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A Thermal Tomography Problem in Estimating the
Unknown Interfacial Enclosure in a Multiple Region

Domain with an Internal Cavity

Cheng-Hung Huang1 and Meng-Ting Chaing1

Abstract: A three-dimensional thermal tomography problem (or inverse geome-
try problem) in estimating the unknown irregular shape of interfacial enclosure (or
surface) for a multiple region domain with an internal cavity by using the steep-
est descent method (SDM) and a general purpose commercial code CFD-ACE+ is
examined in the present work based on the simulated measured temperature dis-
tributions on the outer surface obtained by infrared thermography. The advantage
of calling CFD-ACE+ as a subroutine in this thermal tomography problem lies in
its characteristics of easily-handling the moving boundary problem considered here
since it has the function of automatic grid generation. Three test cases are examined
to test the validity of the present thermal tomography algorithm by using different
shapes of interfacial enclosure surface, initial guesses and measurement errors. Re-
sults show that reliable estimations on the unknown geometry of the interfacial
enclosure can be obtained.

Nomenclature

f (x,y,z) unknown shape for irregular interfacial enclosure
J functional defined by equation (3)
J′x, J′y, J′z gradient of functional defined by equation (18)
k thermal conductivity
qo heat flux density
Si inner cavity surface
So outer boundary surface
Ti(x,y,z) estimated temperatures defined by equations (1) and (2)
∆Ti(x,y,z) sensitivity functions defined by equations (7) and (8)
Y1(x,y,z) measured temperatures
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Greeks

β search step size defined by equation (11)
Ω Computational domain
λi(x,y,z) adjoint functions defined by equations (14) and (15)
δ (•) Dirac delta function
ω random numbeR
ε convergence criterion
σ standard deviation of the measurement errors

Superscript
n iteration index

Subscripts
1 region 1
2 region 2

1 Introduction

The inverse geometry problems in the field of thermal sciences can be called as
the thermal tomography problems and applied to many practical industrial and en-
gineering applications. Generally speaking it can be classified into two categories
in this research area, i.e. the shape design problems and the shape identification
problems.

The feature of the thermal tomography problems is that it requires a complete re-
generation of the mesh as the geometry evolves and this will lead to a tedious re-
meshing of the computational domain and is often classified as a highly ill-posed
problem. For this reason it is necessary to use a proper numerical method or an ef-
ficient solver such that the above mentioned feature of this problem can be handled,
especially for the three-dimensional applications.

The inverse geometry problems, including the shape design or shape identifica-
tion problems have been solved by a variety of numerical methods [Kassab and
Hsieh (1987), Hsieh, Choi and Liu (1989), Dems and Mroz (1987, 1998), Burczin-
ski, Kane, and Balakrishna (1995), Cheng and Wu (2000), Burczynski, Beluch,
Dlugosz, Kus, Nowakowski, and Orantek (2002), Divo, Kassab and Rodriguez
(2004), Aoki, Amaya, Urago, and Nakayama (2005), Forth and Staroselsky (2005)
and Mera, Elliott and Ingham (2006), Jeong and Kallivokas (2008), Liu, Chang
and Chiang (2008)]. Huang and his co-workers have utilized the conjugate gra-
dient method (CGM) and steepest descent method (SDM) to the inverse geom-
etry problems and have published a series of relevant papers [Huang and Chao
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(1997), Huang and Tsai (1998), Huang, Chiang and Chen (1998), Huang and Hsi-
ung (1999), Huang and Chaing (2008)]. Recently, Huang and Chen (2008) also
applied SDM to a three-dimensional inverse geometry problem in estimating the
shape of an irregular internal cavity.

The same technique derived by Huang and his co-workers was adopted by Kwag,
Park and Kim (2004), Chen and Yang (2009) and Chen, Yang and Lee (2009) to
the shape identification problems in determining the phase front motion of ice, frost
thickness and pipe fouling layer, respectively.

It should be noted that in the above references only the work by Huang and Chaing
(2008), Huang and Chen (2008) and Chen, Yang and Lee (2009) are the three-
dimensional problems, this implies that the three-dimensional inverse geometry
problems are still very limited in the literature especially when an internal cavity
exists. The three-dimensional shape identification problem using thermal tomog-
raphy technique in estimating the interfacial enclosure in a multiple region domain
with an internal cavity has never been examined before.

The objective of this work is to extend the algorithm of previous study by Huang
and Chen (2008) to estimate the unknown three-dimensional interfacial enclosure
in a multiple region domain with an internal cavity by utilizing the SDM and CFD-
ACE+ code (2005). The unknown variables become x, y and z-coordinates of the
interfacial enclosure and this implies that there is a huge number of unknowns in
this work. The advantages of using CFD-ACE+ have been reported in the works
by Huang and Chaing (2008) and Huang and Chen (2008).

The SDM is also called an iterative regularization method, this implies the regular-
ization procedure is performed during the iterative processes and thus the determi-
nation of optimal regularization parameter is not needed. Finally the numerical ex-
periments for this work with three different irregular interfacial enclosures will be
illustrated to show the validity of using the SDM in the present three-dimensional
thermal tomography problem.

2 The Direct Problem

The following three-dimensional steady-state heat conduction equation in a mul-
tiple region domain with an internal cavity is considered to illustrate the method-
ology for developing expressions for use to determine the shape of the unknown
interfacial surface.

For the region Ω1 the boundary condition on outer surface So is subjected to a
known heat flux q0. The boundary condition on inner cavity surface Si for region Ω2
is subjected to the prescribed temperature condition T = Ti. The interfacial surface
is located inside the domain bounded by the inner and outer surfaces Si and So,
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respectively, and a perfect contact condition is applied to the interfacial enclosure
f (x,y,z) between Ω1 and Ω2, i.e. the temperature and heat flux on f (x,y,z) are the
same in both Ω1 and Ω2 domains.

 

Figure 1: Geometry and coordinates.

Figure 1 shows the geometry and the coordinates for the three-dimensional physical
problem considered here and the mathematical formulation of this three-dimensional
heat conduction problem in a multiple region domain with the shape of interfacial
surface unknown is given by the following equations:

Region Ω1:

∂ 2T1(Ω1)
∂x2 +

∂ 2T1(Ω1)
∂y2 +

∂ 2T1(Ω1)
∂ z2 = 0; in Ω1 (1a)

±k1
∂T1(Ω1)

∂n
= q0; on outer boundary surface So (1b)

Region Ω2:

∂ 2T2(Ω2)
∂x2 +

∂ 2T2(Ω2)
∂y2 +

∂ 2T2(Ω2)
∂ z2 = 0; in Ω2 (1c)
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T = Ti; on inner cavity surface Si (1d)

Interfacial conditions for regions Ω1 and Ω2 on f (x,y,z):

T1(Ω1) = T2(Ω2); on the unknown interface f (x,y,z) (2a)

k1
∂T1(Ω1)

∂n
= k2

∂T2(Ω2)
∂n

; on the unknown interface f (x,y,z) (2b)

here subscripts 1 and 2 denote two different domains with thermal conductivities
k1 and k2, respectively. The above direct problem can be solved by the commercial
code CFD-ACE+ for the reason that it has the ability to auto mesh the grid systems.

The direct problem considered here is concerned with the determination of the do-
main temperature distributions when the interfacial geometry of f (x,y,z), thermal
properties and the boundary conditions are given and known.

3 The Thermal Tomography Problem

For the thermal tomography problem, the geometry of interfacial enclosure f (x,y,z)
is regarded as being unknown, but everything else in direct problem, i.e. equations
(1) and (2), are known. In additions, temperature readings taken by the imagi-
nary infrared scanner on the outer surface So are considered available. It should
be noted that the geometry of interfacial enclosure f (x,y,z) is located inside the
domain bounded by the inner and outer surfaces Si and So, respectively,

Referring to figure 1, let the temperature reading on the outer surface So be denoted
by Y1,m(So) ≡ Y1,m(xm,ym,zm), m = 1 to M, where M represents the total number
of measured temperature extracting points. It is noted that the measured tempera-
ture Y1,m(So) contain measurement errors. This thermal tomography problem can
be stated as follow: by utilizing the above mentioned measured temperature data
Y1,m(So), estimates the unknown geometry of the interfacial enclosure f (x,y,z).
The solution of the present thermal tomography problem is to be obtained in such
a way that the following functional is minimized:

J[ f (x,y,z)] =
M

∑
m=1

[T 1,m(So)−Y1,m(So)]
2 (3)

where T1,m is the estimated or computed temperature at the measurement locations(xm,
ym, zm) on So. These quantities are determined from the solution of the direct prob-
lem given previously by using an estimated f (x,y,z) for the exact f (x,y,z). In our
algorithm the number of interfacial surface grid points must be equal to or less than
the number of surface temperature measurements to obtain accurate estimations.
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4 The Steepest Descent Method for Minimization

The steepest descent method (SDM) is similar to but simpler than the conjugate
gradient method (CGM) [Alifanov (1994)] since the calculations of the conjugate
coefficient and direction of descent are not needed. It is found that the SDM
achieves our goal in this thermal tomography study and converges fast. The fol-
lowing iterative process based on the SDM is now used for the estimation of the
unknown geometry of interfacial enclosure f (x,y,z) by minimizing the functional
J[ f (x,y,z)].

f n+1(xn+1,yn+1,n+1 ) = f n(xn,yn,n )−β
nJ′n (4a)

where

J′n(x,y,z) = J′nx~i+ J′ny~j + J′nz~k (4b)

or more explicitly

xn+1 = xn−β
nJ′nx(x,y,) (5a)

yn+1 = yn−β
nJ′ny(x,y,) (5b)

zn+1 = zn−β
nJ′nz (x,y,) (5c)

and

f̂ n+1(x,y)≡ f (x̂n+1, ŷn+1) (6)

Here β n is the search step size in going from iteration n to iteration n+1, J′n(x,y,z)
is the gradient in the outward normal direction while J′nx(x,y,z), J′ny(x,y,z) and
J′nz (x,y,z) are the gradients in x, y and z direction, respectively.

To perform the iterations according to equation (4), the step size β n and the gra-
dients of the functional J′nx(x,y,z), J′ny(x,y,z) and J′nz (x,y,z) must be calculated. In
order to develop expressions for the determination of the above quantities, a “sen-
sitivity problem” and an “adjoint problem” are constructed as described below.

5 Sensitivity Problem and Search Step Size

The sensitivity problem is obtained from the original direct problem defined by
equations (1) and (2) in the following manner: It is assumed that when f (x,y,z)
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undergoes a variation ∆ f (x,y,z), T1 and T2 are perturbed by ∆T1 and ∆T2. By
replacing f by f+∆f, T1 by T1 + ∆T1 and T2 by T2 + ∆T2 in the direct problem,
subtracting the resulting expressions from the direct problem and neglecting the
second-order terms, the following sensitivity problem for the sensitivity functions
∆T1 and ∆T2 can be obtained.

Region Ω1:

∂ 2∆T1(Ω1)
∂x2 +

∂ 2∆T1(Ω1)
∂y2 +

∂ 2∆T1(Ω1)
∂ z2 = 0; in Ω1 (7a)

∂∆T1(Ω1)
∂n

= 0; on outer boundary surface So (7b)

Region Ω2:

∂ 2∆T2(Ω2)
∂x2 +

∂ 2∆T2(Ω2)
∂y2 +

∂ 2∆T2(Ω2)
∂ z2 = 0; in Ω2 (7c)

∆T2 = 0; on inner cavity surface Si (7d)

Interfacial conditions for regions Ω1 and Ω2 can be obtained as:

∆T1(Ω1) = T 1(Ω1; f +∆ f )−T 1(Ω1; f )∼= ∆ f
∂T1(Ω1)

∂n
; on f (x,y,z) (8a)

∆T2(Ω2) = T 2(Ω2; f +∆ f )−T 2(Ω2; f )∼= ∆ f
∂T2(Ω2)

∂n
; on f (x,y,z) (8b)

It should be noted that the sensitivity problems are now de-coupled as two indepen-
dent problems since the interfacial conditions become independent to each other
now, this differs from our previous relevant works. The above two sensitivity prob-
lems can be solved by the commercial code CFD-ACE+ separately.

Based on equations (2) and (8), the following interfacial conditions can also be
obtained

∆T1(Ω1) =
k2

k1
∆T2(Ω2); on f (x,y,z) (9a)

k1
∂∆T1(Ω1)

∂n
= k2

∂∆T2(Ω2)
∂n

; on f (x,y,z) (9b)

The above two equations are needed in deriving the interfacial conditions for the
adjoint problem. The functional J( f n+1) for iteration n+1 is obtained by rewriting
equation (3) as

J[ f n+1] =
M

∑
m=1

[
T1,m( f n−β

nJ′n)−Y1,m
]2 (10a)
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where we have replaced f n+1 by the expression given by equation (4a). If temper-
ature T1,m( f n−β nJ′n) is linearized by a Taylor expansion, equation (10a) takes the
form

J( f n+1) =
M

∑
m=1

[T1,m( f n)−β
n
∆T1,m(J′n)−Y1,m]2 (10b)

where T1,m( f n) is the solution of the direct problem at (xm,ym,zm) by using estimate
f (x,y,z) for exact f (x,y,z). The sensitivity function ∆T1,m(J′n) is taken as the solu-
tion of problem (7) at the measured positions (xm,ym,zm) by letting ∆ f = J′n. The
search step size β n is determined by minimizing the functional given by equation
(10b) with respect to β n. The following expression results:

β
n =

M
∑

m=1
(T1,m−Y1,m)∆T1,m

M
∑

m=1
(∆T1,m)2

(11)

6 Adjoint Problem and Gradient Equation

To obtain the adjoint problem, equations (1a) and (1c) are multiplied by the La-
grange multipliers (or adjoint functions) λ1(x,y,z) and λ2(x,y,z), respectively and
the resulting expression is integrated over the correspondent space domain. The
result is then added to the right hand side of equation (3) to yield the following
expression for the functional J[ f (x,y,z)]:

J[ f (x,y,)] =
∫
So

[T1−Y1]2δ (x− xm)δ (y− ym)δ (z− zm)dSo+

∫
Ω1

λ1

{
∂ 2T1

∂x2 +
∂ 2T1

∂y2 +
∂ 2T1

∂ z2

}
dΩ1 +

∫
Ω2

λ2

{
∂ 2T2

∂x2 +
∂ 2T2

∂y2 +
∂ 2T2

∂ z2

}
dΩ2 (12)

The variation ∆J is obtained by perturbing f by ∆f,T1 by ∆T1and T2 by ∆T2 in equa-
tion (12), subtracting the resulting expression from the original equation (12) and
neglecting the second-order terms. This yields:

∆J =
∫
So

2(T1−Y1)∆T1δ (x−xm)δ (y−ym)δ (z−zm)dSo +
∫

Ω1

λ1

{
∂ 2∆T1

∂x2 +
∂ 2∆T1

∂y2 ++
∂ 2∆T1

∂ z2

}
dΩ1 +

∫
Ω2

λ2

{
∂ 2∆T2

∂x2 +
∂ 2∆T2

∂y2 ++
∂ 2∆T2

∂ z2

}
dΩ2

(13)

In equation (13), the domain integral term is reformulated based on Green’s second
identity; the boundary conditions of the sensitivity problems are utilized and then
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∆J is allowed to go to zero. The vanishing of the integrands containing ∆T1 and ∆T2
leads to the following adjoint problems for determining the values of λx(Ω1) and
λy(Ω2): Region Ω1:

∂ 2λ1(Ω1)
∂x2 +

∂ 2λ1(Ω1)
∂y2 +

∂ 2λ1(Ω1)
∂ z2 = 0 in Ω1 (14a)

∂λ1

∂n
= 2(T1−Y1)δ (x− xm)δ (y− ym)δ (z− zm); on inner boundary surface So

(14b)

Region Ω2:

∂ 2λ2(Ω2)
∂x2 +

∂ 2λ2(Ω2)
∂y2 +

∂ 2λ2(Ω2)
∂ z2 = 0; in Ω2 (14c)

λ2 = 0; on inner cavity surface Si (14d)

Interfacial conditions for regions Ω1 and Ω2:

λ1(Ω1) =
k1

k2
λ2(Ω2) ; on f (x,y,z) (15a)

k2
∂λ1(Ω1)

∂n
= k1

∂λ2(Ω2)
∂n

; on f (x,y,z) (15b)

The commercial code CFD-ACE+ is utilized to solve the above adjoint problem.
Finally, the following integral term is left

∆J =
∫
f

−
[

∂λ1

∂n
∂T1

∂n

]
∆ f (x,y,z)d f (16a)

From definition [Alifanov (1994)], the functional increment can be presented as

∆J =
∫

f
J′(x,y,z)∆ f (x,y,z)d f (16b)

A comparison of equations (16a) and (16b) leads to the following expression for
the gradient of functional J′(x,y,z) of the functional J[ f (x,y,z)]:

J′(x,y,z) = −∂λ1

∂n
∂T1

∂n

∣∣∣∣
f
=−(J′x| f )~i− (J′y| f )~j− (J′z| f )~k (17)
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Finally the following gradient equations can be obtained

J′x(x,y,z) =−∂λ1

∂n
∂T1

∂n
~ni (18a)

J′y(x,y,z) =−∂λ1

∂n
∂T1

∂n
~n j (18b)

J′z(x,y,z) =−∂λ1

∂n
∂T1

∂n
~nk (18c)

The calculation of gradient equations is the most important part of the SDM since
it plays a significant role of the thermal tomography calculations. Besides, from
Equation (5) we know that the new shape is a function of the gradients, and from
Equation (18) it shows that the gradient is a function of normal outward vector
in x, y and z directions. This implies that before new interfacial enclosure can be
estimated, the normal outward vector~n must be calculated.

7 Stopping Criterion

If the problem contains no measurement errors, the traditional check condition
specified as follow can be used as the stopping criteria

J
[

f n+1(x,y,z)
]
< ε (19a)

where ε is a small specified number and a monotonic convergence can be obtained
with SDM. However, the observed temperature data may contain measurement er-
rors. Therefore, it is not expected that the functional equation (4) to be equal to zero
at the final iteration step. Following the experience of the author [Alifanov (1994)],
the discrepancy principle is used as the stopping criterion, i.e. it is assumed that the
temperature residuals may be approximated by

Tm−Ym ≈ σ (19b)

where σ is the standard deviation of the measurement errors, which is assumed to
be a constant. Substituting equation (19b) into equation (4), the following expres-
sion is obtained for ε:

ε = Mσ
2 (19c)

For this reason the stopping criterion is given by equation (19a) with ε determined
from equation (19c).
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8 Computational Procedure

The computational procedure of the interfacial surface estimation for this thermal
tomography problem using the SDM can be summarized as follows:

Suppose f n(x,y,z) is available at iteration n.

Step 1. Solve the direct problem given by equations (1) to (2) for Ti(x,y,z).

Step 2. Examine the stopping criterion given by equation (19a) with ε given by

equation (19c). Continue if not satisfied.

Step 3. Solve the adjoint problem given by equations (14) and (15) for λi(x,y,z).

Step 4. Compute the gradients of the functional J′x, J′y and J′z from equations (18a),
(18b) and (18c), respectively.

Step 5. Set ∆ f (x,y,z) = J′n(x,y,z), and solve the sensitivity problem given by
equations (7) and (8) for ∆Ti(x,y,z).

Step 6. Compute the search step size β n from equation (11).

Step 7. Compute the new estimation for f n+1(x,y,z) from equation (4) and return
to step 1.

9 Results and Discussions

To examine the validity of the present shape identification problem using thermal
tomography technique in estimating the irregular shape for interfacial enclosure
from the knowledge of the simulated temperature recordings taken by the imaginary
infrared scanners on the outer surface So, three specific examples are considered
where the shapes of exact and guessed interfacial enclosures are varied.

The geometry of the outer boundary and inner cavity for all the examples consid-
ered here are both taken as a cube with length equal to 10 cm and 3 cm, respectively,
with the center located at (5,5,5) cm. The thermal conductivities for regions Ω1
and Ω2 are taken as k1 = 48 W/m-K (Steel-AISI-1020) and k2 = 210 W/m-K (Alu-
minum). The heat flux is taken qo = -15000 W/m2 and the boundary temperature
for inner cavity surface is taken as Ti = 200oC.

The objective of this work is to show the accuracy of the present approach in esti-
mating the shape of interfacial enclosure f (x,y,z), with no a priori information on
the functional form of the unknown shape, it is classified as the function estimation.
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In order to compare the results for situations involving random measurement errors,
the normally distributed uncorrelated errors with zero mean and constant standard
deviation were assumed. The simulated inexact measurement data Y can be ex-
pressed as

Y1 = Y1,dir +ωσ (20)

where Y1,dir is the solution of the direct problem with an exact f (x,y,z); σ is the
standard deviation of the measurement error; and ω is a random variable that gen-
erated by subroutine DRNNOR of the IMSL (1987) and will be within -2.576 to
2.576 for a 99% confidence bounds.

One of the advantages of using the SDM is that it does not require a very accurate
initial guess of the unknown quantities; this can be verified in the following numer-
ical test cases. To examine the effects of different shapes of initial guesses of the
interfacial enclosure to the final estimations, two different shapes of initial guesses
are used in this work. The followings define these two types of initial guesses:

Type A: A cube with length equal to 5 cm and its center located at (5,5,5) cm.

Type B: A cube with length equal to 4 cm and its center located at (5,5,5) cm.

the plots for these two initial guesses of the interfacial enclosure are shown in Fig-
ures 2(a) and 2(b), respectively.

Three numerical experiments in estimating the shape of interfacial enclosure f (x,y,z)
by using the SDM are presented below.

Numerical test case 1:
The unknown configuration of the exact interfacial enclosure is assumed to be a
cube with the center located at (5,5,5) cm and length equal to 6 cm and is shown
in Figure 3(a). The number of grids used for external, interfacial enclosure and
internal domains are all 11×11×6, which implies that on each external, interfacial
enclosure and internal surface has 121 grid points. After deducting the overlapped
grid points, there are totally of 602 grid points on the interfacial enclosure surface
or (602×3) = 1806 unknown parameters of x- , y- and z-coordinates in the present
case. The number of the discreted points for the exact interfacial enclosure is iden-
tical to that for the estimated interfacial enclosure in the present study.

First, when assuming exact measurements, i.e. σ = 0.0, and using type A initial
guess. By choosing ε = 0.5, after 42 iterations the estimation can be obtained
and the estimated shape of interfacial enclosure by using the SDM is shown in
Figure 3(b). The measured and estimated temperatures for this case are presented
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(a) 

 
(b) 

 

Figure 2: The (a) type A and (b) type B initial guesses for the shape of interfacial
enclosure in the present study.

in Figures 4(a) and 4(b), respectively. The CPU time on Intel®Pentium D CPU 2.8
GHz PC used in the present computations is about 133 minutes.

The average relative error for the measured and estimated temperatures is calcu-
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(a) 

 
(b) 

 

Figure 3: The (a) exact and (b) estimated interfacial enclosures using type A initial
guess and σ = 0.0 in case 1.

lated as ERR = 0.005 %, where the average relative error ERR is defined as

ERR =
M

∑
m=1

∣∣∣∣T (xm,ym,zm)−Y (xm,ym,zm)
Y (xm,ym,zm)

∣∣∣∣÷M×100% (21)
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here M = 602 represents the total number of measurements. It can be seen from
the above figures and relative average error that the present thermal tomography
scheme obtained good estimation for f (x,y,z) since the shape of interfacial enclo-
sure can still be reconstructed without assuming any extra conditions.

Next, it would be of interest to examine what will be happened when different initial
guess is considered. The computational conditions are the same as the previous case
except that type B initial guess is now chosen.

By choosing ε = 2 and σ = 0.0, after 34 iterations the estimated shape of interfacial
enclosure is shown in Figure 5(a). The estimated temperatures for this case are
presented in Figure 5(b). The relative average error ERR is calculated as ERR =
0.009 % and CPU time is 107 minutes. Again, it can be seen from these Figures
and data that this algorithm obtained good estimation of f (x,y,z), even though the
initial guess is different.

Finally, the influence of the measurement errors on the thermal tomography prob-
lems needs be discussed. First, the measurement error for the simulated tempera-
tures measured by imaginary infrared scanner on outer surface So is taken as σ =
0.405 (about 3 % of the largest temperature difference on So). The estimations for
f (x,y,z) can be obtained after only 15 iterations and plotted in Figures 6(a). The
relative average error ERR1 is calculated as ERR = 0.066 %. The measurement
error for the temperatures is then increased to σ = 0.675 (about 5 % of the largest
temperature difference on So). After only 13 iterations the estimated f (x,y,z) are
obtained and illustrated in Figures 6(b) and ERR is calculated as 0.11 %.

Table 1: Numerical results for all the test cases considered in this study

Results σ ε Number of CPU time ERR%
Test cases iteration (minutes)
Numerical
test case 1

0 0.5 42 133 0.005

0.405 99 15 48 0.066
0.675 274 13 41 0.11

Numerical
test case 2

0 3 163 532 0.011

0.504 153 20 65 0.081
0.84 425 13 42 0.135

Numerical
test case 3

0 4 173 656 0.011

0.405 99 67 276 0.065
0.675 274 28 110 0.109
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(a) 

 
(b) 

 

Figure 4: The (a) measured and (b) estimated surface temperatures on So using σ

= 0.0 in case 1.

All the numerical results in test case 1 are summarized in Table 1. From Figures
3 to 6 we have learned that as the measurement errors are increased the accuracy
of the estimated shape for the interfacial enclosure is decreased, however, they are
still reliable. It is thus concluded that the present technique provides confidence
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Figure 5: The (a) estimated interfacial enclosure using type B initial guess and (b)
estimated surface temperatures on So using σ = 0.0 in case 1.

estimation.

Numerical test case 2:
In order to show the ability in handling more irregular shape for the interfacial
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enclosure, in the second test case an exact interfacial enclosure as shown in Figure
7(a) is considered. The computational conditions are the same as used in numerical
test case 1 and type A initial guess for the interfacial enclosure is used.

When assuming exact measurements σ = 0.0, and ε = 3.0, after 163 iterations, the
estimated shape of the interfacial enclosure by using SDM is shown in Figure 7(b).
The measured and estimated temperatures for this case are presented in Figures
8(a) and 8(b), respectively. The CPU time on Intel®Pentium D CPU 2.8 GHz PC
used in the present computations is about 532 minutes.

The average relative error for the measured and estimated temperatures is calcu-
lated as ERR = 0.011 %. It is clear from the above figures and ERR that good
estimation for f (x,y,z) can be obtained by the present thermal tomography scheme.

Finally, let us examine the influence of the measurement errors on the thermal
tomography problems. First, the measurement error for the simulated temperatures
measured by imaginary infrared scanner on outer surface So is taken as σ = 0.504
(about 3 % of the largest temperature difference on So), then it is increased to σ =
0.84 (about 5 % of the largest temperature difference on So). The estimations for
f (x,y,z) can be obtained after 20 and 13 iterations, respectively and the results for
the estimated interfacial enclosure are plotted in Figures 9(a) and 9(b), respectively.
The relative average error for σ = 0.504 are calculated as ERR = 0.081 % and for
σ = 0.84 is calculated as ERR = 0.135 %. The CPU time for both cases is about 79
and 48 minutes, respectively. The numerical results in test case 2 are summarized
in Table 1. Again, the present technique provides confidence estimation.

Numerical test case 3:
To test the ability of this algorithm, in the third test case we considered another
irregular shape as the exact interfacial enclosure which is shown in Figure 10(a). It
can be seen from Figure 10(a) that the interfacial enclosure becomes more irregular
and this makes the estimation more difficult. Type A initial guess is used in test
case 3 and the computational conditions are the same as used in numerical test case
1.

When assuming exact measurements σ = 0.0 and ε = 4.0, and after 173 iterations,
the estimated shape of the irregular by using SDM is shown in Figure 10(b). The
measured and estimated temperatures for this case are presented in Figures 11(a)
and 11(b), respectively. The CPU time in the present computations is about 656
minutes.

The average relative error for the measured and estimated temperatures is calcu-
lated as ERR = 0.011 %. It is clear from the above figures and ERR that good
estimation for f (x,y,z) can be obtained by the present thermal tomography scheme.

Finally, the measurement error for the simulated temperatures measured by imag-
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Figure 6: The estimated interfacial enclosures using (a) σ = 0.405 and (b) σ =
0.675 and type A initial guess in case 1.

inary infrared scanner on outer surface So is taken as σ = 0.405 (about 3 % of the
largest temperature difference on So). The estimations for f (x,y,z) can be obtained
after 67 iterations and the results for the estimated cavities are plotted in Figure
12(a). The relative average error is calculated as ERR = 0.065 % and the CPU time
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Figure 7: The (a) exact and (b) estimated interfacial enclosures using type A initial
guess and σ = 0.0 in case 2.

in the present computation is about 276 minutes.

Next, the measurement error is increased to σ = 0.675 (about 5 % of the largest
temperature difference on So). The estimation for the interfacial enclosure is ob-
tained after 28 iterations and the results for the estimated interfacial enclosure are
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Figure 8: The (a) measured and (b) estimated surface temperatures on So using σ

= 0.0 in case 2.

shown in Figure 12(b). The relative average error is obtained as ERR1 = 0.109 %
and the CPU time in the present computation is about 110 minutes. The numerical
results in this test case are summarized in Table 1.
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Figure 9: The estimated interfacial enclosures using (a) σ = 0.504 and (b) σ = 0.84
and type A initial guess in case 2.

From the above three numerical test cases, it is learned that the SDM can be ap-
plied successfully in estimating unknown interfacial enclosure in a multiple region
domain with an internal cavity. Reliable estimations can also be obtained when
measurement errors are considered.
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Figure 10: The (a) exact and (b) estimated interfacial enclosures using type A initial
guess and σ = 0.0 in case 3.

10 Conclusions

The steepest descent method (SDM) together with the commercial code CFD-
ACE+ were successfully applied for the solution of the three-dimensional thermal
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Figure 11: The (a) measured and (b) estimated surface temperatures on So using σ

= 0.0 in case 3.

tomography problem to estimate the unknown interfacial enclosure in a multiple
region domain with an internal cavity by utilizing surface temperature readings.
Three test cases involving different shape of interfacial enclosures, different shape
of initial guess interfacial enclosures and different measurement errors were con-
sidered. The results show that the SDM does not require an accurate initial guesses
of the unknown quantities, does not need any extra assumptions, does not need very
long CPU time on Intel®Pentium D CPU 2.8 GHz PC and is not sensitive to the
measurement errors when performing the thermal tomography calculations.
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Figure 12: The estimated interfacial enclosures using (a) σ = 0.405 and (b) σ =
0.675 and type A initial guess in case 3.
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