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Convectively Unstable Anti-Symmetric Waves in Flows
Past Bluff Bodies
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Abstract: The steady flow past a circular cylinder is investigated. Symmetry
conditions are imposed along the centerline of the flow field. The variation of the
structure of the recirculation zone with the Reynolds number is studied. The ef-
fect of the location of lateral boundary on the flow is analyzed and compared with
results from earlier studies. The eddy length varies linearly with Re. Three kinds
of solutions, based on eddy structure, are found for different location of the lateral
boundary. Global linear stability analysis has been carried out in a translating frame
to determine the convective modes for flow past a circular cylinder. It is found that,
compared to the unrestricted flow, the symmetry conditions lead to a significant
delay in the onset of convective instability. Detailed results are presented for the
Re = 500 flow when the lateral walls are located relatively far off (50 radius) from
the cylinder. This situation is expected to be close to unbounded flow past a cylin-
der. The convectively unstable modes are found to be one of the three kinds. The
ones traveling at very low streamwise speed are associated with large scale struc-
tures and relatively low frequency. The modes that travel with relatively larger
speed lead to the instability of the shear layer and have higher temporal frequency
and small scale spatial structure. Instabilities which travel at even higher speeds
resemble a swirling flow structure. The results from the linear stability analysis
are confirmed by carrying out direct time integration of the linearized disturbance
equations. The disturbance field shows transient growth and grows by several or-
ders of magnitude confirming that such flows act as amplifiers. The critical Re for
the onset of convective instability is discussed in the context of earlier results from
local analysis.
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1 Introduction

The importance of absolute/convective analysis in hydrodynamic stability has been
highlighted by several researchers in the past (Landau and Lifshitz (1959); Briggs
(1964); Bers (1983); Huerre and Monkewitz (1985); Koch (1985); Pierrehum-
bert (1984)). Typically, convectively unstable flows act as amplifiers (Huerre and
Monkewitz (1990)), i.e. they amplify the external inputs which could be environ-
mental disturbances in the experiments or numerical errors in computations. In
contrast, absolutely unstable flows act as resonators. Their evolution is dominated
by characteristic frequencies of the system. Strictly speaking, these notions are
applicable only to parallel flows. Their application to nonparallel flows has been
mostly followed via parallel flow approximation valid locally at various stations in
the flow field. Further, the adoption of WKBJ and other asymptotic techniques
by Chomaz, Huerre, and Redekopp (1988), Monkewitz, Huerre, and Chomaz
(1993) and Dizes, Huerre, Chomaz, and Monkewitz (1996) resulted in their ex-
tension to weakly nonparallel flows. Recent techniques, developed by Mittal and
Kumar (2007), facilitate the investigation of absolute/convective instability of the
entire flow field. This method is an extension of the linear stability analysis ap-
plicable to nonparallel flows. In this paper we refer to such analysis as global
absolute/convective analysis.

Absolute/convective instability of bluff body flows have been investigated by sev-
eral researchers in the past. Koch (1985) investigated family of symmetric and
asymmetric basic wake flows modeled with analytical functions. Huerre and Monke-
witz (1985) investigated tangent hyperbolic profiles for inviscid flows. They showed
that the flow becomes absolutely unstable when the velocity ratio, defined as the
ratio of the difference to the sum of the velocity of the upper and lower streams,
becomes larger than 1.315. Convective instability is observed in the range 0.84
to 1.315. Hultgren and Aggarwal (1987) considered a Gaussian velocity profile
normalized with the maximum velocity. Though the main focus of their study
was modes corresponding to the Karman-type shedding, they also investigated the
flow with symmetry conditions enforced at the centerline. In the later case anti-
symmetric modes were found to become unstable. Castro (2005) carried out simi-
lar computations and studied the effect of the location of lateral boundaries on the
critical parameters. A free-slip condition was imposed at the lateral boundaries.
It was found that the critical Re for the convective as well as absolute instability
increases when the lateral boundaries are brought closer.

Convectively unstable modes, in some cases, are associated with large transient
growth. This may lead a globally absolutely stable flow to show a sustained re-
sponse, either due to nonlinearity or due to continuous supply of disturbance from
external sources. In an interesting study, Fasel and Postl (2006) carried out Direct
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Numerical Simulation of a laminar separation bubble formed on a flat plate by in-
troducing a volume force field. It was found that the steady flow profile is highly
convectively unstable. In the present work we adopt the method of global analysis
to investigate the convective instability for flow past a circular cylinder.

Linear stability analysis of flow past a cylinder reveals the presence of two types of
modes: symmetric and anti-symmetric (Zebib (1987)). Various researchers, in the
past, have reported the onset of instability for these modes. For example, the ab-
solute instability of the most unstable symmetric mode occurs around Re∼ 47 and
leads to von Karman vortex shedding (Zebib (1987); Jackson (1987); Williamson
(1989); Norberg (1994); Chen, Pritchard, and Tavener (1995); Ding and Kawa-
hara (1999); Morzynski, Afanasiev, and Thiele (1999); Norberg (2001); Kumar
and Mittal (2006a); Kumar and Mittal (2006b)). The instability of anti-symmetric
mode occurs at higher Re and varies significantly with the blockage (Kumar, Kot-
taram, Singh, and Mittal (2009)). The occurrence of the instability of symmetric
modes, in comparison to that of the anti-symmetric modes, at lower Re has led most
of the investigations to be focused on the former ones. However, phenomena like
shear/mixing layer instabilities, owe their origin to the instability of anti-symmetric
modes. Kumar, Kottaram, Singh, and Mittal (2009) carried out investigation of flow
past a cylinder with centerline symmetry. The imposition of centerline suppressed
the symmetric modes leaving the anti-symmetric modes unaffected. Both, abso-
lute and convective modes were investigated. Although some results for the low
blockage were discussed, their study of convective instability was mostly focused
towards high blockage cases. In the present study we examine the anti-symmetric
convective modes in flow past a cylinder for low blockage. These are expected to
be much closer to results for an unbounded flow.

The paper is arranged in the following sequence. In the Section 2, we present the
governing equations. The numerical technique utilized to carry out the computa-
tions is same as that used in our earlier studies (Mittal and Kumar (2007); Mittal.,
Kottaram, and Kumar (2008); Kumar, Kottaram, Singh, and Mittal (2009)). A short
description for the same is, however, presented in Section 3. This is followed by the
description for problem set-up and boundary conditions in Section 4. The results
are presented and discussed in Section 5. We end with conclusions in Section 6.

2 The Governing Equations

2.1 The incompressible flow equations

Let Ω⊂ IRnsd and (0,T ) be the spatial and temporal domains respectively, where nsd
is the number of space dimensions, and let Γ denote the boundary of Ω. The spatial
and temporal coordinates are denoted by x and t. The Navier-Stokes equations
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governing incompressible fluid flow are

ρ(
∂u
∂ t

+u ·∇∇∇u)−∇∇∇ ·σσσ = 0 on Ω× (0,T ), (1)

∇∇∇ ·u = 0 on Ω× (0,T ). (2)

Here ρ , u and σσσ are the density, velocity and the stress tensor, respectively. The
stress tensor is written as the sum of its isotropic and deviatoric parts:

σσσ =−pI+T, T = 2µεεε(u), εεε(u) =
1
2
((∇∇∇u)+(∇∇∇u)T ), (3)

where p and µ are the pressure and coefficient of dynamic viscosity, respectively.
The above set of equations can be solved along with suitable initial and boundary
conditions to obtain the time evolution of the flow field. The steady state solution
can be computed by simply dropping the time derivative term from Equation (1).

2.2 Equations for the perturbation

We decompose the unsteady solution as a combination of the steady state solution
and perturbation.

u = U+u′, p = P+ p′. (4)

Here, U and P represent the steady state solution while u′ and p′ are the perturbation
fields of the velocity and pressure, respectively. Substituting Eq. (4) in Eqs. (1)-(2)
and subtracting from them the equations for steady flow one obtains:

ρ(
∂u′

∂ t
+u′ ·∇∇∇U+U ·∇∇∇u′+u′ ·∇∇∇u′)−∇∇∇ ·σσσ ′ = 0 on Ω× (0,T ), (5)

∇∇∇ ·u′ = 0 on Ω× (0,T ). (6)

Here, σσσ ′ is the stress tensor for the perturbed solution computed using Eq. (3).

2.3 Linearized equations for the perturbation

Assuming that the perturbation field is small, the nonlinear term from Eq. (5) is
dropped to obtain the linearized momentum equation for the perturbation. The
continuity equation remains as it is. The linearized disturbance equations are:

ρ(
∂u′

∂ t
+u′ ·∇∇∇U+U ·∇∇∇u′)−∇∇∇ ·σσσ ′ = 0 on Ω× (0,T ), (7)

∇∇∇ ·u′ = 0 on Ω× (0,T ). (8)
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2.4 Equations for the linear stability analysis

To carry out the global linear stability analysis we write the perturbation equations
in a frame moving with a velocity c with respect to the laboratory frame. This mod-
ification allows us to investigate both the absolute as well as convective instability
in the same setting (Mittal and Kumar (2007)). The change of frame is effected by
the following transformations:

x = z+ ct, ∇∇∇x = ∇∇∇z,
∂

∂ t

∣∣∣∣
x
=

∂

∂ t

∣∣∣∣
z
− c ·∇∇∇z. (9)

Here, x and z, respectively, denote the position vectors of a point in the flow field,
with respect to the laboratory frame and the translating frame. We further assume
that the disturbances are of the following form:

u′(x, t) = û(x− ct)eλ t , (10)

p′(x, t) = p̂(x− ct)eλ t . (11)

Substituting Eqs. (10)-(11) in Eqs. (7)-(8) we get:

ρ(λ û+ û ·∇∇∇zU+(U− c) ·∇∇∇zû)−∇∇∇z · σ̂σσ = 0 on Ω (12)

∇∇∇z · û = 0 on Ω. (13)

It is important to note that the base flow, U(x), is computed in the laboratory frame.
However, in Eqs. (12)-(13), it is to be interpreted as U(z + ct). Therefore, in the
moving frame, the base flow varies with time. At t = 0, z = x and one can use
the same base flow as computed in the stationary frame. Thus, this analysis, for
determining the global convective instability, is valid in an instantaneous sense.

3 Numerical Technique

In order to solve the above mentioned initial boundary value problems we utilize
the stabilized finite element formulation as presented in Tezduyar, Mittal, Ray, and
Shih (1992). The SUPG (Streamline-Upwind/Petrov-Galerkin) and PSPG (Pressure-
Stabilizing/Petrov-Galerkin) stabilization technique (Tezduyar, Mittal, Ray, and
Shih (1992)) is employed to stabilize the computations against spurious numeri-
cal oscillations. The SUPG formulation for convection dominated flows was intro-
duced by Hughes and Brooks (1979) and Brooks and Hughes (1982). The Petrov-
Galerkin term for Stokes flows, to admit the use of equal-order interpolations for
velocity and pressure without producing oscillations in the pressure field, was pro-
posed by Hughes, Franca, and Balestra (1986). Tezduyar, Mittal, Ray, and Shih
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(1992) proposed a formulation using the SUPG and PSPG stabilization for finite
Reynolds number flows.

Since the formulation used here is same as that presented in our earlier works (Mit-
tal and Kumar (2007); Mittal., Kottaram, and Kumar (2008); Kumar, Kottaram,
Singh, and Mittal (2009)) one may refer these to see the explicit form of the equa-
tions. Further, it may be noted that for unsteady computations, the algebraic equa-
tion systems resulting from the finite-element discretization of the flow equations
are solved using the Generalized Minimal RESidual (GMRES) technique (Saad and
Schultz (1986)) in conjunction with diagonal preconditioners. For carrying out the
linear stability analysis, first, the steady-state solutions at various Re are obtained
by solving the governing equations without the unsteady terms and progressively
increasing the Re. The linear stability analysis, of these steady states, involves
the solution to an eigenvalue problem. A sub-space iteration procedure (Morzyn-
ski, Afanasiev, and Thiele (1999)) in conjunction with shift-invert transformation
is utilized. Double precision arithmetic is used in all the computations.

It may pointed out that the above mentioned approach, based on the finite element
method, has been successfully applied to solving various fluid flow problems in
the past. A good quality mesh is a pre-requisite to obtaining good quality solu-
tions. The generation of mesh for complex geometries, especially in 3D, can be
a very cumbersome process. Recently, a number of meshless methods have been
developed that may help one to get around the process of generating a mesh. Exam-
ples of such approaches are the element free Galerkin method (Belytschko, Organ,
and Y.Krongauz (1994)), reproducing kernel particle method (Liu, Chen, Chang,
and Belytschko (1996)), meshless local boundary equation (MLBIE) method (Zhu,
Zhang, and Atluri (1998)) and meshless local Petrov-Galerkin method (MLPG)
(Atluri and Zhu (1998, 2000); Atluri and Shen (2002); Atluri, Han, and Rajendran
(2003)). Atluri and Zhu (2000) state that the main objective of meshless meth-
ods is to get rid of or at least alleviate the difficulty of meshing and remeshing the
entire structure, by only adding or deleting nodes in the entire structure. Lin and
Atluri (Lin and Atluri (2002)) compared the SUPG and MLPG approaches and for
convection diffusion problems and found them to provide comparable results. Re-
cently, Mohammadi (2008) extended the MLPG method for computation of steady
incompressible flows, governed by the Navier-Stokes equations, in the vorticity-
stream function formulation. He introduced a new upwinding scheme to stabilize
the convection operator in the streamline direction.
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Figure 1: Close-up view of a typical finite element mesh. The conditions on the
respective boundaries are also shown.

4 Problem set-up

4.1 Finite element mesh and the boundary conditions

A typical finite element mesh is shown in the Figure 1. Four noded quadrilateral
elements with equal order interpolation for velocity and pressure are employed.
Sufficient grid points are used close to the cylinder to resolve the boundary layer
and separating shear layer. To capture the modes that are symmetric with respect to
the wake centerline only one half of the cylinder is considered. The lateral boundary
is located at a distance H from the center of the cylinder. Computations are carried
out for various values of H. The upstream and downstream boundaries are located
at 50D and 150D, respectively, from the center of the cylinder. Free-stream value
is assigned to the velocity at the upstream boundary. At the downstream boundary,
a Neumann-type boundary condition for the velocity is specified that corresponds
to zero stress vector. On the upper and lower boundaries a "slip-wall" boundary
condition is employed, i.e., the component of velocity normal to and the component
of stress vector along these boundaries are prescribed a zero value. For the linear
stability analysis, the boundary conditions are the homogeneous versions of the
ones used for determining the steady state solutions.

4.2 The nondimensional parameters

The radius of the cylinder, R, is used for nondimensionalizing the length scales
while the free stream speed, U , is used as the characteristic speed. Time is nondi-
mensionalized with R/U . The Reynolds number, Re, is defined as UD/ν , ν being
the kinematic viscosity of the fluid and D, the diameter. The cross-stream width of
the domain, H, is expressed in terms of R. For the linear stability analysis, each
component of the frame velocity, c, is nondimensionalized with U . Another param-
eter that is referred to is the Strouhal number, St. It is defined as f D/U , where f is
the frequency of signal of interest. The drag and lift coefficients per unit length are
represented by CD and CL, respectively. They are computed by performing an in-
tegration, that involves the pressure and viscous stresses, around the circumference
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of the cylinder and non-dimensionalized with respect to the dynamic pressure and
diameter of the cylinder.

5 Results

5.1 Steady flow

The time dependent terms in Equations (1) and (2) are dropped to compute the
steady flow past a half cylinder. We note that the steady flow past a circular cylin-
der is symmetric about the wake centerline. Hence the flow being computed here
represents the steady flow past a full cylinder. In the past, this flow has been moti-
vated to represent the flow past a cascade of circular cylinders.

Typically, the investigations of steady flow past a cylinder have focused on moni-
toring the length and width of the wake bubble, maximum vorticity on the surface
of the cylinder and the drag coefficient. It is found both from the theoretical results
as well as from computations (Smith (1979); Fornberg (1985); Fornberg (1991);
Gajjar and Azzam (2004)), that the bubble length increases linearly with Re. Smith
(1979) suggested that the width of the wake bubble grows as O(Re1/2). Fornberg
(1985) showed that it grows as O(Re1/2) up to Re = 300 and increases linearly
thereafter. It was later shown (Fornberg (1991)) that for an unbounded flow, both,
length and width of the bubble grow linearly with Re. Gajjar and Azzam (2004)
showed that, although it grows for low Re, for high enough Re the width of the
bubble is limited by the blockage and gets saturated.

Table 1: Bubble length at various Re from different studies. The abbreviations used
are: P: Present results; F: Results from Fornberg (1991); G: Results from Gajjar
and Azzam (2004).

H Researcher 100 400 500 600 800 1000 1500 2000 2500
5 P 10.97 37.59 46.31 55.01 72.42 89.83 133.43 177.16 221.09

F 10.3 35.3 43.5 51.7 68.1
10 P 11.92 41.72 51.45 61.10 80.12 99.02 145.47 191.52

G 11.92 41.7 51.43 61.1 80.2 98.97 145.4 191.6
F 11.9 41.5 51.1 60.6 79.3

50 P 13.28 56.44 73.13
G 13.28 56.6 73.74
F 13.2 56.1 72.8

Tables 1–4 show a comparison of the characteristic parameters obtained from the
present computations with those reported earlier. It can be seen that the present re-
sults are in very good agreement with those reported by Gajjar and Azzam (2004)Gaj-
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Table 2: Bubble width at various Re from different studies. The abbreviations used
are: P: Present results; F: Results from Fornberg (1991); G: Results from Gajjar
and Azzam (2004).

H Researcher 100 400 500 600 800 1000 1500 2000 2500
5 P 2.52 3.28 3.34 3.39 3.44 3.47 3.52 3.55 3.57

F 2.37 2.87 2.92 2.95 2.99
10 P 2.69 3.97 4.08 4.23 4.73 5.21 6.24 6.98

G 2.69 3.96 4.08 4.24 4.75 5.23 6.26 6.98
F 2.71 3.98 4.10 4.26 4.75

50 P 2.80 9.29 17.62
G 2.87 9.39 17.75
F 2.88 9.02 16.4

Table 3: Drag coefficient at various Re from different studies. The abbreviations
used are: P: Present results; F: Results from Fornberg (1991); G: Results from
Gajjar and Azzam (2004).

H Researcher 100 400 500 600 800 1000 1500 2000 2500
5 P 1.41 1.07 1.04 1.02 0.99 0.98 0.96 0.95 0.95

F 1.61 1.22 1.18 1.16 1.12
10 P 1.25 0.92 0.89 0.88 0.86 0.85 0.83 0.82

G 1.26 0.92 0.90 0.88 0.86 0.85 0.83 0.82
F 1.25 0.91 0.88 0.86 0.83

50 P 1.08 0.67 0.57
G 1.08 0.66 0.57
F 1.072 0.672 0.581

jar and Azzam (2004). All the results presented here have been checked for grid
independence. For example, the difference between the bubble lengths computed
for H = 10 case, at Re = 1000, with two different finite element meshes consisting
of 57,313 and 86,419 nodes, is less than 0.1%. As reported by Gajjar and Azzam
(2004) the computations for H = 50 and beyond are very demanding on compu-
tational resources. With our computational resources we were unable to compute
flows for Re > 500 accurately for H = 50. Figure 2 shows the variation of bubble
length and width with Re for various domain width. Good agreement with data
from Gajjar and Azzam (2004) is apparent from this figure. The linear growth of
bubble length with Re can be clearly observed. The variation of CD and maximum
vorticity on the cylinder surface (ζm) with Re is shown in the Figure 3. Very good
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Table 4: Maximum vorticity on the cylinder surface at various Re, from different
studies. The abbreviations used are: P: Present results; F: Results from Fornberg
(1991); G: Results from Gajjar and Azzam (2004).

H Researcher 100 400 500 600 800 1000 1500 2000 2500
5 P 11.18 22.74 25.52 28.04 32.51 36.45 44.84 51.92 58.16

F 12.2 24.7 27.7 30.4 35.1
10 P 10.26 20.74 23.28 25.58 29.67 33.27 40.93 47.39

G 10.28 20.76 23.30 25.62 29.72 33.35 41.06 47.55
F 10.3 20.6 23.1 25.3 29.3

50 P 9.13 16.66 17.06
G 9.16 16.64 17.06
F 9.2 16.7 17.4
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Figure 2: Variation of the bubble length (l) and width (w) with Re. In the figure G
refers to results from Gajjar and Azzam (2004).

agreement with the results from Gajjar and Azzam (2004) is observed.

The streamline and vorticity contours for H = 5,10 and 50 are shown in Figures 4, 5
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Figure 3: Variation of the drag coefficient (CD) and the maximum vorticity on the
cylinder surface (ζm) with Re. In the figure G refers to results from Gajjar and
Azzam (2004).

and 6, respectively. To highlight the flow features the cross flow dimension is
stretched. With respect to the blockage the flow can be broadly classified in three
categories. H = 5 flow, shown in Figure 4, is typical of very high blockage. When
the adjacent boundaries are extremely close to the cylinder the recirculation bubble
is slender. The length of the bubble increases with Re. Following the nomenclature
proposed by Gajjar and Azzam (2004) we refer to these as ’Type I’ solutions. As
the lateral walls are shifted away from the cylinder the solution changes to ’Type
II’. Figure 5 shows an example of the Type II flow, for H = 10. The flow begins
to develop features, associated with low blockage, close to the reattachment point.
An unusual increase in the bubble width near the downstream end of the bubble is
observed. This feature of the bubble is similar to that observed in the Sadovskii type
of vortex (Sadovskii (1971)) and was also reported by Gajjar and Azzam (2004).
The bubble length increases linearly with Re. However, the bubble width saturates
for large Re. Type III solution is observed for even lower blockage cases. Figure 6
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Figure 4: H = 5 steady flow past a circular cylinder: stream function (left) and
vorticity contours (right) at various values of Re. Solid lines indicate positive while
the broken ones indicate negative values.

shows the solution for H = 50 at various Re. Both, the length as well as width of the
bubble become very large. A large Sadovskii vortex (Sadovskii (1971)) is observed
in the wake of the cylinder. While the length of the bubble increases linearly with
Re, the bubble width is constrained by the lateral wall and, therefore, is expected to
level out for large Re.

5.2 Linear stability analysis in a moving frame

In order to carry out linear stability analysis the eigenvalue problem represented by
the equations (12) and (13) is solved with the homogeneous boundary conditions.
Detailed results are presented for H = 50. This leads to very small blockage and
is expected to represent the unbounded flow past a circular cylinder. The mesh
being utilized has sufficient resolution to lead to mesh-independent results. One
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Figure 5: H = 10 steady flow past a circular cylinder: stream function (left) and
vorticity contours (right) at various values of Re. Solid lines indicate positive while
the broken ones indicate negative values.
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Figure 7: Variation of the growth rate of the most unstable eigenmode with cx for
different Re. The vorticity field of the unstable eigenmode close to the onset of the
instability (Re = 54, cx = 0.38) is also shown.

such study, for H = 10, was presented in an earlier work (Kumar, Kottaram, Singh,
and Mittal (2009)) In the present work we track the disturbances which move in
the streamwise direction, i.e., cy is prescribed a zero value. Figure 7 shows the
variation of growth rate λr with cx, at different Re. This figure shows the data for
the rightmost eigenvalue, i.e., the one that has the largest real part. It is seen that
the growth rate, in general, increases with increase in Re. The variation of λr with
cx, for each Re is interesting. For relatively large Re, λr first increases and then
decreases as cx increases. The critical Re for the onset of convective instability
is Re = 54. Also shown in the same figure is the unstable mode obtained a little
beyond the onset. For a full cylinder the onset of convective instability, from global
analysis, occurs at Re = 4 (Mittal and Kumar (2007)). We, therefore, conclude that
the imposition of symmetry at the wake centerline leads to a delay in the onset of
convective instability. Figure 8 shows the variation of the Strouhal number (St)
with cx for various Re. It can be seen that for each Re there is a range of cx for
which St is nonzero. Over all, the St is found to increase with Re. This trend,
however, is not strictly valid for all values of cx. This figure brings out the richness
in this flow regarding the various eigenmodes associated with it. It shows how the
different modes compete to show their dominance at various cx and Re.
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Figure 8: Variation of the Strouhal number of the most unstable eigenmode with cx

for different Re

5.2.1 Most unstable modes for Re = 500

From Figure 7 it is seen that, for Re = 500, the growth rate increases quite rapidly
with cx. At cx = 0 the growth rate is slightly negative. This reflects the marginal
absolute stability of the flow. The flow is found to be unstable beyond cx ∼ .057.
This marks the onset of convective instability of the flow. For this mode the St is
found to be zero. Figure 9 shows the real part of the most unstable modes obtained
for different values of cx. The modes can be classified into three types. The first
type of modes are the ones which have bubble like structure in the wake. These are
found for 0.0 ≤ cx ≤ 0.2. The second type of modes have small scale structures
in the shear layer emanating from the cylinder. These are observed for 0.23 ≤
cx ≤ 0.7 and are very typical of the shear layer vortices that have been reported in
experiments at larger Re. The third type of modes, shown for cx = 1.0, resemble a
tornado. These modes have very low growth rate. However, if excited sufficiently,
they can possibly lead to tornado type of motion. It is possible that for very high
Re they may show large growth rate.

An important point which may be noted from Figure 8 is that, for Re = 500, there
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is a sudden increase in the value of St at cx ∼ 0.23. This is corroborated with the
appearance of small scale shear layer vortices in the eigenmodes (cf. figure 9).
Further, Figure 7 shows that there is a change in the slope of the growth rate curve
at cx = 0.2. This is an instance of mode switch where the high frequency shear
layer mode takes over the low frequency mode.

=0.0cx

x=0.6c x=1.0c

x=0.4c

Figure 9: Vorticity field of the real part of the most unstable mode for Re = 500 at
different values of cx.
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Figure 10: Snap shots of the disturbance vorticity field at different time instants
computed from the linearized disturbance equation. The initial disturbance field is
the most unstable mode for Re = 500 and cx = 0.6.

5.3 Direct time integration of disturbance equations for Re = 500 flow

5.3.1 Linearized disturbance equations

Direct time integration of the linearized disturbance equations (7) and (8) is carried
out to confirm the results from the linear stability analysis. The kinetic energy of
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Figure 11: Variation of the normalized disturbance energy (E(t)/E(0)) of the flow
field (please see the caption of Figure 10 for details).

the disturbance field in the flow domain, Ω, is defined as:

E(t) =
ρ

2

∫
Ω

u′ ·u′dΩ . (14)

We consider the case when an eigenmode, as defined by Equations (10) and (11), is
used as an initial condition for the computations. In this situation the kinetic energy
can be expressed as:

E(t) =
ρ

2
e2λrt

∫
Ω

û · ûdΩ . (15)

Here, the overbar indicates the complex conjugate while λr is the growth rate of the
mode. This leads to the following expression for an estimate of λr

λr =
1
2t

ln
E(t)
E(0)

. (16)

The computations begin with the mode corresponding to the most unstable con-
vective mode, i.e. the mode for cx = 0.6. Figure 10 shows the vorticity of the
disturbance field at various time instants of the simulation. The development of
the shear layer vortices is observed very clearly in this figure. The corresponding
evolution of the disturbance kinetic energy is shown in the Figure 11. It can be seen
that the energy grows upto 10,000 times the initial energy of the disturbance in a
period of about 60 time units. This reflects an almost explosive growth of the shear
layer instability. After a certain time the kinetic energy of the disturbance starts
to decay. This is expected of a convective instability in a finite domain. Using
the value of energy at t = 5 and the expression given by Equation (16) the growth
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Figure 12: Time evolution of the vorticity of the computed disturbance field ob-
tained from the time integration of the nonlinear disturbance equations. The ini-
tial condition is a randomized disturbance field having amplitude of the order of
5.0×10−5. The line plot in the last row shows the time history of the cross-stream
component of the velocity recorded at (1.0R,1.0R) from the center of the cylinder.
The square dots indicate the time instants at which the flow pictures are shown.

rate is found to be λr ∼ 0.099. This value is in good agreement with that from the
linear stability analysis which predicts λr ∼ 0.0987. The convective speed of the
disturbance from this figure is also estimated to be close to 0.6 for t near 0. The
good agreement in the results from the linear stability analysis and the direct time
integration of the linearized disturbance equations adds to our confidence in the
present analysis. At this point we note that, since the modes under consideration
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are convectively unstable, the energy estimate given by Equation (16) is valid only
in the frame traveling with the mode. However, for small t it is expected that the
mode will retain its form and growth rate as it moves in the laboratory frame.

Similar kinds of rapidly growing disturbances have been reported earlier in other
situations. For example, Fasel and Postl (2006) showed that the steady state separa-
tion bubble of the boundary layer over a flat plate is associated with large convective
growth. This leads to growth of perturbations by several orders of magnitude. As a
result extremely small environmental disturbances can grow and lead to instabilities
which are not intrinsic to the flow. A similar situation can arise in numerical com-
putations of flows that are marginally absolutely stable but highly unstable with
respect to convective disturbances. Despite the flow being absolutely stable, this
can lead to sustained instabilities because of very large growth of round off errors.

5.3.2 Non-linear disturbance equations

In order to examine the effect of nonlinearity on the growth of the disturbance we
carry out computations with non-linear disturbance equations. The steady flow
is perturbed by a random velocity field having amplitude of the order of 5.0×
10−5. Unlike the linearized disturbance equations, the nonlinear equations limit
the growth of disturbance amplitude. Figure 12 shows the results from the direct
time integration of the non-linear disturbance equations. It is observed that the
disturbances which resemble the shear layer modes predicted by the global linear
stability analysis, develop with time. After an initial growth they start decaying. At
t ∼ 1000 the disturbance resembles the modes which are predicted by the stability
analysis for low values of cx (Figure 9). These modes have long streaks of vorticity
along the shear layer. The simulation testifies to the fact that the modes which have
larger growth rate dominate the flow and those which have larger speeds leave the
flow field earlier. The last row of Figure 12 shows the time history of the cross-
stream component of the velocity recorded at a point located at (1.0R,1.0R) from
the center of the cylinder. This point is located close to the shear layer separat-
ing from the cylinder. After initial transience, oscillations due to the shear layer
vortices are observed. They ride on a very low frequency wave that are due to the
excitation of the modes traveling at relatively lower speeds.

5.4 Local versus global analysis

In the past, local analysis has been carried out for various cases of shear flows. The
mixing layer profile modeled by the hyperbolic tangent function was studied by
Huerre and Monkewitz (1985). They concluded that an inviscid flow with such a
profile would become convectively unstable if the velocity ratio, a suitable measure
of the reverse flow, exceeds 0.84. It becomes absolutely unstable for velocity ratio
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Figure 13: Steady flow past a half cylinder: velocity profiles at various stream wise
locations shown in solid lines. Also shown in broken lines are the profiles assuming
a Gaussian distribution given by Equation (18). The figure corresponds to H = 50
and Re = 54.
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Figure 14: H = 50 steady flow past a half cylinder: stream wise variation of the
effective value of s(x) = (u(x,y = H)−u(x,y = 0))/u(x,y = H)), half wake width
and the local Reynolds number, Rel , based on s(x) u(x,y = H) and b.

greater than 1.315. Another case, studied by Hultgren and Aggarwal (1987), is that
of a Gaussian profile given by the following equation:

u = 1− se−y2ln(2). (17)
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Here, the speed is normalized by its maximum value, y by the wake half-width
and s is a measure of the reverse flow. Hultgren and Aggarwal (1987) considered
unbounded/free viscous shear layers. From their analysis, they concluded that the
Karman type mode becomes convectively unstable at Re = 3.76 while the modes
obtained with symmetry condition enforced at the wake centerline loose stability
at Re = 53. The Re, in their work, is based on the maximum speed difference and
wake half-width. With this definition the critical Re is found to be independent of
the amount of reverse flow. A similar study with the Gaussian profile (Eq. 17) was
carried out by Castro (2005). In addition to the symmetry condition imposed at
the centerline, Castro (2005), in his investigation, considered the flow bounded by
slip walls placed at finite distance. The distance between the wake centerline and
the side walls, represented by H, was varied. It was found that the critical Re for
H = 100, 10, 5 and 3 is 52.99, 53.06, 57.30 and 97.11, respectively.

We compare our results from the global stability analysis of the non parallel flow
with those of earlier researchers. Recall, the critical Re for the onset of convective
instability, from the global stability analysis is 54. Figure 13 shows the velocity pro-
files at different stations downstream of the cylinder for the corresponding steady
flow along with the Gaussian profile, uG(x,y). The expression for the Gaussian
profile is given as follows:

uG(x,y) = u(x,y = H)[1− s(x)e−
(

y
b(x)

)2
ln(2)], (18)

Here, s(x) is the reverse flow parameter and b(x) the wake half width. They are
calculated from the velocity profiles of the actual steady flow computed via the
solution to the flow equations. It can be observed that the Gaussian profile is a
good match for the velocity profiles far downstream of the cylinder. Close to the
cylinder the strong shear layer causes the profile to have sharp change in the slope.
Using the computed profiles we estimate the local Reynolds number, Rel , based
on the maximum velocity defect (= s(x) u(x,y = H)) and the wake half-width.
Figure 14 shows the streamwise variation of s, b and Rel . The parameter s(x) is
computed with the help of the expression: s(x) = u(x,y=H)−u(x,y=0)

u(x,y=H) . The wake half
width, b(x), is the vertical distance from the wake centerline where the velocity
defect with respect to u(x,y = H) is one-half the maximum defect at each location
(= u(x,H)−u(x,0)).
From the figure it is seen that, as expected, there is an appreciable reverse flow close
to the cylinder. While s and b change to some extent, the Rel shows substantial
streamwise variation. The maximum for Rel is slightly lower than 45. The critical
Re for convective instability predicted by Castro (2005) for H = 10 is 53.06 and
H = 100 is 52.99. Since both these values are very close one can assume the
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critical for H = 50 to be close to 53. The maximum value of Rel from the present
analysis is lower (∼ 45). This value is achieved in the near wake of the cylinder. As
seen from Figure 13, in this region, the velocity profiles for the base flow from the
direct numerical simulations are quite different than the Gaussian profile utilized
by Castro (2005). Therefore, a difference in the results from the two methods is not
surprising. In fact, it is quite interesting that the two approaches lead to comparable
values of Rec that are different by less than 20%.

6 Summary & Conclusions

Global linear stability analysis of steady flow past a circular cylinder has been car-
ried out in a frame translating in the streamwise direction. Free-slip condition at the
centerline of the flow field is imposed in order to suppress the symmetric modes.
Under these conditions only half the domain needs to be investigated. The steady
flow for this setup represents the flow past a cascade of circular cylinders. How-
ever, the stability results are specific to the present case. For computing the steady
flow various locations of the lateral boundary are considered. The results are found
to be in very good agreement with those reported by other researchers (Fornberg
(1985); Fornberg (1991); Gajjar and Azzam (2004)). The eddy length varies lin-
early with Re. Depending on the blockage, three different types of solutions with
respect to the structure of the eddy, are found. For very high blockage the eddy has
relatively large length compared to its width. The eddy width first increases and
then decreases in the streamwise direction. For moderate blockage the eddy width
is almost constant but is found to have an abrupt bulge at the reattachment point.
For low blockage the bubble width is large and the effect of the confining walls is
almost negligible. The computational resources required for accurate computations
with low blockage are quite high. For this reason the results for the H = 50 flow
are restricted to Re = 500.

The linear stability analysis of the steady flow is carried out via an eigenvalue
formulation to get the most unstable modes, their growth rate and the corresponding
frequency. Only H = 50 case is considered and perturbations are restricted to move
only in the streamwise direction. Computations are done for various speeds at a
given Re. The growth rate shows a nonmonotonic variation with the wave speed
cx. Over all, the growth rate increases with increase in Re. The St also shows a
nonmonotonic variation with cx, at a given Re. The critical Re for the onset of
shear layer instability, from the present analysis, is found to be 54. The linear
stability analysis for the Re = 500 flow leads to three kinds of modes depending on
the speed of the disturbance. Based on the vortical structures in the modes they are
classified as the bubble, shear layer and tornado modes.

The present results from the linear stability analysis are also supported by those
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from direct time integration of linearized disturbance equations. The time evolution
of the energy of the disturbance shows intermediate increase upto very high values
before decaying. Such large increase in energy has also been observed earlier for
other flow problems (Fasel and Postl (2006)). This suggests that very small sus-
tained background disturbances can grow to significant strength and be observed in
a flow. They can, erroneously, give the same effect as a global absolute instability.
Time integration of the nonlinear disturbance equation also shows the appearance
of the modes obtained from linear stability analysis.

The results from the global analysis are compared with earlier results from local
analysis (Hultgren and Aggarwal (1987) and Castro (2005)). For the Rec from the
global analysis, the streamwise variation of the local Reynolds number (Rel), based
on the maximum speed difference and the wake half width, is determined for the
base flow. Rel shows substantial streamwise variation and achieves a maximum
value which is a little less than 45. The local analysis predicts about 20% lower
value. This difference might also be because the local analysis by Castro (2005)
and Hultgren and Aggarwal (1987) was carried out for a synthetic velocity profile
based on a Gaussian distribution. In the near wake the velocity profile from the
present analysis are different from the Gaussian profile. However, they are in very
good agreement in the far wake.

It may be pointed out that although the present work has been restricted to the
investigation of convective instability of the steady flow, the same analysis for the
time-averaged flow can also reveal useful information. This might be especially
relevant in the case of high Re flows. Recently Mittal (2008a,b) showed that the
global absolute stability analysis of the time averaged flow past a circular cylinder
predicts the correct Strouhal frequency of the fully nonlinear flow.
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