.

         
(a)   Low friction coefficient. (b)   High friction coefficient. 

 Figure 9: The effect of the friction coefficient on the mechanical response.

5 Conclusions

The problem of tangential contact between rough surfaces has been addressed. To
this aim, a micromechanical model based on the Greenwood and Willamson con-
tact model has been developed for the analysis of the tangential response of rough
surfaces. Special attention has been given to the computation of the stick and slip
components of the tangential force and the real contact area, obtaining useful and
unprecedented closed-form solutions in the case of random rough surfaces with
an exponential distribution of the asperity heights and of smooth surfaces, such as
spheres, cylinders and ideal smooth planes.

Finally, according to the proposed theory, the problem of contact loss has been nu-
merically simulated and it has been shown that this phenomenon leads to either
snap-back or snap-through instabilities, depending on the adopted driving parame-
ter of the contact problem. This demonstrates for the first time that the phenomenon
of stick-slip may occur during the micro-slip motion of rough surfaces and mani-
fests itself as a catastrophic instability, in close analogy with the problem of crack
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propagation in cohesive solids. Hence, whenever a combination of the control vari-
ables (applied tangential force, sliding displacement, friction coefficient) crosses
the bifurcation curve, a catastrophic change occurs and the control point jumps on
the behaviour surface from the upper part of the pleat to the lower one. In this
jump, the mechanical system completely changes its configuration. To follow the
unstable branch, the driving parameter to be used is here represented by the nondi-
mensional total slipped contact area. This state variable, which is an increasing
monotonic function of time, has its analogous counterpart in the crack length for
the problem of crack propagation in cohesive solids (Carpinteri, 1989).
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