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Computation of the Turbulent Flow in a Square Duct
Using a Cubic Low-Reynolds Stress Model

H. Naj 1, 2, 3 and G. Mompean1,2

Abstract: The aim of this work is to predict numerically the turbulent flow through
a straight square duct using a nonlinear stress-strain model. The paper considers
the application of the Craft et al.’s model [Craft, Launder, and Suga (1996)] to the
case of turbulent incompressible flow in a straight square duct. In order to han-
dle wall proximity effects, damping functions are introduced. Using a priori and
a posteriori investigations, we show the performance of this model to predict such
flows. The analysis of the flow anisotropy is made using the anisotropy-invariant
map proposed by Lumley and Newman [Lumley and Newman (1977)]. This map
shows the various possible states of the turbulence. The mean flow field and the
turbulent statistics are compared with existing numerical and experimental data for
square and rectangular duct flows. Overall, the model performance is shown to be
satisfactory. In particular, the mean secondary velocity field and the streamwise
vorticity are well predicted.

Keywords: Computational fluid mechanics; Finite volume method; cubic k− ε

model; realizability; square duct flow.

1 Introduction

The turbulence flow inside a duct of square cross-section is of considerable engi-
neering interest, with relevance to flow in the root region of a lifting section, com-
plex flow in turbomachinery and heat exchangers, flows in ducts with non-circular
cross-section, and flows in open channels and rivers. This flow is characterized by
the existence of secondary flows which can be classified into two types, namely,
Prandtl’s flows of the first and second kind. In general, numerical predictions of
turbulent flows have become a valuable tool to obtain a detailed description of the
turbulent flows which are difficult to obtain experimentally.
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In the past years, several formulations have been developed in order to solve CFD
problems for laminar and turbulent flow, using mesh and meshfree methods. The
Eulerian formulation where the mesh is fixed in space is commonly used to solve
incompressible fluid problems for academic and industrial applications. These for-
mulations can be based on implicit velocity pressure coupling procedure using fi-
nite element or finite volume analysis as described in Longatte et al. (2003), or ve-
locity pressure decoupling procedure using staggered-mesh finite volume method.
This method is used in Aquelet et al. (2003) to solve free surface flow and slosh-
ing tank problems. Some recent works in engineering applications used meshless
methods. These methods are used for fluid dynamics as well as for structure dy-
namics as described in Lin and Atluri (2001), Ahrem et al. (2006), Arefmanesh
et al. (2008), and Zheng at al. (2009). These methods are developed for explicit
time integration algorithms and are mainly used to solve compressible, nearly in-
compressible, and incompressible flows, as described in Vertnik and Šarler (2009),
Pasquim and Mariani (2008), and Orsini et al. (2008).

Attempts to predict the turbulent characteristics have resulted in several compu-
tational approaches which can generally be classified as DNS (Direct Numerical
Simulation), LES (Large Eddy Simulation) or RANS (Reynolds Averaged Navier-
Stokes). The DNS approach is a simulation in computational fluid dynamics in
which the Navier-Stokes equations are solved numerically without any turbulence
modelling. This means that the whole range of spatial and temporal scales of
the turbulence must be resolved. All the spatial scales of the turbulence must
be resolved in the computational mesh, from the smallest dissipative scales (Kol-
mogorov microscales) up to the integral scale L, associated with the motions con-
taining most of the kinetic energy. The results from the DNS are accurate and reveal
valuable information on the turbulence structures. In 1992, Gavrilakis [Gavrilakis
(1992)] reported on DNS of square duct flow. These simulations, providing mean-
flow properties and turbulent statistics, have been used to estimate each term in the
mean streamwise vorticity equation. Huser and Birigen [Huser and Birigen (1993)]
simulated square duct flow using DNS and demonstrated that the mean secondary
flows are related to the ejection structures near the wall. However, two of the major
shortcomings of the DNS simulations are their exertion only at low or moderate
Reynolds numbers, because the number of grid points increases as Re9/4 where Re
is the Reynolds numbers, and the computational demands are very large (requiring
hundreds of hours of CPU time on the super computers). Therefore, the DNS ap-
proach is limited to low Reynolds numbers. An alternative to the DNS approach
is the technique of LES. The LES approach is a numerical technique used to solve
the partial differential equations governing turbulent fluid flow. It was formulated
in the late 1960s and became popular in the later years. It was first used by Joseph
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Smagorinsky to simulate atmospheric air currents, so its primary use at that time
was for meteorological calculations and predictions. In 1991, Madabhushi and
Vanka [Madabhushi and Vanka (1991)] were the first investigators to the perform
LES of the square duct flow. However, the LES approach requires less computa-
tional effort than DNS but more effort than those methods that solve the Reynolds-
averaged Navier-Stokes equations (RANS). The RANS approach required for the
derivation of the RANS equations from the instantaneous Navier–Stokes equations
is the Reynolds decomposition. Reynolds decomposition refers to separation of the
flow variable into the mean component and the fluctuating component. However,
when using this approach, the success of computational results depends heavily on
the choice of the Reynolds Stress Model (RSM). In the RSM model, which is pro-
posed initially by Launder et al. [Launder, Reece, and Rodi (1975)], the pressure-
strain correlation terms incorporate the non-local effect of the flow. The RSM is
extremely complicated to solve for complex three-dimensional flows, the modelled
terms require a variety of ad hoc wall damping functions and the numerical values
of the coefficients are chosen based on empiricism [Gibson and Launder (1978);
Speziale, Sarkar, and Gatski, (1991)]. In order to combine simplicity, general-
ity and efficiency, explicit algebraic Reynolds stress models (EARSM) have been
proposed in the literature. These EARSM models propose the relations between
Reynolds stress tensor, mean rate of deformation and the vorticity tensors, and they
are able to capture more characteristics of the turbulent flows (anisotropy, near-
wall behaviour). Historically speaking, Rodi [Rodi (1976)] was the first to derive
a two-equation algebraic Reynolds stress model. This methodology has since fur-
ther advanced by Taulbee [Taulbee (1992)], Speziale [Speziale (1987)], Gatski and
Speziale [Gatski and Speziale (1993)] and Jongen et al. [Jongen, Mompean, and
Gatski (1998)]. There are two different strategies to derive EARSM models. The
first one uses the equilibrium second moment equation with a partial constitutive
relation. In this category, we can find several models. Among these, we can cite
those proposed by Taulbee [Taulbee (1992)], Wallin and Johansson [Wallin and Jo-
hansson (2000)] and Gatski and Rumsey [Gatski and Rumsey (2001)]. The second
alternative uses general constitutive relations for the Reynolds stress manipulated
with the invariance and the realizability, Pope [Pope (1975)], the rapid distortion
theory and the renormalization group analysis. We can cite, in this second strategy,
the models developed by Yoshizawa [Yoshizawa (1984)], Rubinstein and Barton
[Rubinstein and Barton (1990)], Shih and Lumley [Shih and Lumley (1995)], Craft
et al. [Craft, Launder, and Suga (1996); Craft, Lacovides, and Yoon (1999)].

This work focuses on a numerical investigation of a low Reynolds number turbu-
lent flow though a square duct with emphasis on EARSMs model, which are based
on the general constitutive equations and which have been derived by Craft et al.
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[Craft, Launder, and Suga (1996); Craft, Lacovides, and Yoon (1999)]. These mod-
els have been proposed to extend the applicability of many quadratic models, Shih
et al. [Shih, Zhu, and Lumley (1995)]. Note that, the Craft et al.’s model is a
cubic relation between the strain and vorticity tensor and the stress tensor, and ac-
cording these authors, it seems more appropriate to reflect the effects of curvature
and swirling. Therefore, the present study aims at investigating the capability of
this cubic viscosity turbulence model in the fully turbulence flow through a straight
square duct. This square duct configuration has been frequently chosen by many
authors (Gavrilakis [Gavrilakis (1992)], Madabhushi and Vanka [Madabhushi and
Vanka (1991)], Huser and Biringen [Huser and Biringen (1993)], Mompean et al.
[Mompean, Gavrilakis, Machiels, and Deville (1996)], Xu and Pollard [Xu and
Pollard (2001)], Xu et al. (2003) [Xu, Khalid, and Pollard (2003)], etc...) since it
is a relatively simple geometry which provides a good test case to improve turbu-
lence models performance. Note that this flow is strongly anisotropic and involves
a secondary flow in the cross-stream plane, which is absent in the case of a plane
channel.

The paper is organised as follows: The EARSM model herein employed is briefly
described in the second section. The third section contains a brief outline of the
finite volume numerical method. The main results of this work are presented and
discussed in the fourth section, followed by conclusions drawn from the present
predictions.

2 Governing equations

In the present work, RANS formulation is used to predict the turbulent flow. This
approach is used applying the Reynolds decomposition, which consists of splitting
the velocity and pressure variables into an average and a fluctuating part. The
equations governing the mean velocity Ui and the mean pressure P are obtained
from the RANS equations for incompressible flow:
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where is the fluid density, is the cinematic viscosity and u′iu
′
j is the Reynolds stress

tensor. The indices refer to the x,y, and z directions, respectively; x is the stream-
wise and y and z are the transverse directions.

To close the RANS equations (1), the cubic eddy-viscosity model of turbulence
proposed by Craft et al. [Craft, Launder, and Suga (1996); Craft, Lacovides, and
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Yoon (1999)] is used. The most general expression retaining terms up to cubic level
that satisfies the required symmetry and contraction properties, can be written as
follows:
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where k(= u′ju
′
j/2) is the turbulent kinetic energy, νt(= Cµk2/ε̃) is the turbulent

viscosity, ε̃(= ε − 2ν(∂k1/2/∂x j)2) is the “isotropic” dissipation rate, δi j is the
Kronecker tensor, and Si j and Ωi j are the mean rate of deformation and vorticity
tensors, respectively.

The model coefficients c1, c2, c3, c4, c5, c6 and c7 in equation (2) are given in
Table 1, where the coefficient Cµ is a function of the strain and vorticity invariants
S̃ and Ω̃:

Cµ =
0.3

1+0.35max(S̃, Ω̃)3/2

(
1− exp

(
−0.36exp

(
0.75max(S̃, Ω̃)

)))
(3)

The nondimensional strain rate S̃ and vorticity Ω̃ are denoted by S̃ = k/ε̃
√

Si jSi j/2
and Ω̃ = k/ε̃

√
Ωi jΩi j/2, respectively.

Table 1: The proposed form for the coefficients of equation 2.

C1 C2 C3 C4 C5 C6 C7

−0.1 0.1 0.26 −10C2
µ 0. −5C2

µ 5C2
µ

The cubic stress-strain relation (2) adopted here presents some advantages. In-
deed, the quadratic terms and strain/vorticity-dependent coefficients are responsi-
ble for the ability of the non-linear models to capture flow anisotropy, and the cubic
terms can reflect the effect of curvature. Also, theses cubic terms can capture the
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swirling flow effect according to Pettersson and Andersson [Pettersson and Ander-
sson (2002)].

The turbulence energy k and the “isotropic” dissipation rate ε̃ are obtained from the
following transport equations:
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is the turbulent energy
production. The near-wall source term E, which in the Launder-Sharma model
[Launder and Sharma (1974)], takes the form of 2ννt(∂ 2U i/∂x j∂xk)2, is modified
to reduce its dependence on the Reynolds number. Consequently, it is modelled as
follows:E = 0.0022 S̃νt k2

ε̃

(
∂ 2Ui

∂x j∂xk

)2
if Ret ≤ 250

E = 0 if Ret > 250
(5)

The length-scale correction Yap proposed by Yap [Yap (1987)] can be expressed as
follows:
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The various coefficients are given in Table 2.

Table 2: Coefficients in and equations

Cε1 Cε2 σk σε

1.44 1.92(1−0.3exp(−R2
t )) 1.0 1.3

3 Direct simulation

3.1 Direct Numerical simulation

In this paper, we used the Gavrilakis data [Gavrilakis (1992)] for a priori tests.
For this simulation, the flow variables are expanded into discrete Fourier series
along the x-direction, whereas second-order centred-difference approximations are
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used along y and z-directions. The Adams-Bashforth scheme is used for the tem-
poral integration. This DNS has been carried out for the Reynolds number Re =
Um2h/ν = 4410 based on the duct height 2h and the mean flow velocity Um. The
Reynolds number Re+ = uτ2h/ν based on the shear velocity is 300. The velocity
ratio U0/Um for this configuration was 1.33, U0 being the mean centreline veloc-
ity. The maximum Kolmogorov scale is 1.5ν/uτ . For more details on DNS, we can
refer to the paper of Gavrilakis [Gavrilakis (1992)].

3.2 Direct evaluation of the Craft et al. cubic model

3.2.1 Numerical methodology and damping functions

The a priori technique consists in using turbulent mean field predicted by DNS.
The mean velocity components, the turbulent kinetic energy and its dissipation rate
obtained through the DNS simulations are used in the turbulent model, to predict
the Reynolds stresses. The predictions are then compared with these quantities
obtained directly from the DNS. Figure 1 illustrates this a priori test.

 

Figure 1: Schematic diagram showing the structure of a priori test.

The geometrical configuration of the square duct with the reference axes is shown in
Fig. 2(a). The x-axis designates the streamwise direction. The normal direction is
parallel to the y-axis and the spanwise direction is parallel to the z-axis. The cross-
section is divided into four quadrants. Because of symmetry, only quadrant of the
square duct need to be calculated with symmetry conditions at the wall bisectors
(cf. Fig. 2).

As the flow through the straight square duct is supposed periodic in the stream-
wise direction, a two-dimensional mesh is sufficient for this study. Therefore, the
calculations were carried out using 63×63 grid points, irregularly spaced in the
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Figure 2: (a) Sketch of the computational domain; (b) Quadrant of the square.

cross-section (cf. Fig. 2(b)). The terms in the EARSM equation are discretized in
space using the first Euler order upwind scheme.

To enable a correct behaviour in the regions close to the walls, damping functions
of Van Driest types (Van Driest, 1956) have been used to bridge the solution. These
functions are given by (see Naji et al. [Naji, Mompean, and El Yahyaoui (2004)]):

f = (1−aexp(−bz+))(1−aexp(−by+)) (7)

where z+(= zuτ/ν) and y+(= yuτ/ν) are the nondimensional coordinates scaled
by the kinematic viscosity ν and the mean frictional velocity , being the mean wall
shear stress. The constants a and b (see Tab. 3) used here are those best corroborate
the DNS of Gavrilakis through our various a priori tests. Throughout this paper,
the modified model (see Eqs. (2)-(6) and (7)) will be labelled Craft f et al.

From Table 3, one can note that all the normaized Reynolds stresses < uiu j > (=
u′iu
′
j/u2

τ) have different damping functions.
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Table 3: Values of constants a and b used in the damping function fµ .

〈u2〉 〈v2〉 〈w2〉 −〈uv〉 〈uw〉 〈vw〉
a -4.5 0.34 0.34 1.01 1.01 0.68
b 0.038 0.05 0.05 0.04 0.04 0.043

3.2.2 Numerical results and discussion

To check if the Craft et al.’s model [Craft, Launder, and Suga (1996)] reproduces
the anisotropic character of the flow, a detailed analysis of the flow anisotropy may
be performed via the anisotropy-invariants map proposed by Lumley and Newmann
[Lumley and Newmann (1977)]. They have identified all turbulence sates in terms
of second () and third () invariants of the Reynolds stress anisotropy tensor bi j

which is defined as:

bi j = (uiu j− 2
3 kδi j)/2k (8)

The second and third invariants are defined by:

IIb =−bi jb ji/2 IIIb = bi jb jkbki/3 (9)

It can be shown that all the turbulence sates which characterize the turbulence are
limited inside the region bounded by the axisymmetric and two-dimensional states.

Figure 3 shows the variation of against for the Reynolds stress along the wall bi-
sector. The tendency of the turbulence sate is towards an axisymmetric state. How-
ever, the flow behaviour is affected by the corner and the turbulence tends to a
one-dimensional state. Near the duct center, the turbulence is close to isotropy.

To verify the realizability of the current model (Craft et al.’s model), Figures 4,
5 and 6 present, respectively, the contours plots of the normal Reynolds stresses
< u2 > and < w2 > and, the contours plots of the quantity (< uw >2)/(< u2 ><
w2 >). Plotted are the DNS data by Gavrilakis [Gavrilakis (1992)] for comparison
(see Figs. 4(b), 5(b) and 6(b)). Note that the distributions of < v2 > (resp. (< uw >2

)/(< u2 >< w2 >)) are similar to those of < w2 > (resp. (< uv >2)/(< u2 ><
v2 >)) so that < w(y) >=< v(z) > and < uw(y) >=< uv(z) >. The contour
plot of < v2 > (resp. (< uv >2)/(< u2 >< v2 >)) is therefore obtained by 90˚
rotation of the < w2 > (resp. (< uw >2)/(< u2 >< w2 >)) contour plot in the (y,
z) plane. The distributions of these quantities in the other quadrant can be obtained
through a symmetric mirroring with respect to the corresponding axes or origin.
By the examination of these figures, we remark that the turbulent normal stresses
are positive and the Schwarz inequality is respected ((< uiu j >2)/(< u2

i >< u2
j >
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Figure 3: The trajectories in anisotropy map along the wall bisector.

)≤ 1). For all the Reynolds stresses, the comparison of the numerical results with
available DNS shows good agreements.

(a) (b) 
 

Figure 4: Contour plots of the normal Reynolds stresses < u2 >: (a) present study;
(b) DNS data from Gavrilakis (1992).

In Figure 7 (a, b and c), the normal profiles of the normalized turbulent stresses as
functions of the z-direction along the wall bisector are represented and compared
with DNS data obtained by Gavrilakis [Gavrilakis (1992)] and with the model re-
sults of Speziale [Speziale (1987)] and Gatski and Speziale [Gatski and Speziale
(1993)]. As shown in Figure 7(a), the component < u2 > is best predicted by
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(a) (b) 
 

Figure 5: Contour plots of the normal Reynolds stresses< w2 >: (a) present study;
(b) DNS data from Gavrilakis (1992).

(a) (b) 
 

Figure 6: Contour plots of the quantities < uw >2 /(< u2 >< w2 >): (a) present
study; (b) DNS data from Gavrilakis (1992).

the current EARSM model [Craft, Launder, and Suga (1996); Craft, Lacovides,
and Yoon (1999)], although the peak is slightly underpredicted. The agreement
here being satisfying, this suggest that the near wall turbulence generation mecha-
nisms seem to be faithfully captured. One can observe that the < u2 > component
dominates the other two components with a very marked peak close to the wall
(z/h≈ 0.1).

For the y-component < v2 > (see Fig. 7(b)), the Craft f et al.’s model, while over-
predicting the magnitude of this quantity compared with DNS results from Gavri-
lakis [Gavrilakis (1992)], duplicates the DNS far away from the wall for z/h≥ 0.25.
Note that the peak is over-predicted by about 25% compared with the DNS and it
is not reached at the same location as the DNS. Figure 7(b) clearly demonstrates
that the spanwise turbulence component < v2 > is very sensitive to the choice of
the model, in particular for z/h≤ 0.25.
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(a) (b) 
 

(c) 
 

Figure 7: Normal profiles versus z/h. Comparison of Gavrilakis’s DNS (1992) with
the model estimates.

Also, it can be seen that its intensity increases rapidly in the near wall region,
approximately corresponding to 0 ≤ z/h ≤ 0.1 and that the predicted profiles are
larger than the profile from the DNS. All models overpredict the magnitude of
< v2 >. The vertical turbulence component < w2 > (see Figure 7(c)), in the cur-
rent model agrees well with the DNS data by Gavrilakis [Gavrilakis (1992)] for.
However, our predictions tend to slightly overestimate this intensity in the near
wall region. The peak value from the present model is predicted almost at the same
location as the DNS.

Otherwise, some noticeable differences are found, by comparing our predictions
with those of the Speziale [Speziale (1987)] and, Gatski and Speziale [Gatski and
Speziale (1993)] models. As pointed out by several authors, the main difference
among the profiles of the cross-stream turbulence intensities and that of the channel
flow occurs in the zones close to the walls.

These discrepancies mainly affect the < v2 > component. These may be attributed
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to the low Reynolds number used in this work and to the presence of the secondary
flows in the cross-stream plane, that are absent in the case of a plane channel. Note
that the Speziale model [Speziale (1987)] is not strongly realizable. Indeed, the
spanwise and the vertical turbulence intensities are negative for z/h ≤ 0.20 (see
Figures 7(b) and 7(c)).

Figure 8 depicts the distribution of the Reynolds shear stress component −< uv >
and−< uw > along the z-direction at the wall bisectory/h = 1.0. It can be seen that
the shear stress component − < uw > returned by the present model agrees well
with the DNS forz/h ≥ 0.25. The − < uw > peaks obtained by the two models
(Craft et al. and Craft f et al.) are roughly the same and they are much higher than
the corresponding peak of the DNS data.

(a) (b) 
 

Figure 8: Shear stress profiles versus z/h. Comparison of Gavrilakis’s DNS (1992)
with the model estimates.

The a priori evaluation and improvement of Craft et al.’s model shows that it is able
to predict turbulence flow through a straight square duct. Therefore, the extension
to a posteriori evaluation of the turbulence flow should produce reliable predictions
for other similar flows at a comparable Reynolds number.

4 A posteriori assessment of the Craft et al. cubic model

4.1 Spatial and temporal discretization

The governing equations are spatially discretized using a second-order finite vol-
ume method on a staggered grid. The conservation equations are integrated over a
control volume of boundary, and the Gauss theorem is used to transform the vol-
ume integrals into surface integrals. The pressure, the turbulent kinetic energy, the
“isotropic” dissipation rate and the normal Reynolds stress components are treated
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in the centre of the control volumes; the velocities are computed in the centre of
the faces and the cross components of the Reynolds tensor are attached to nodes
located at the mid-edges. The biggest advantage of the staggered arrangement is
the strong coupling between the velocities and pressure.

The pressure is treated by an implicit scheme, where a decoupling procedure for
the pressure is derived from the Marker and Cell (MAC) algorithm proposed by
Harlow and Welch [Harlow and Welch (1965)].

From the momentum conservation equation, a discrete Poisson equation is obtained
for the pressure by enforcing mass conservation implicitly:

M ∗ P̄n+1 = Bn (10)

The right hand side (B) of the linear system for the pressure is evaluated at the
previous time step n, and the new pressure values are calculated at the next time step
n+1. The matrix is symmetric and positive definite. Its coefficients only depend on
the distance between grid nodes. The pressure is obtained by adopting either the
Cholesky Factorization or the Preconditioned Conjugate Gradient (PCG). Note that
the principle of mass flux continuity is imposed indirectly via the solution of Eq.
10. Convergence was declared when the maximum normalized sum of absolute
residual ε̃n for each variable φ over all the computational domain was less than
10−4. This maximum error is for each variable determined by:

ε̃
n = max

N

∑
i=1

(1−φ
n
i /φ

n+1
i ) (11)

where N is the number of control volumes and being any flow variable.

It should be noted that the diffusion terms, in the momentum equation are treated
using a second order accurate scheme in space. The convective terms are ap-
proximated by the quadratic upstream interpolation scheme (QUICK) [see Leonard
(1979)]. Also, the mass conservation equation is evaluated at the time n+1, whereas
the advection and diffusion terms in the moment equation are evaluated at the time
n. To satisfy the CFL criteria, the time step ∆t was restricted to a value satisfying

CFLmax = ∆t max
[
|U |
∆x

+
|V |
∆y

+
|W |
∆z

]
≤ 0.3 (12)

which corresponds to the choice ∆t = 0.054ν/u2
τ . For the present computation, the

average value for the CFLmax is 0.22.

The advection terms in transport equations for k and ε are discretized in space using
the first order upwind scheme.
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4.2 Numerical details and boundary conditions

For the first time-step, at the inlet of the duct, a constant profile was given to U , k
and ε . The secondary velocities were initialised as nil ( and) all over the domain.
The k and ε inlet values were obtained from the DNS data using the r.s.m (root mean
square) velocities and the eddy viscosity, that was about four times the molecular
viscosity. At the outlet, a homogeneous Neumann boundary condition was used for
the inlet condition. The same procedure is used for the following time-steps up to
convergence.

The Reynolds number of 4410 is based on the bulk velocity and the hydraulic di-
ameter of the duct. The calculations were carried out using 63×63 grid points,
regularly spaced in the cross-section and 120 grid points in the streamwise direc-
tion. The outcome with this grid points was found to be satisfactory. The grid
convergence was checked using 61×61 grid points in the cross-section, the maxi-
mum difference observed between the two calculations were less than 0.1% in the
streamwise velocity near the corner. Mesh independence for the results has been
checked with 100x21x21 and 90x41x41 finite volumes. For example, the maxi-
mum difference observed between the results from various mesh were less than
0.1% in the spanwise velocity near the wall.

The boundary condition values for k and ε , at the first grid point near the wall, was
calculated taking into account the fact that this point was in the viscous sub-layer.
Also, due to the use of a staggered grid, the value of and are not defined at the wall.
In this paper, we consider the following boundary conditions for the equation of
and , which have been used by Patel et al. [Patel, Rodi, and Scheuerer (1984)].

A condition for symmetry, homogeneous Neumann, was used for all the variables
along the wall bisectors of the square duct.

4.3 Numerical results and discussion

Table 4 gives the summary of the various parameters of some studies considered
in the literature. The Reynolds number Reτ based on the shear velocity (uτ ) and
the duct height (H = 2h) is defined as Reτ = uτH/ν , and the bulk Reynolds Reb
number based on the bulk streamwise velocity (Ub) and the duct height is defined
as Reb = UbH/ν . For reference, the following abbreviations are used in this table:
SQD: Square duct; SQAD: Square annular duct; REQ: Rectangular duct.

4.3.1 Mean velocity field

The mean streamwise velocity along the wall-bisector is presented in Figure 9(c).
Compared with DNS, experiments and other simulations, the mean streamwise
from the Craft f et al.’s model is in good agreement with DNS and LES data, despite
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Table 4: Studies considered in the literature.
Researcher Channel type Method

Gavrilakis (1992) SQD 4410 300 DNS
Huser & Biringen (1993) SQD 10320 600 DNS

Madabhushi & Vanka (1991) SQD 5810 360 LES
Xu & Pollard (2001) SQAD 3650 400 LES
Niederschulte (1989) REQ 4914 Experiment

Gessner & Emery (1981) REQ 250000 Experiment

the difference between the Reynolds numbers (see Tab. 4). However, experimental
data causes a noticeable discrepancy in the region away from the wall. Figure 9(a
and b) shows the streamwise mean velocity along the z direction at different sec-
tions, namely, at y/h=0.3 and y/h=0.7. In Figure 9(a and b), the simulated stream-
wise velocity is normalized by the mean centreline velocity U0. It can be seen in
Figure 9(a and b) that the mean streamwise velocity in the present RANS prediction
agrees well with the results of Gavrilakis (1992).

The contours of mean streamwise velocity and secondary flow vectors in a quad-
rant of a cross-section are shown in the Figures 10 and 11, respectively. The
mean streamwise velocity and secondary flow vectors from DNS data by Gavri-
lakis (1992) are also given for comparison. By the examination of Figure 10, we
remark that the flow is symmetric according the corner bisector, and the prediction
is in good agreement with DNS data.

The secondary velocities convect mean-flow momentum from the central region to
the corner region along the corner bisectors. They also transport the low-momentum
fluid to the center along the wall bisector. This results in the bulging of the streamwise-
velocity contours towards the corner which can be seen in Figure 10. It can also be
seen from this figure that a fair degree of symmetry over the quadrant has been ob-
tained. It should be noted that the mean secondary velocity from the present RANS
is less developed than those from DNS data by Gavrilakis (1992).

The contours of the z-component of the secondary velocity W/U0 are shown in
Figure 12. We can observe that the contours obtained by Craft et al.’s model are
compared favourably with those of the DNS data of Gavrilakis.

In Figure 13(c), the secondary velocity component in z-direction along the wall bi-
sector is compared with DNS of Gavrilakis (1992) and Huser and Biringen (1993),
LES data of Xu and Pollard (2001) and experimental data of Gesssner and Emery
(1981). Note that the Reynolds number of the flow in experiment by Gessner and
Emery is much larger than of the simulated flow herein (see Tab. 4). The DNS re-
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(a) (b) 

(c) 
 

Figure 9: The normalized mean streamwise velocity U/U0 at different sections
y/h = 0.3, 0.7 and 1.0.

(a) (b) 
 

Figure 10: Contours of the normalized mean streamwise velocity U/U0 in a quad-
rant: (a) present study; (b) DNS data from Gavrilakis (1992).

sults from both Gavrilakis (1992) and Huser and Biringen (1993), and the present
RANS prediction are significantly lower than the experimental data, as seen in Fig-
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(a) (b) 
 

Figure 11: Mean secondary velocity vectors in a quadrant: (a) present study; (b)
DNS data from Gavrilakis (1992).

(a) (b) 
 

Figure 12: Contours of the normalized mean vertical velocity W/U0 in a quadrant:
(a) present study; (b) DNS data from Gavrilakis (1992).

ure 13(c), which is probably due to Reynolds number effects.

It can be seen in Figure 13(c) that the secondary velocity from the present RANS
results agrees well with the DNS of Gavrilakis (1992) and Huser and Biringen
(1993), especially in the region z/h > 0.15, and the LES from Xu and Pollard
(2001) in the region z/h > 0.45. The distribution of the z-component of secondary
velocity at different y/h locations, namely at y/h = 0.3 and y/h = 0.7, is shown
in Figure 13(a and b). The present RANS results show good qualitative agreement
with the DNS data of Gavrilakis (1992).

Contours of mean streamwise vorticity are shown in Figure 14. This quantity is
a direct manifestation of the secondary flow. Again, there is very good qualita-
tive agreement between the present RANS results and the DNS data of Gavrilakis
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(a) (b) 

(c) 

 

Figure 13: The normalized mean vertical velocity W/U0 at different sections y/h =
0.3, 0.7, 1.0.

(1992).

4.3.2 Turbulence statistics

The streamwise turbulence intensity along the wall bisector is presented in Fig-
ure 15. In this figure, DNS data by Gavrilakis [Gavrilakis (1992)] and Huser and
Biringen [Huser and Biringen (1993)], LES data by Xu and Pollard [Xu and Pollard
(2001)] and Madabhushi and Vanka [Madabhushi and Vanka (1991)], and experi-
mental data by Niederschulte [Niederschulte (1989)], are provided for comparison
with the present RANS data (Craft f et al.). The RANS results tend to slightly
under-predict (about 7% compared with the DNS from Gravrilakis and 20% com-
pared with the LES) in the near wall region. The peak value location from the
current predictions and LES by Madabhushi and Vanka [Madabhushi and Vanka
(1991)] is obtained at z/h = 0.10, whereas this location is at z/h = 0.13 in the
DNS by Gavrilakis [Gavrilakis (1992)] and experimental data for Niederschulte
[Niederschulte (1989)].
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(a) (b) 

 

Figure 14: Distribution of the normalized mean streamwise vorticity: (a) present
study; (b) DNS data from Gavrilakis (1992).

 
Figure 15: Streamwise turbulence intensity urms along the wall bisector (y/h = 1.0).

The DNS, LES and experimental were conducted at quite different Reynolds num-
ber (from 4410 to 10320). However, the agreement is satisfying and suggests that
the near wall turbulence generation mechanisms are faithfully captured

The Figures 16 and 17 present, respectively, comparisons of the turbulence intensi-
ties, vrms and wrms in the wall normal z-direction. The present RANS results, while
over-predicting the magnitude of vrms by about 16% compared with the DNS from
Gavrilakis (1992), 20% compared with the DNS from DNS from Huser and Birin-
gen [Huser and Biringen (1993)], and about 30% compared with the LES results
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and experimental data. It can be seen in Figure 16 that the turbulence intensity
from the present RANS data agree with DNS data, LES data from Madabhushi and
Vanka [Madabhushi and Vanka (1991)], and with measured data by Niederschulte
(1989) for z/h≤ 0.75 and z/h≥ 0.35. In Figure 16, it is observed that the profiles
of turbulence intensity wrms well duplicate the DNS results. The profiles of turbu-
lence intensity from LES data by Xu and Pollard [Xu and Pollard (2001)], and ex-
perimental data of Niederschulte (1989) appear to be smaller than the profile from
the present RANS. Willmarth [Willmarth (1975)] and Balint et al. [Balint, Wallace,
and Vukoslavcevic (1991)] suggested that the difference in the peak comes from the
Reynolds number effect that all components of turbulence intensity increase with
Reynolds number in the log region of wall-bounded turbulent flows. The difference
in the other part of the profile also results from the same effect.

 
Figure 16: Cross-streamwise turbulence intensity vrms along the wall bisector
(y/h = 1.0).

Figure 18 shows the contour plots of the primary Reynolds stress < uw >. We can
see clearly that the primary shear stress−< uw > by the present RANS data shows
a maximum value of 0.861 and a minimum value of -0.003, whereas the DNS data
from Gavrilakis (1992) shows a maximum of 0.665 and a minimum of -0.166 in
the same region of the quadrant.
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Figure 17: Cross-streamwise turbulence intensities wrms along the wall bisector
(y/h = 1.0).

(a) (b) 
 

Figure 18: Primary Reynolds stresses < uw >: (a) present study; (b) DNS data
from Gavrilakis (1992).

5 Conclusion

We have performed RANS simulation of the three-dimensional incompressible
Navier-Stokes equations to study the turbulent flow within a duct of square cross-
section. In order to carry out this work, we considered the explicit algebraic
Reynolds stress model proposed by Craft et al. [Craft, Launder, and Suga (1996)].

Firstly, this EARSM model is studied using a priori procedure based on data result-
ing from the direct numerical simulation of Gavrilakis (1992).
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We show that the Craft et al.’s model (1996) is realizable, since the analysis shows
that the normal Reynolds stresses are always nonnegative and the Schwartz inequal-
ity is satisfied. The map of the second and third invariants for the Reynolds stress
tensor indicates that within a quadrant the turbulence field comes close to one-,
two-, and three-component states. To predict the significant viscous effects due to
the presence of the wall and corner, damping functions are implemented. The com-
parison of the mean velocity field shows a good agreement. Overall, the Craft f et
al. model considered in this work yields better predictions than those obtained by
the original model.

Secondly, as its results are in a limited qualitative agreement with the DNS data,
our RANS simulation is carried out using an a posteriori procedure. The simulation
results were compared not only with Gavrilakis data but also with other numerical
or experimental data sets. A good agreement with DNS (Gavrilakis, and Huser and
Biringen), LES (Madabhushi and Vanka, and Xu and Pollard) and experimental
(Niederschulte) results is achieved. The present RANS turns out to be able to cor-
rectly reproduce both the mean flow properties and turbulence statistics. Indeed,
the profiles and maps of the mean velocity and turbulence statistics are in good
agreement with the DNS, LES and experimental data in particular when one ap-
proaches the centre of the duct. Also, our RANS simulations, which are performed
at a significantly reduced cost compared with DNS and LES, well reproduce the
intensity of the secondary flow and the mean streamwise vorticity.
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