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Large Deformation Analyses of Space-Frame Structures,
with Members of arbitrary Cross-Section, Using Explicit
Tangent Stiffness Matrices, Based on a von Karman Type

Nonlinear Theory in Rotated Reference Frames

Yongchang Cai1,2, J.K. Paik3 and Satya N. Atluri3

Abstract: This paper presents a simple finite element method, based on simple
mechanics and physical clarity, for geometrically nonlinear large rotation analyses
of space frames consisting of members of arbitrary cross-section. A co-rotational
reference frame, involving the axes of each finitely rotated beam finite-element, is
used as the Updated Lagrangian reference frame for the respective element. A von
Karman type nonlinear theory of deformation is employed in the co-rotational ref-
erence frame of each beam element, to account for bending, stretching, and torsion
of each element. An assumed displacement approach is used to derive an explicit
expression for the (12x12) symmetric tangent stiffness matrix of the beam element
in the co-rotational reference frame. From the finite-displacement vector at each of
the two nodes of the beam element, an explicit expression is derived for the ma-
trix of finite rotation of the co-rotational reference frame from the globally-fixed
Cartesian reference frame. Thus, this paper provides a text-book example of an
explicit expression for the (12x12) symmetric tangent stiffness matrix of a finitely
deforming beam element, which can be employed in very simple analyses of large
deformations of space-frames. This paper is also a celebration of the genius of
Theodore von Karman (original Hungarian name Szöllöskislaki Kármán Tódor)
(1881-1963), who received the first U.S. National Medal of Science in 1963, and
who first proposed a simple nonlinear theory of plates in 1910, the essential ideas of
which theory are adopted in the present paper, for beams of arbitrary cross-sections,
in co-rotational reference frames. The present methodologies can be extended to
study the very large deformations of plates and shells as well. Metal plasticity may
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also be included, through the method of plastic hinges, etc.

Keywords: Large deformation, Unsymmetrical cross-section, Explicit tangent
stiffness, Updated Lagrangian formulation, Co-rotational reference frame, Rod,
Space frames

1 Introduction

In the past decades, large deformation analyses of space frames have attracted much
attention due to their significance in diverse engineering applications. Many differ-
ent methods were developed by numerous researchers for the geometrically non-
linear analyses of 3D frame structures. Bathe and Bolourchi (1979) employed the
total Lagrangian and updated Lagrangian approaches to formulate fully nonlinear
3D continuum beam elements. Punch and Atluri (1984) examined the performance
of linear and quadratic Serendipity hybrid-stress 2D and 3D beam elements. Based
on geometric considerations, Lo (1992) developed a general 3D nonlinear beam
element, which can remove the restriction of small nodal rotations between two
successive load increments. Kondoh, Tanaka and Atluri (1986), Kondoh and Atluri
(1987), Shi and Atluri(1988) presented the derivations of explicit expressions of
the tangent stiffness matrix, without employing either numerical or symbolic inte-
gration. Zhou and Chan (2004a, 2004b) developed a precise element capable of
modeling elastoplastic buckling of a column by using a single element per mem-
ber for large deflection analysis. Izzuddin (2001) clarified some of the conceptual
issues which are related to the geometrically nonlinear analysis of 3D framed struc-
tures. Simo (1985), Mata, Oller and Barbat (2007, 2008), Auricchio, Carotenuto
and Reali (2008) considered the nonlinear constitutive behavior in the geometri-
cally nonlinear formulation for beams. Iura and Atluri (1988), Chan (1994), Xue
and Meek (2001), Wu, Tsai and Lee(2009) studied the nonlinear dynamic response
of the 3D frames. Lee, Lin, Lee, Lu and Liu (2008), Lee, Lu, Liu and Huang (2008)
gave the exact large deflection solutions of the beams for some special cases. Di-
nis, Jorge and Belinha (2009), Han, Rajendran and Atluri (2005), Lee and Chen
(2009) applied meshless methods to the analyses of nonlinear problems with large
deformations or rotations. Large rotations in beams, plates and shells, and atten-
dant variational principles involving the rotation tensor as a direct variable, were
studied extensively by Atluri and his co-workers (see, for instance, Atluri (1980),
Atluri(1984),and Atluri and Cazzani (1995)).

It is important to point out that, except for a few papers [Gendy and Saleeb (1992);
Atluri, Iura, and Vasudevan(2001)] which have brief discussions of arbitrary cross
sections, most of the studies were restricted to frames consisting of members with
only symmetric cross sections. In practical engineering applications, such as in
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stiffened plates (Fig.1), etc, beams of asymmetric or arbitrary cross sections play
an important role and need to be considered.
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Figure 1: An example of stiffened plate

This paper presents a simple finite element method, based on simple mechanics
and physical clarity, for geometrically nonlinear large rotation analyses of space
frames consisting of members of arbitrary cross-section. A corotational-reference
frame, involving the axes of each finitely rotated beam finite-element, is used as
the Updated Lagrangian reference frame for the respective element. A von Karman
type nonlinear theory of deformation is employed in the co-rotational reference
frame of each beam element, to account for bending, stretching, and torsion of
each element. An assumed displacement approach is used to derive an explicit
expression for the (12x12) symmetric tangent stiffness matrix of the beam element
in the co-rotational reference frame. From the finite-displacement vector at each
of the two nodes of the beam element, an explicit expression is derived for the
matrix of finite rotation of the co-rotational reference frame from the globally-
fixed Cartesian reference frame. Thus, this paper provides a text-book example
of an explicit expression for the (12x12) symmetric tangent stiffness matrix of a
finitely deforming beam element, which can be employed in very simple analyses
of large deformations of space-frames. This paper is also a celebration of the genius
of Theodore von Karman (1881-1963), who received the first U.S. National Medal
of Science in 1963, and who first proposed a simple nonlinear theory of plates
in 1910, the essential ideas of which theory are adopted in the present paper, for
beams of arbitrary cross-sections, in co-rotational reference frames. The present
methodologies can be extended to study the very large deformations of plates and
shells as well. Metal plasticity may also be included, through the method of plastic
hinges, etc.
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The present beam element has a much simpler form than those based on exact
continuum theories of Simo (1985) and Bathe and Bolourchi (1979), but the ac-
curacy of the present solutions for finite rotations is comparable to those in Simo
(1985) and Bathe and Bolourchi (1979). The present explicit derivation of the tan-
gent stiffness matrix of a finitely deforming beam of an arbitrary cross-section is
more general and much simpler than in the earlier papers of Kondon, Tanaka and
Atluri (1986), Kondoh and Atluri (1987), and Shi and Atluri (1988). Furthermore,
unlike in the formulations of Simo(1985), Crisfield (1990) [and many others who
followed them], which lead to currently popular myth that the stiffness matrices
of finitely rotated structural members should be unsymmetric, the (12x12) stiffness
matrix of the beam element in the present paper is enormously simple, and remains
symmetric throughout the finite rotational deformation.

2 Von-Karman type nonlinear theory for a rod with large deformations

We consider a fixed global reference frame with axes x̄i (i = 1,2,3) and base vectors
ēi. An initially straight rod of an arbitrary cross-section and base vectors ẽi, in
its undeformed state, with local coordinates x̃i (i = 1,2,3), is located arbitrarily in
space, as shown in Fig.2. The current configuration of the rod, after arbitrarily large
deformations (but small strains) is also shown in Fig.2.

The local coordinates in the reference frame in the current configuration are xi and
the base vectors are ei (i = 1,2,3). The nodes 1 and 2 of the rod (or an element of
the rod) are supposed to undergo arbitrarily large displacements, and the rotations
between the ẽi (i = 1,2,3) and the ek (k = 1,2,3) base vectors are assumed to be
arbitrarily finite. In the continuing deformation from the current configuration, the
local displacements in the xi (ei) coordinate system are assumed to be moderate,
and the local gradient (∂u10/∂x1) is assumed to be small compared to the transverse
rotations (∂uα0/∂x1)(α = 2,3). Thus, in essence, a von-Karman type deformation
is assumed for the continued deformation from the current configuration, in the co-
rotational frame of reference ei (i = 1,2,3) in the local coordinates xi (i = 1,2,3).
If H is the characteristic dimension of the cross-section of the rod, the precise
assumptions governing the continued deformations from the current configuration
are

u10

H
<< 1;

H
L

<< 1

uα0

H
≈ O(1)(α = 2,3)
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∂u10

∂x1
<<

∂uα0

∂x1
(α = 2,3)

and
(

∂uα0
∂x1

)2
(α = 2,3) are not negligible.

As shown in Fig.3, we consider the large deformations of a cylindrical rod, sub-
jected to bending (in two directions), and torsion around x1. The cross-section is
unsymmetrical around x2 and x3 axes,and is constant along x1.

As shown in Fig.3, the warping displacement due to the torque T around x1 axis is
u1T (x2,x3) and does not depend on x1, the axial displacement at the origin (x2 =
x3 = 0) is u10 (x1), and the bending displacement at x2 = x3 = 0 along the axis x1
are u20 (x1) (along x2) and u30 (x1) (along x3).

We consider only loading situations when the generally 3-dimensional displace-
ment state in the ei system, donated as

ui = ui (xk) i = 1,2,3; k = 1,2,3

is simplified to be of the type:

u1 = u1T (x2,x3)+u10 (x1)− x2
∂u20

∂x1
− x3

∂u30

∂x1

u2 = u20 (x1)− θ̂x3

u3 = u30 (x1)+ θ̂x2

(1)

where θ̂ is the total torsion of the rod at x1 due to the torque T .

2.1 Strain-displacement relations

Considering only von Karman type nonlinearities in the rotated reference frame
ei (xi), we can write the Green-Lagrange strain-displacement relations in the up-
dated Lagrangian co-rotational frame ei in Fig.2 as:

ε11 =
∂u1

∂x1
+

1
2

(
∂u2

∂x1

)2

+
1
2

(
∂u3

∂x1

)2

=
∂u10

∂x1
+

1
2

(
∂u20

∂x1

)2

+
1
2

(
∂u30

∂x1

)2

− x2
∂ 2u20

∂x2
1
− x3

∂ 2u30

∂x2
1

ε12 =
1
2

(
∂u1

∂x2
+

∂u2

∂x1

)
=

1
2

(
∂u1T

∂x2
− ∂u20

∂x1
+

∂u20

∂x1
− ∂ θ̂

∂x1
x3

)
=

1
2

(
∂u1T

∂x2
−θ x3

)
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Figure 2: Kinematics of deformation of a space framed member

ε13 =
1
2

(
∂u1

∂x3
+

∂u3

∂x1

)
=

1
2

(
∂u1T

∂x3
− ∂u30

∂x1
+

∂u30

∂x1
+θx2

)
=

1
2

(
∂u1T

∂x3
+θx2

)

ε22 =
∂u2

∂x2
+

1
2

(
∂u1

∂x2

)2

+
1
2

(
∂u2

∂x2

)2

+
1
2

(
∂u3

∂x2

)2

≈ 0+
1
2

(
∂u20

∂x1

)2

+0≈ 0

(2)

ε23 ≈ 0

ε33 ≈ 0

where θ = dθ̂/dx1.



Large Deformation Analyses of Space-Frame Structures 123

x1,e1
T

M2

M3

x2

x3

x1

x2

x3

x1

u30(x1)
u20(x1)

u10(x1)

u1T(x2,x3) due to T

θ̂

Current configuration

x2,e2

x3,e3

 

Figure 3: Large deformation analysis model of a cylindrical rod

By letting

χ22 =−u20,11

χ33 =−u30,11

ε
0
11 = u10,1 +

1
2

(u20,1)
2 +

1
2

(u30,1)
2

= ε
0L
11 + ε

0NL
11

(3)

the strain-displacement relations can be rewritten as

ε11 = ε
0
11 + x2χ22 + x3χ33

ε12 =
1
2

(u1T,2−θx3)

ε13 =
1
2

(u1T,3 +θx2)

ε22 = ε33 = ε23 = 0

(4)

where , i denotes a differentiation with respect to xi.
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The matrix form of the Eq.(4) is

εεε = εεε
L + ε

N (5)

where

εεε
L =


εL

11
εL

12
εL

13

=


u10,1 + x2χ22 + x3χ33

1
2 (u1T,2−θx3)
1
2 (u1T,3 +θx2)

 (6)

εεε
N =


εN

11
εN

12
εN

13

=


1
2 (u20,1)

2 + 1
2 (u30,1)

2

0
0

 (7)

2.2 Stress-Strain relations

Taking the material to be linear elastic, we assume that the additional second Piola-
Kirchhoff stress, denoted by tensor S1 in the updated Lagrangian co-rotational ref-
erence frame ei of Fig.2 (in addition to the pre-existing Cauchy stress due to prior
deformation, denoted by τ0), is given by:

S1
11 = Eε11

S1
12 = 2µε12

S1
13 = 2µε13

S1
22 = S1

33 = S1
23 ≈ 0

(8)

where µ = E
2(1+ν) ; E is the elastic modulus; ν is the Poisson ratio.

By using Eq.(5), Eq.(8) can also be written as

S1 = D̃
(
εεε

L +εεε
N)= S1L +S1N (9)

where

D̃ =

E 0 0
0 2µ 0
0 0 2µ

 (10)

From Eq.(4) and Eq.(8), the generalized nodal forces of the rod element in Fig.3
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can be written as

N11 =
∫

A
S1

11dA = E
(

Aε
0
11 + χ22

∫
A

x2dA+ χ33

∫
A

x3dA
)

= E
(
Aε

0
11 + I2χ22 + I3χ33

)
M33 =

∫
A

S1
11x3dA = E

∫
A

(
Aε

0
11 + x2χ22 + x3χ33

)
x3dA

= E
(
I3ε

0
11 + I23χ22 + I33χ33

)
M22 =

∫
A

S1
11x2dA = E

∫
A

(
Aε

0
11 + x2χ22 + x3χ33

)
x2dA

= E
(
I2ε

0
11 + I22χ22 + I23χ33

)
T =

∫
A

S1
13x2−S1

12x3dA = 2µ

∫
A
(x2ε13 + x3ε12)x2dA

=
2µ

2

∫
A
[(u1T,3 +θ x2)x2− (u1T,2−θx3)]dA

= µ

∫
A

θ
(
x2

2 + x2
3
)

dA+ µ

∫
A
(u1T,3x2−u1T,2x3)dA

= µIrrθ + µ

∫
S
(u1T n3x2−u1T n2x3)dS

= µIrrθ

(11)

where n j is the outward norm, I2 =
∫

A x2dA, I3 =
∫

A x3dA, I22 =
∫

A x2
2dA, I33 =

∫
A x2

3dA,
I23 =

∫
A x2x3dA, and Irr =

∫
A

(
x2

2 + x2
3
)

dA.

The matrix form of the above equations is
σ1
σ2
σ3
σ4

=


N11
M22
M33
T

=


EA EI2 EI3 0
EI2 EI22 EI23 0
EI3 EI23 EI33 0
0 0 0 µIrr




ε0
11

χ22
χ33
θ

 (12)

It can be denoted as

σσσ = DE (13)

where

σσσ =


σ1
σ2
σ3
σ4

=


N11
M22
M33
T

= element generalized stresses (14)
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D =


EA EI2 EI3 0
EI2 EI22 EI23 0
EI3 EI23 EI33 0
0 0 0 µIrr

 (15)

E =


E1
E2
E3
E4

=


ε0

11
χ22
χ33
θ

= element generalized strains (16)

By letting

U =


û1
û2
û3
û4

=


u10
u20
u30

θ̂

 (17)

Eq.(16) can be written as

E = EL +EN = LU+
1
2

AHU (18)

where EL = LU, EN = 1
2 AHU,

L =


∂

∂x1
0 0 0

0 − ∂ 2

∂x2
1

0 0

0 0 − ∂ 2

∂x2
1

0

0 0 0 ∂

∂x1

 (19)

A =


0 ∂ û2

∂x1

∂ û3
∂x1

0
0 0 0 0
0 0 0 0
0 0 0 0

 (20)

H =


0 0 0 0
0 ∂

∂x1
0 0

0 0 ∂

∂x1
0

0 0 0 0

 (21)

By using Eq.(18), Eq.(13) can be rewritten as

σσσ = DEL +DEN = σσσ
L +σσσ

N (22)
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3 Updated Lagrangian formulation in the co-rotational reference frame ei

3.1 Interpolation functions

As shown in Fig.2, the rod element has two nodes with 6 degrees of freedom per
node. By defining the following shape functions

φ1 = 1−ξ ,φ2 = ξ (23)

N1 = 1−3ξ
2 +2ξ

3,N3 = 3ξ
2−2ξ

3

N2 =
(
ξ −2ξ

2 +ξ
3) l,N4 =

(
ξ

3−ξ
2) l

(24)

where l is the length of the rod element,

ξ =
x1− x1

1
l

(0 < ξ < 1)

and x1
1 is the coordinate of the node 1 along axis x1, we can approximate the dis-

placement function in each rod element by

U = Nâ =
[
N1 N2

]{u1

u2

}
(25)

where the displacement interpolation matrix is

N1 =


φ1 0 0 0 0 0
0 N1 0 0 0 N2
0 0 N1 0 −N2 0
0 0 0 φ1 0 0

 (26)

N2 =


φ2 0 0 0 0 0
0 N3 0 0 0 N4
0 0 N3 0 −N4 0
0 0 0 φ2 0 0

 (27)

and the displacement vectors of node i in the updated Lagrangian co-rotational
frame ei of Fig.2 are:

ui =
[
ui

1 ui
2 ui

3 ui
4 ui

5 ui
6

]T =
[
ui

10 ui
20 ui

30 θ̂ i θ i
20 θ i

30

]T [i = 1,2]
(28)

From Eqs.(18) and (25), one can obtain

E = EL +EN =
(
BL + B̂N) â (29)
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where

BL =


∂φ1
∂x1

0 0 0 0 0

0 − ∂ 2N1
∂x2

1
0 0 0 − ∂ 2N2

∂x2
1

0 0 − ∂ 2N1
∂x2

1
0 ∂ 2N2

∂x2
1

0

0 0 0 ∂φ1
∂x1

0 0

∣∣∣∣∣∣∣∣∣∣
∂φ2
∂x1

0 0 0 0 0

0 − ∂ 2N3
∂x2

1
0 0 0 − ∂ 2N4

∂x2
1

0 0 − ∂ 2N3
∂x2

1
0 ∂ 2N4

∂x2
1

0

0 0 0 ∂φ2
∂x1

0 0

 (30)

G = HN =


0 0 0 0 0 0
0 ∂N1

∂x1
0 0 0 ∂N2

∂x1

0 0 ∂N1
∂x1

0 − ∂N2
∂x1

0
0 0 0 0 0 0

∣∣∣∣∣∣∣∣∣
0 0 0 0 0 0
0 ∂N3

∂x1
0 0 0 ∂N4

∂x1

0 0 ∂N3
∂x1

0 − ∂N4
∂x1

0
0 0 0 0 0 0

 (31)

B̂N ==
1
2

AG =


0 ∂N1

∂x1

∂ ûk
2

∂x1

∂N1
∂x1

∂ ûk
3

∂x1
0 − ∂N2

∂x1

∂ ûk
3

∂x1

∂N2
∂x1

∂ ûk
2

∂x1

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

∣∣∣∣∣∣∣∣∣
0 ∂N3

∂x1

∂ ûk
2

∂x1

∂N3
∂x1

∂ ûk
3

∂x1
0 − ∂N4

∂x1

∂ ûk
3

∂x1

∂N4
∂x1

∂ ûk
2

∂x1

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (32)

and thus

δ (E) =
(
BL +2B̂N)

δ â =
(
BL +BN)

δ (â) = Bδ â (33)
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3.2 Updated Lagrangian (U.L.), Assumed Dispacement, weak-formulation of
the rod element in the co-rotational reference frame

If τ0
i j are the initial Cauchy stresses in the updated Lagrangian co-rotational frame

ei of Fig.2, and S1
i j are the additional (incremental) second Piola-Kirchhoff stresses

in the same updated Lagrangian co-rotational frame with axes ei, then the static
equations of linear momentum balance and the stress boundary conditions in the
frame ei are given by

∂

∂xi

[(
S1

ik + τ
0
ik
)(

δ jk +
∂u j

∂xk

)]
+b j = 0 (34)

(
S1

ik + τ
0
ik
)(

δ jk +
∂u j

∂xk

)
ni− f j = 0 (35)

where b j are the body forces per unit volume in the current reference state, and f j

are the given boundary loads.

By letting Sik = S1
ik + τ0

ik, the equivalent weak form of the above equations can be
written as∫
V

{
∂

∂xi

[
Sik

(
δ jk +

∂u j

∂xk

)]
+b j

}
δu jdV

−
∫
Sσ

[
Sik

(
δ jk +

∂u j

∂xk

)
ni− f j

]
δu jdS = 0 (36)

where δu j are the test functions.

By integrating by parts the first item of the left side, the above equation can be
written as∫
V

−Sik

(
δ jk +

∂u j

∂xk

)
δu j,idV +

∫
V

b jδu jdV +
∫
Sσ

f jδu jdS = 0 (37)

From Eq.(9) we may write

S1
ik = S1L

ik +S1N
ik (38)

Then the first item of Eq.(37) becomes

Sik
(
δ jk +u j,k

)
δu j,i =

(
τ

0
i j + τ

0
iku j,k +S1L

i j +S1N
i j +S1

iku j,k
)

δu j,i

= S1L
i j δε

L
i j + τ

0
ikδ

(
1
2

u j,ku j,i

)
+
(
τ

0
i j +S1N

i j +S1
iku j,k

)
δu j,i (39)
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By using Eq.(5), Eq.(37) may be written as

∫
V

(
S1L

i j δε
L
i j + τ

0
i jδε

N
i j
)

dV =

∫
V

b jδu jdV +
∫
Sσ

f jδu jdS−
∫
V

(
τ

0
i j +S1N

i j +S1
iku j,k

)
δε

L
i jdV (40)

The terms on the right hand side are ‘correction’ terms in a Newton-Rapson type
iterative approach. Carrying out the integration over the cross sectional area of each
rod, and using Eqs.(1) to (33), then Eq.(40) can be easily shown to reduce to:

∑
e

δ âT
∫
l

(
BL)T DBLdl â+δ âT

∫
l

(
BN)T

σσσ
0dl

=

∑
e

δ âT F̂1−δ âT
∫
l

(
BL)T (

σσσ
0 +S1N)dl−δ âT

∫
l

(
BN)T S1dl

 (41)

where F̂1 =
∫
V

NT b∗dV +
∫

Sσ

NT f∗dS is the external equivalent nodal force.

Eq.(41) can be rewritten as

∑
e

[
δ âT (K̂L + K̂S) â

]
= ∑

e

[
δ âT (F̂1− F̂S)] (42)

where K̂ = K̂L + K̂S is the symmetric tangent stiffness matrix of the rod element,

K̂L =
∫
l

(
BL)T DBLdl linear part (43)

K̂S =
∫
l

(
BN)T

σσσ
0dl =

∫
l

σ
0
1 GT Gdl nonlinear part (44)

and

F̂S =
∫
l

(
BL)T (

σσσ
0 +σ

1N)dl +
∫
l

(
BN)T

σσσ
1dl =

∫ 1

0
Fσ (ξ )dξ (45)

where σσσ = σσσ0 +σ1 = σσσ0 +σσσ1L +σσσ1N are the element generalized stresses.
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If we neglect the nonlinear items in Eq.(45) for the convenience of solving the non-
linear equation, and substituting Eq.(13) and Eq.(30) into Eq.(45), Fσ (ξ ) can be
written as

Fσ (ξ ) =
[
−σ0

1
6−12ξ

l σ0
2

6−12ξ

l σ0
3 −σ0

4 (−4+6ξ )σ0
3 (4−6ξ )σ0

2

σ0
1

−6+12ξ

l σ0
2

−6+12ξ

l σ0
3 σ0

4 (6ξ −2)σ0
3 −(6ξ −2)σ0

2

]T
(46)

3.3 Explicit expressions of the tangent stiffness matrix

We assume for simplicity that the initial stress state σ0
1 is constant in a rod element.

The components of the element tangent stiffness matrix, K̂L and K̂S, respectively,
can be derived explicitly, after some simple algebra, as follows.

K̂S =

σ0
1
l



0 0 0 0 0 0 0 0 0 0 0 0
1.2 0 0 0 0.1l 0 −1.2 0 0 0 0.1l

1.2 0 −0.1l 0 0 0 −1.2 0 −0.1l 0
0 0 0 0 0 0 0 0 0

2l2

15 0 0 0 0.1l 0 −l2

30 0
2l2

15 0 −0.1l 0 0 0 −l2

30
0 0 0 0 0 0

1.2 0 0 0 −0.1l
1.2 0 0.1l 0

0 0 0
sym. 2l2

15 0
2l2

15


12×12

(47)

The symmetric stiffness matrix K̂S (12×12), accounts for the interaction of the
axial stress in the beam in the co-rotational reference frame, with the continued
transverse displacement in the beam in the co-rotational reference frame. If the
axial load in the beam is compressive, K̂S will account for the phenomenon of the
buckling in the beam. In Eq.(47), l is the current length of the beam element in the
current reference state with base vectors ei, as shown in Fig.2.

K̂L =
E
l

[
K̂L1 K̂L12(

K̂L12
)T K̂L2

]
(48)
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where

K̂L1 =



A 0 0 0 I3 −I2
12I22/l2 12I23/l2 0 −6I23/l 6I22/l

12I33/l2 0 −6I33/l 6I23/l
µ

E Irr 0 0
symmetric 4I33 −4I23

4I22

 (49)

K̂L2 =



A 0 0 0 I3 −I2
12I22/l2 12I23/l2 0 6I23/l −6I22/l

12I33/l2 0 6I33/l −6I23/l
µ

E Irr 0 0
symmetric 4I33 −4I23

4I22

 (50)

K̂L12 =



−A 0 0 0 −I3 I2
0 −12I22/l2 −12I23/l2 0 −6I23/l 6I22/l
0 −12I23/l2 −12I33/l2 0 −6I33/l 6I23/l
0 0 0 − µ

E Irr 0 0
−I3 6I23/l 6I33/l 0 2I33 −2I23
I2 −6I22/l −6I23/l 0 −2I23 2I22

 (51)

Thus, K̂L is the usual linear symmetric (12×12) stiffness matrix of the beam in the
co-rotational reference frame, with the geometric parameters I2, I3, I22, I33, I23 and
Irr, and the current length l.

It is clear from the above procedures, that the present (12×12) symmetric tan-
gent stiffness matrices of the beam in the co-rotational reference frame, based on
the simplified rod theory, are much simpler than those based on the exact contin-
uum beam theories of Simo (1985), and Bathe and Bolourchi (1979), or those of
Kondon, Tanaka and Atluri (1986), Kondoh and Atluri (1987), and Shi and Atluri
(1988). Moreover, the explicit expressions for the tangent stiffness matrix of each
rod can be seen to be derived as text-book examples of nonlinear analyses.

4 Transformation between deformation dependent co-rotational local [ei],
and the global [ēi] frames of reference

As shown in Fig.2, x̄i (i = 1,2,3) are the global coordinates with unit basis vectors
ēi. x̃i and ẽi are the local coordinates for the rod element at the undeformed element.
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The basis vector ẽi are initially chosen such that (Shi and Atluri 1988)

ẽ1 = (∆x̃1ē1 +∆x̃2ē2 +∆x̃3ē3)/L

ẽ2 = (ē3× ẽ1)/|ē3× ẽ1|
ẽ3 = ẽ1× ẽ2

(52)

where ∆x̃i = x̃2
i − x̃1

i ,L =
(
∆x̃2

1 +∆x̃2
2 +∆x̃2

3
) 1

2 .

Then ẽi and ēi have the following relations:
ẽ1
ẽ2
ẽ3

=

 ∆x̃1/L ∆x̃2/L ∆x̃3/L
−∆x̃2/S ∆x̃1/S 0

−∆x̃1∆x̃3/(SL) −∆x̃2∆x̃3/(SL) s/L


ē1
ē2
ē3

 (53)

where S =
(
∆x̃2

1 +∆x̃2
2
) 1

2 .

Thus we can define a transformation matrix λ̃λλ 0 between ẽi and ēi as

λ̃λλ 0 =

 ∆x̃1/L ∆x̃2/L ∆x̃3/L
−∆x̃2/S ∆x̃1/S 0

−∆x̃1∆x̃3/(SL) −∆x̃2∆x̃3/(SL) S/L

 (54)

When the element is parallel to the x̄3 axis, S =
[
∆x̃2

1 +∆x̃2
2
] 1

2 = 0 and Eq.(53) is
not valid. In this case, the local coordinates is determined by

ẽ1 = ē3, ẽ2 = ē2, ẽ3 =−ē1 (55)

Let xi and ei be the co-rotational reference coordinates for the deformed rod ele-
ment. In order to continuously define the local coordinates of the same rod element
during the whole range of large deformation, the basis vectors ei are chosen such
that

e1 = (∆x1ē1 +∆x2ē2 +∆x3ē3)/l = a1ē1 +a2ē2 +a3ē3

e2 = (ẽ3× e1)/|ẽ3× e1|
e3 = e1× e2

(56)

where ∆xi = x2
i − x1

i , l =
(
∆x2

1 +∆x2
2 +∆x2

3
) 1

2 .

We denote ẽ3 in Eq.(53) as

ẽ3 = c1ē1 + c2ē2 + c3ē3 (57)
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Then ei and ēi have the following relations:
e1
e2
e3

=

 a1 a2 a3
b1 b2 b3

a2b3−a3b2 a3b1−a1b3 a1b2−a2b1


ē1
ē2
ē3

= λλλ 0ēi (58)

where

b1 = (c2a3− c3a2)
/

l31

b2 = (c3a1− c1a3)
/

l31

b3 = (c1a2− c2a1)
/

l31

(59)

l31 =
[
(c2a3− c3a2)

2 +(c3a1− c1a3)
2 +(c1a2− c2a1)

2
] 1

2
(60)

and

λλλ 0 =

 a1 a2 a3
b1 b2 b3

a2b3−a3b2 a3b1−a1b3 a1b2−a2b1

 (61)

Thus, the transformation matrix λλλ , between the 12 generalized coordinates in the
co-rotational reference frame, and the corresponding 12 coordinates in the global
Cartesian reference frame, is given by

λλλ =


λλλ 0

λλλ 0
λλλ 0

λλλ 0

 (62)

Letting xi and ei be the reference coordinates, and repeating the above steps [Eq.(56)
– Eq.(62)], the transformation matrix of each incremental step can be obtained in a
same way.

Then the element matrices are transformed to the global coordinate system using

āk = λλλ
T âk (63)

K̄k = λλλ
T K̂k

λλλ (64)

F̄k = λλλ
T F̂k (65)

where āk,K̄k, F̄k are respectively the generalized nodal displacements, element tan-
gent stiffness matrix and generalized nodal forces, in the global coordinates system.
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After assembling the element stiffness matrices and nodal force vectors, into their
global counterparts, we obtain the discretized equations of the space frames as

Ka = F1−FS0 (66)

The Newton-Raphson method, modified Newton-Rapson method or the artificial
time integration method (Liu 2007a, 2007b; Liu and Atluri 2008) can be employed
to solve Eq.(66). In this implementation, the Newton-Raphson algorithm is used.
The iterative Newton-Raphson procedures for Eq.(66) is given as

Kmam = F1−FS(m) (67)

where

FS(m) =
∫

l
BT

Lσσσ
1(m)dl (68)

ūm+1 = ūm +am (69)

and ū are the total displacements in global coordinates.

5 Numerical examples

5.1 Buckling of a beam

The (12×12) tangent stiffness matrix for a beam in space should be capable of
predicting buckling under compressive axial loads, when such an axial load inter-
acts with the transverse displacement in the beam. We consider a simply supported
beam subject to an axial force as shown in Fig.4 and assume that EI = 1 and L = 1.
The buckling loads of the beam obtained by the present method using different
numbers of elements are shown in Tab.1. It is seen that the buckling load predicted
by the present method agrees excellently with the analytical solution (buckling load
is π2).

 

Figure 4: A simply supported beam subject to an axial force
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Table 1: Buckling load of the simply supported beam

Present method(Number of elements) Analytical
1 2 3 4 5 solution

Buckling load 12.005 9.940 9.881 9.872 9.872 9.870

When the beam is fixed at x1 = 0, while at the other end it is free and under a
compressive load P, the buckling load of the beam obtained by the present method
using different number of elements is shown in Tab.2 (the analytical solution is
π2EI
4L2 ).

Table 2: Buckling load of the beam fixed at x1 = 0

Present method(Number of elements) Analytical
1 2 3 4 5 solution

Buckling load 2.4860 2.4687 2.4677 2.4675 2.4674 2.4674

5.2 Large deformation analysis of a cantilever beam with a symmetric cross
section

A large deflection and moderate rotation analysis of a cantilever beam subject to a
transverse load at the tip, as shown in Fig. 5, is considered. The cross section of the
beam is a square with h = 1. The Poisson’s ration is ν = 0.3. Fig.6 shows the results
obtained in the analysis of the cantilever problem. It is seen that the present results
using 10 elements agree excellently with those of Bathe and Bolourchi (1979).

 

Figure 5: A cantilever beam subject to a transverse load at the tip
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Figure 6: Deflections of a cantilever under a concentrated load

5.3 Large rotations of a cantilever subject to an end-moment and a transverse
load

An initially-straight cantilever subject to an end moment M∗ = ML
2πEI (Crisfield

1990) as shown in Fig.7, is considered. The beam is divided into 10 equal ele-
ments. When M∗ = 1, the beam is curled into a complete circle as shown in Fig.7.

If a non-conservative, follower-type transverse load P∗ = PL2

2πEI is applied at the tip,
instead of M∗, the initial and deformed geometries of the cantilever are shown in
Fig.8. It should be pointed out that the solution was found to diverge when using
the explicit tangent stiffness of the present paper when P∗ > 4.5. However, when
the exact integration in Eq.(44) was used, the solution was found to converge.

5.4 Large deformation analysis of a cantilever beam with an asymmetric cross
section

We consider the large deflection of a cantilever beam with an asymmetric cross
section, as shown in Fig.9. The Poisson’s ration is ν = 0.3. The areas of the
symmetric and asymmetric cross section in Fig.9 are all equal to 1.

Fig.10 shows the comparison of the deflections in x3 direction, between the cases
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Figure 7: Initial and deformed geometries for cantilever subject to an end-moment
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Figure 8: Initial and deformed geometries for cantilever subject to a transverse load

of symmetric and asymmetric cross sections. Fig.11 shows the deflection in x2
direction for the cantilever beam with an asymmetric cross section. However, the
deflections in x2 direction are zero in the case of a symmetric cross section.

5.5 Large displacement analysis of a 45-degree space bend

The large displacement response of a 45-degree bend subject to a concentrated end
load [Bathe and Bolourchi (1979)] is calculated as shown in Fig.12. The radius
of the bend is 100, the cross section area is 1 and lies in the x1− x2 plane. The
concentrated is applied in the x3 direction.
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Figure 9: A cantilever beam with an asymmetric cross section
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Figure 10: Comparison of the deflec-
tions in x3 direction of a cantilever beam
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 Figure 11: Deflections in x2 direction
for the cantilever beam with asymmet-
ric cross section

8 equal straight elements and 140 equal load steps are used in the analysis of the
problem. Fig.13 shows the tip deflection predicted by the present method and Bathe
and Bolourchi (1979). It can be seen that the results of the present method are
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comparable to the results of Bathe and Bolourchi (1979) even when the simplified
rod theory is adopted as in the present implementation.

 

Figure 12: Model of a 45-degree circular bend
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 Figure 13: Three-dimensional large deformation of a 45-degree circular bend

5.6 A framed dome

A framed dome shown in Fig.14 is considered (Shi and Atluri 1988). A concen-
trated vertical load P is applied at the crown point. Each member of the dome is
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modeled by 4 elements. The force-displacement curve at the crown point is shown
in Fig.15. It is seen that the present results agree well with the results of Kondoh,
Tanaka and Atluri (1986), and Shi and Altluri (1988).

It should be mentioned here that it is sufficient to use a single element to model
each member of the space frame if we use numerical integration in Eq.(45) instead
of assuming that σ k

1 is constant in a rod element.
1.
55

4.
55

1.
22

10
.8
85

21
.1
15

 

Figure 14: Framed dome (the unit of length is metre)

6 Conclusions

Based on a von Karman type nonlinear theory in a rotated reference frame, a simpli-
fied finite deformation theory of a cylindrical rod subjected to bending and torsion
has been developed, and a simple and economic element for large deformation anal-
ysis of space frames has been successfully implemented. The proposed method is
capable of handling large rotation geometrically nonlinear analysis of frames with
arbitrary cross sections, which haven’t been considered by a majority of previous
studies. It is shown to be possible to derive an explicit expression for the tangent
stiffness matrix of each element even if assumed-displacement type formulations
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Figure 15: Force-displacement curve for the crown point of a framed dome

are used. Numerical examples demonstrate that the present method is just as com-
petitive as the existing methods in terms of accuracy and efficiency. The present
method can be extended to consider the formation of plastic hinges in each beam of
the frame; and also to consider large-rotations of plates and shells, by implement-
ing only a von Karman type nonlinear theory in the co-rotational reference frame
of each beam/plate element.
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