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Abstract: Linear systems with very large off-diagonal elements and discontin-
uous coefficients (LODC systems) arise in some modeling cases, such as those
involving heterogeneous media. Such problems are usually solved by domain de-
composition methods, but these can be difficult to implement on unstructured grids
or when the boundaries between subdomains have a complicated geometry. Gordon
and Gordon have shown that Björck and Elfving’s (sequential) CGMN algorithm
and their own block-parallel CARP-CG are very robust and efficient on strongly
convection dominated cases (but without discontinuous coefficients). They have
also shown that scaling the equations by dividing each equation by the L2-norm of
its coefficients, called “geometric row scaling” (GRS), improves the convergence
properties of Bi-CGSTAB and GMRES on nonsymmetric systems with discontin-
uous coefficients, provided the convection terms are only small to moderate. Given
a system Ax = b, it is shown that if C is obtained from A by applying GRS, then the
diagonal elements of CCT are larger than the off-diagonal ones, so the normal equa-
tions system is manageable. These two operations are inherent in the Kaczmarz
algorithm, and hence also in CGMN and CARP-CG (which are CG-accelerations
of Kaczmarz). It is shown that these two methods are also very effective on sys-
tems with discontinuous coefficients derived from strongly convection dominated
elliptic PDEs. CGNR and CGNE also benefit greatly from this approach, but they
are much less efficient.

Keywords: CARP, CARP-CG, CGMN, convection-diffusion, convection domi-
nated, discontinuous coefficients, domain decomposition, geometric scaling, GRS,
large off-diagonal elements, linear equations, LODC systems, nonsymmetric sys-
tems, parallel processing, partial differential equations.

1 Corresponding author. Dept. of Computer Science, University of Haifa, Haifa 31905, Israel.
gordon@cs.haifa.ac.il

2 Dept. of Aerospace Engineering, The Technion–Israel Inst. of Technology, Haifa 32000, Israel.
rgordon@tx.technion.ac.il



24 Copyright © 2009 Tech Science Press CMES, vol.53, no.1, pp.23-45, 2009

1 Introduction

Many physical phenomena are modeled by partial differential equations (PDEs)
which describe the relations between one or more scalar or vector fields and the sur-
rounding media. When boundary conditions are prescribed, a common approach
to achieving a numerical solution is to impose a grid and discretize the equations,
thus getting a system of linear equations. In some cases, this approach yields a sys-
tem of equations with very large differences between coefficients of the equations.
Examples of such systems arise in modeling flow through heterogeneous media
with widely-varying permeability, oil reservoir simulation, electromagnetics and
semiconductor modeling, and geomechanics. Such systems, called systems with
“discontinuous coefficients”, are often handled by the domain decomposition (DD)
approach, in which the domain is partitioned into subdomains, with subdomain
boundaries conforming to the boundaries between the different media. For some
references on DD, see [Glowinski and Wheeler (1988); Smith, Bjørstad, and Gropp
(1996); Quarteroni and Valli (1999); Rice, Tsompanopoulou, and Vavalis (2000)].
However, DD may be difficult to implement on unstructured grids or when the
boundaries between subdomains have a complicated geometry.

Another problematic feature of some systems is the occurrence of very large off-
diagonal elements. This problem occurs in several situations, such as convection-
diffusion equations with a large convection, the Helmholtz equation with large
wave numbers, circuit simulation, and other cases. Current approaches to this
problem consist of scalings, reordering schemes, and problem-specific precondi-
tioners. For some related literature, see [Benzi, Szyld, and van Duin (1999); Duff
and Koster (2001); Benzi (2002); Saad (2005); Schend, Röllin, and Gupta (2004)].
To complicate matters further, some problems exhibit both large off-diagonal ele-
ments and discontinuous coefficients; this is the topic of the present research.

The above problems are examples of the difficulties that often occur in computa-
tional mechanics, but they are by no means unique. Such problems are very of-
ten nonlinear in nature; some of them require the solution of nonlinear equations,
whereas others are nonlinear optimization problems. Significant progress on the
latter class of problems was achieved by Liu and Atluri (2008) with the fictitious
time integration method (FTIM). FTIM has also been used successfully to solve
systems of ill-posed linear equations arising from the Fredholm integral equation;
see [Liu and Atluri (2009)]. This paper also demonstrates that the fictitious time
acts as a regularization parameter, with a better effect than alternative filters. The
latter paper also demonstrates the robustness of FTIM in the presence of noise. See
also [Liu, Yeih, and Atluri (2009)] for another approach to solving ill-conditioned
linear systems.
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Takei, Yoshimura, and Kanayama (2008, 2009) used DD in a hierarchical mode
for the parallel solution of electromagnetic field problems. Jönsthövel, van Gi-
jzen, Vuik, Kasbergen, and Scarpas (2009) use a deflation based preconditioner for
the conjugate gradient method (CG) to tackle a problem of composite materials in
which the stiffness matrix has a large variance in the size of the coefficients. How-
ever, in this problem, the matrix is symmetric and positive definite, whereas the
problems that we will be concerned with involve nonsymmetric matrices.

In this paper we extend our previous results [Gordon and Gordon (2008, 2009a,b)]
to nonsymmetric linear systems with very large off-diagonal elements and discon-
tinuous coefficients; we will call such systems LODC systems. Specifically, our test
cases will consist of strongly convection dominated elliptic PDEs in heterogeneous
media. Given a system Ax = b, we show that if C is obtained from A by applying the
GRS scaling method of [Gordon and Gordon (2009b)], then the diagonal elements
of CCT are larger than the off-diagonal ones. This fact makes the normal equations
manageable and it explains the efficient behavior of CGMN [Björck and Elfving
(1979); Gordon and Gordon (2008)] and its block-parallel equivalent CARP-CG
[Gordon and Gordon (2009a)] on LODC systems..

Three nonsymmetric convection-diffusion problems with discontinuous coefficients
are considered: two from [Gerardo-Giorda, Tallec, and Nataf (2004)], and one from
[Erlangga, Vuik, and Oosterlee (2004)], to which we added convection terms of
varying sizes to make it nonsymmetric. The following algorithms were tested: Bi-
CGSTAB [van der Vorst (1992)], GMRES [Saad and Schultz (1986)], CGNR, and
CGMN. The first three were tested with and without GRS, and the first two were
also tested with and without the ILU(0) preconditioner. All these algorithms are
easily parallelized, but we did not run multi-processor experiments in this study,
so runtime experiments were not done with CARP-CG. It it was found that in all
cases when Bi-CGSTAB and GMRES run into difficulties, CGMN produced excel-
lent results both in terms of robustness and efficiency. CGNR with GRS was also
very robust, but much less efficient than CGMN.

The rest of this paper is organized as follows. §2 summarizes some previous re-
lated work and §3 presents the relevant mathematical background. §4 describes the
setup of the numerical experiments, and the results are detailed in sections 5–7. §8
summarizes the results and outlines some future research directions.

2 Previous related work

2.1 CARP, CGMN, and CARP-CG

Kaczmarz (1937) introduced a row projection algorithm (KACZ) for linear sys-
tems which operates as follows: starting from an arbitrary initial point, KACZ
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successively projects the current iterate onto one of the hyperplanes defined by
the equations. KACZ will be detailed in the next section. A sequence of projec-
tions on all the hyperplanes will be called a KACZ sweep. This mode of operation
makes KACZ inherently sequential, in contrast to the Cimmino algorithm [Cim-
mino (1938)], which is inherently parallel. KACZ can be parallelized in a block-
sequential mode by partitioning the system into blocks of independent equations,
i.e., no two equations in a block share a variable, so the row projections within
a block can be done in parallel. However, such partitioning may be difficult to
implement with unstructured grids.

In a block version of KACZ, introduced by Elfving (1980), row projections are
replaced by projections onto affine subspaces defined by blocks of equations. CG
accelerations and parallelizations of block KACZ and block Cimmino were exam-
ined by Bramley and Sameh (1992), and CG acceleration of block Cimmino was
also considered by Arioli, Duff, Noailles, and Ruiz (1992) and Arioli, Duff, Ruiz,
and Sadkane (1995).

In [Gordon and Gordon (2005)], we introduced a different approach to paralleliz-
ing KACZ, called CARP (component-averaged row projections). CARP operates
in block-parallel mode as follows: the equations of a given linear system are parti-
tioned into blocks (which may overlap), and then the following two operations are
iterated until convergence: 1. The blocks are processed in parallel by performing
KACZ sweep(s) in each block; 2. each variable belonging to two or more blocks is
replaced by the average of its values in the separate blocks. It was shown that CARP
is equivalent to KACZ in some superspace with cyclic relaxation parameters. This
guarantees the theoretical convergence of CARP, provided the projections are per-
formed in entire identical sweeps. CARP turned out to be very robust on linear
systems derived from strongly convection dominated elliptic PDEs, but, being a
linear method, its efficiency was lacking. The advantage of CARP is that it does
not require blocks of independent equations.

Björck and Elfving (1979) introduced several acceleration schemes for row pro-
jection methods. One of those algorithms, called CGMN, applied CG acceleration
to KACZ. This was done by running KACZ in a forward and backward sweep,
thereby obtaining a symmetric iteration matrix, to which CG can be applied. Gor-
don and Gordon (2008) have shown that CGMN is very robust and efficient on lin-
ear systems derived from strongly convection dominated elliptic PDEs. The CGMN
concept was extended in [Gordon and Gordon (2009a)] to KACZ with cyclic relax-
ation, and since CARP is KACZ with cyclic relaxation in some superspace, this
enabled the CG acceleration of CARP, called CARP-CG. CARP-CG is as robust
as CARP on problems with large convection terms, but significantly more efficient.
Note that CARP-CG and CGMN are identical on a single processor.
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2.2 Discontinuous coefficients

We have shown in previous work [Gordon and Gordon (2009b)] that a simple pre-
conditioning technique, called geometric row scaling, can be applied to nonsym-
metric linear systems with discontinuous coefficients in order to improve the con-
vergence properties of algorithms applied to the system. For p ≥ 1, geometric
row scaling with the Lp-norm, which we denote by GRS(p), consists of dividing
each equation by the Lp-norm of its vector of coefficients. The results of [Gordon
and Gordon (2009b)] were obtained with GRS(2), but GRS(1) yielded similar re-
sults. For convenience, we shall use GRS to refer to GRS(2). GRS was tested with
restarted GMRES and Bi-CGSTAB, both of them with and without ILU(0).

The effect of GRS is as follows: (a) When the tested algorithm/preconditioner com-
bination converges, GRS speeds up the convergence time. (b) In many cases, when
the tested method stagnates or diverges on the original system, it either converges
on the scaled system, or achieves some reasonable practical convergence goal. The
problems in [Gordon and Gordon (2009b)] had a very large concentration of eigen-
value around the origin, and GRS improved the distribution by moving many eigen-
values away from the origin.

Row and/or column scalings are well known techniques, and their usefulness for
discontinuous coefficients has been noted before; see, for example, [van der Sluis
(1969); Widlund (1971); Graham and Hagger (1999); Duff and van der Vorst (1998);
Gambolati, Pini, and Ferronato (2003)]. However, scalings are most often double-
sided in order to preserve symmetry, and the general usefulness of GRS for differ-
ent algorithm/preconditioner combinations operating on a variety of linear systems
with discontinuous coefficients had not been studied before. Furthermore, as noted
in [Meurant (1999, §2.8 & §8.2)], scaling is not necessarily useful for all problems.

However, GRS has its limits. It was shown in [Gordon and Gordon (2009b)] that
the effectiveness of GRS on Bi-CGSTAB and GMRES is limited by the size of
the convection terms: when these were increased beyond a moderate size, GRS
became progressively less effective. CGMN and CARP-CG also converged on
these problems, but they were not as efficient as Bi-CGSTAB and GMRES with
GRS on problems with small to moderate convection terms.

3 Mathematical background

Throughout the rest of the paper, we assume that all vectors are column vectors,
and we use the following notation: 〈p, q〉 denotes the dot product of two vectors
p and q, which is also pTq. Given a vector x = (x1, . . . ,xn)T ∈ Rn, we denote its
Lp-norm by ‖x‖p = (xp

1 + · · ·+ xp
n)1/p. For p = 2, we will omit the index and just

write ‖x‖= ‖x‖2 =
√
〈x,x〉.
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If A is an n×n matrix, we denote the ith row-vector of A by ai∗ = (ai1, . . . ,ain)T .
Similarly, we denote the jth column of A by a∗ j = (a1 j, . . . ,an j)T . Consider a
system of n linear equations in n variables:

n

∑
j=1

ai jx j = bi for 1≤ i≤ n, or, in matrix form: Ax = b. (1)

We shall assume throughout that (1) is consistent and that A does not contain a row
of zeros. For p≥ 1, we define a diagonal matrix
Gp = diag(1/‖a1∗‖p, . . . ,1/‖an∗‖p).
The system obtained from (1) by geometric scaling with the Lp-norm is

GpAx = Gpb. (2)

We call this operation “geometric scaling” because for p = 2, any algorithm operat-
ing on the scaled system (2) depends only on the hyperplanes of Rn defined by the
equations, and not on any particular algebraic representation of those hyperplanes.
As mentioned, GRS(p) denotes geometric row-scaling with the Lp-norm, and GRS
stands for GRS(2).

Similarly, GCS(p) (geometric column-scaling) denotes the operation of scaling the
system (1) by dividing each column by the Lp-norm of its coefficients. We define
Hp = diag(1/‖a∗1‖p, . . . ,1/‖a∗n‖p), and obtain the system AHpy = b, x = Hpy.
GCS stands for GCS(2).

In some algorithms, GRS(p) is inherent in the following sense: either the scaling
is executed at the beginning as an intrinsic part of the algorithm, or, executing the
algorithm produces identical results to those obtained when GRS(p) is done at the
beginning. Two prime examples of this are KACZ and the Cimmino algorithm,
because they depend only on the hyperplanes defined by the equations.

In KACZ, the hyperplanes are chosen in cyclic order and each projection may in-
volve a relaxation parameter λ which determines the extent of the projection to-
wards the hyperplane. The term “cyclic relaxation parameters” means that for ev-
ery 1 ≤ i ≤ n, there is a relaxation parameter λi which is always used with the
projection towards the ith hyperplane. In our application of KACZ, the projections
are always performed with an entire sweep (or pass) of all the equations. Our for-
mulation of KACZ incorporates this in the algorithm. Let λ1, . . . ,λn be a sequence
of relaxation parameters.

Algorithm 3.1 (KACZ):
set x0 ∈ Rn to an arbitrary value
for k = 0,1,2, . . . until convergence do



Systems with Large off-Diagonal Elements and Discontinuous Coefficients 29

set y0 = xk

for i = 1,2, . . . ,n do

set yi = yi−1 + λi
bi−〈ai, yi−1〉
‖ai‖2 ai (3)

enddo
set xk+1 = yn

enddo

It is well-known that KACZ is the SOR algorithm applied to the “normal equations”
system AATy = b, x = ATy. It is clear from the above that if GRS is applied to the
linear system (1) before executing KACZ, then the resulting sequence of iterates
will be identical to those produced without GRS, so GRS is inherent in KACZ. The
application of GRS leads to the system (2) with p = 2. Clearly, it is more efficient
to apply GRS at the beginning, because then Eq. (3) can be replaced by

yi = yi−1 + λi
(
di−〈ci∗, yi−1〉

)
ci∗, (4)

where C = G2A and d = G2b (G2 is the above-defined matrix Gp, with p = 2).

It follows from the above that GRS is inherent in any algorithm that is based on
KACZ iterations, such as CGMN and CARP-CG.

The following theorem explains why it is useful to apply GRS before using the nor-
mal equations, especially when the original system has large off-diagonal elements.

Theorem 3.1 Let A be an n×n matrix such that no two rows are colinear. Let C be
obtained from A by GRS, i.e., C = G2A, and let D = CCT . Then, all the diagonal
elements of D are equal to 1, and all the off-diagonal elements are < 1.

Proof: The proof follows from the Cauchy-Schwarz inequality. The following is
a geometric proof. For i 6= j, denote by θi j the angle between the row vectors ci∗
and c j∗. Since every two rows are not colinear, we have |cos(θi j)| < 1. Also,
every row of C has an L2-norm equal to 1. Consider now a diagonal element of
D: dii = 〈ci∗,ci∗〉 = 1. For the off-diagonal elements of D, we have: if i 6= j, then
|di j|= |〈ci∗,c j∗〉|= ‖ci∗‖×‖c j∗‖×|cos(θ i j)|= |cos(θ i j)|< 1.

Note that if A is sparse and for any two (different) rows i, j, the nonzero elements in
rows i and j do not occupy identical columns, then A satisfies the condition of The-
orem 3.1. It is often remarked that the normal equations are not useful because the
spectral radius of AAT is the square of that of A. However, Theorem 3.1 indicates
that if GRS is applied first, then the resulting system is manageable because of the
relatively large diagonal elements in the normal equations. Analogously to Theo-
rem 3.1, if E is obtained from A by GCS, then ETE will have 1’s on the diagonal,
and the off-diagonal elements will be < 1.
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Consider now the two normal equations systems obtained from (1):

ATAx = ATb (5)

AATy = b, x = ATy (6)

Applying CG to (5) is called CGNR, and applying CG to (6) is called CGNE. We
will use the notation CGNR+GRS to denote that CGNR is preceded by GRS, and
CGNR+GCS denotes that CGNR is preceded by GCS.

CGNR+GRS is of special interest because it turns out to be nothing else but the
CG acceleration of the Cimmino algorithm. To see this, consider the (relaxed)
Cimmino iteration applied to (1):

xk+1 = xk +
λ

n

n

∑
i=1

bi−〈ai∗,xk〉
‖ai∗‖2 ai∗, (7)

where λ is a relaxation parameter. Let C denote the matrix obtained from A by
applying GRS (i.e., ci j = ai j/‖ai∗‖) and let d = (d1, . . . ,dn)T , where di = bi/‖ai∗‖.
The Cimmino iteration is then

xk+1 = xk +
λ

n

n

∑
i=1

(
di−〈ci∗,xk〉

)
ci∗ (8)

A straightforward algebraic derivation of (8) yields

xk+1 = xk +
λ

n

(
CTd−CTCxk

)
. (9)

Therefore, a vector x∗ is a solution of (7) iff it is a solution of the system

CTCx = CTd. (10)

To get a CG acceleration of Cimmino, we simply apply CG to (10), which is ex-
actly CGNR applied to the system after GRS was applied. Our implementation
of CGNR+GRS is similar to the relation between (8) and (9), i.e., whenever a
computation of the form CTCx is needed in the CG iteration, it is calculated as
∑

n
i=1〈ci∗,xk〉ci∗. Note that this calculation can be easily parallelized when the

matrix is stored in some distributed format, such as the DMSR (distributed ma-
trix sparse row) format used by the AZTEC software package [Tuminaro, Heroux,
Hutchinson, and Shadid (1999)].
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4 Setup of the numerical experiments

In two dimensions, the general form of the second-order differential equations in
this study was

∂

∂x
(a(x,y)ux)+

∂

∂y
(b(x,y)uy)+ · · · = F,

where a and b are given functions of x and y, “· · ·” stands for lower-order deriva-
tives, and F is a prescribed RHS. In three dimensions, there are three given func-
tions a,b,c of x,y,z, and a second order partial derivative w.r.t. z is also included.
Boundary conditions in the examples studied here were Dirichlet. The discretiza-
tion of the second-order derivatives at a given grid point (i, j) was done using cen-
tral differences, e.g., ∂

∂x(aux) was approximated at grid point (i, j) as

∂

∂x
(aux)i, j =

(
(aux)i+ 1

2 , j− (aux)i− 1
2 , j

)
/∆x

=
(

ai+ 1
2 , j(ui+1, j−ui, j)/∆x−ai− 1

2 , j(ui, j−ui−1, j)/∆x
)

/∆x

=
(
−(ai+ 1

2 , j +ai− 1
2 , j)ui, j +ai+ 1

2 , jui+1, j +ai− 1
2 , jui−1, j

)
/∆x2

All problems were discretized with equally-spaced grids, and the initial value was
taken as u0 = 0.

Our experiments considered 12 algorithm/preconditioner combinations:

• Bi-CGSTAB in four variations: with and without GRS, and both forms with and
without ILU(0).

• GMRES, also with the same four versions as Bi-CGSTAB.

• CGNR without scaling, and also with GRS and with GCS (but not both).

• CGMN (which is also CARP-CG on a single processor).

The tests were run on a Pentium IV 2.8GHz processor with 3GB memory, running
Linux. The code was compiled with the GNU compiler. Bi-CGSTAB, GMRES
and ILU(0) were run within the AZTEC software system, and GMRES was used in
a restart mode, with Krylov subspace size of 10.

4.1 Stopping tests

There are several stopping criteria which one may apply to iterative systems. Our
stopping criterion was to use the relative residual: ‖b−Ax‖/‖b−Ax0‖< ε , where
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ε was taken as 10−4, 10−7 and 10−10. In some of the cases, this was not attain-
able. Since this stopping criterion depends on the scaling of the equations, we
always made this test on the geometrically-scaled system using the L2-norm. In
the following sections, the relative residual will be denoted as rel-res. In order to
limit the time taken by the methods implemented in AZTEC, the maximum num-
ber of iterations was set to 10,000. The AZTEC library has several other built-in
stopping criteria: numerical breakdown, numerical loss of precision and numerical
ill-conditioning.

One should note that the test for numerical breakdown in AZTEC uses the machine
precision DBL_EPSILON, and this may result in a premature notice of numerical
breakdown in some cases. To get around this problem, we suggest to multiply the
variable brkdown_tol in the Bi-CGSTAB algorithm by some small number, e.g.,
10−10. (brkdown_tol is normally set equal to DBL_EPSILON, which is approxi-
mately 2.22×10−16 on our machine).

5 Problem 1

This problem actually consists of three related cases taken from (Gerardo-Giorda,
Tallec, and Nataf, 2004, §5.1), where they are solved using DD. The problems
are three-dimensional convection-diffusion-reaction equations with discontinuous
coefficients. The domain consists of the unit cube divided into two subdomains by
the plane x = 1

2 . The basic equation considered here is

− div(ν(x)∇u) + ~b r∇u + u = 0, (11)

where

ν(x) =

{
ν1 = 10−1 if x < 1

2 ,

ν2 = 10−5 otherwise.

The small value of ν2 results in equations that are strongly convection dominated.
Dirichlet boundary conditions are taken as u = 1 on the z = 0 plane and u = 0 on
the other boundaries of the unit cube. The vector~b determines the direction of the
flow. Four different cases were examined; the first three are identical to those that
appeared in [Gerardo-Giorda, Tallec, and Nataf (2004)], and the fourth case was
added in order to answer some questions raised by the results.

• Problem 1A: ~b = (1,0,0): the flow is perpendicular to the interface, and Eq.
(11) has only one convection term.

• Problem 1B: ~b = (0,1,1): the flow is parallel to the interface, and Eq. (11) has
two convection terms.
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• Problem 1C: ~b = (1,3,5): the flow direction is oblique to the interface, and Eq.
(11) has three convection terms.

• Problem 1D: ~b = (0,1,0): the flow is parallel to the interface, and Eq. (11) has
only one convection term.

We also considered a continuous version of Problem 1C with ν1 = ν2 = 10−5. All
the problems are indefinite with eigenvalues in the four quadrants of the complex
plane. Two discretizations were considered: 40×40×40 (64,000 equations), and
80×80×80 (512,000 equations). The eigenvalue data was obtained with a dis-
cretization of 12×12×12. Detailed results are presented in the following subsec-
tions. In all the tables, only methods that achieved at least one convergence goal
are shown. The timing results include the setup time for ILU(0) (if it is applied),
and dashes indicate no convergence. λ is the relaxation parameter used by CGMN.

5.1 Problem 1A

Tables 1 and 2 show the results for Problem 1A, for the two grid sizes. Both run-
times and number of iterations are shown.

Table 1: Results for Problem 1A, grid size = 40×40×40.

Runtimes (sec.) No. of iterations
Convergence goal: 10−4 10−7 10−10 10−4 10−7 10−10

Bi-CGSTAB+ILU(0) 1.01 1.26 1.45 17 26 33
with GRS 0.98 1.26 1.45 16 26 33
GMRES 28.38 51.79 75.45 1679 3034 4411
with GRS 20.45 42.04 63.55 1198 2472 3726
GMRES+ILU(0) 1.09 1.59 2.11 23 43 63
with GRS 1.09 1.56 2.11 23 42 63
CGNR 34.31 51.57 68.75 5362 8059 10744
with GRS 10.06 14.51 17.87 1560 2250 2771
with GCS 8.09 11.67 14.32 1252 1807 2216
CGMN (λ =1.50) 3.83 6.44 8.87 350 589 812

The tables show that Bi-CGSTAB without ILU(0) did not converge, and GRS did
not help. Also, both Bi-CGSTAB and GMRES with ILU(0) performed extremely
well, and GRS had no effect on them. GRS reduced the runtime of GMRES (with-
out ILU(0)) by 16%–28%, but these runtimes were relatively very large. With
CGNR, GRS and GCS were more effective, but the runtimes were quite large. Due
to its robustness, CGMN converged in all cases, but it was relatively slow.
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Table 2: Results for Problem 1A, grid size = 80×80×80.

Runtimes (sec.) No. of iterations
Convergence goal: 10−4 10−7 10−10 10−4 10−7 10−10

Bi-CGSTAB+ILU(0) 20.1 26.0 31.4 30 45 59
with GRS 19.1 26.0 30.6 28 45 57
GMRES 829 1514 — 6002 10956 —
with GRS 591 1364 — 4282 9871 —
GMRES+ILU(0) 24.2 37.3 51.5 58 106 158
with GRS 20.5 34.3 47.9 45 95 145
CGNR 1398 — — 20591 — —
with GRS 374 570 712 5520 8404 10485
with GCS 325 476 586 4787 7009 8632
CGMN (λ =1.50) 114 182 269 1107 1770 2615

Fig. 1 shows the distribution of eigenvalues for Problem 1A, for the original and
the scaled cases. We can see that even though the eigenvalue concentration around
the origin was “pushed” away from the origin, the results of Tables 1 and 2 show
that this does not necessarily lead to better runtime results (except for GMRES).
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Figure 1: Eigenvalue distribution for Problem 1A, for the original and the scaled
cases.
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5.2 Problem 1B

Tables 3 and 4 show the results for Problem 1B, for the two grid sizes. Bi-CGSTAB
and GMRES+ILU(0) did not converge in any form. GRS decreased the runtimes
of GMRES (without ILU(0)) by about 25%–28% for the coarse grid, and even less
for the fine grid. GRS and GCS decreased the runtime of CGNR quite significantly
and also enabled its convergence in the higher accuracy goal on the fine grid. The
relatively good performance of CGMN in this case is quite strikingj

Table 3: Results for Problem 1B, grid size = 40×40×40.

Runtimes (sec.) No. of iterations

Convergence goal: 10−4 10−7 10−10 10−4 10−7 10−10

GMRES 49.01 88.28 127.74 2866 5164 7455
with GRS 35.24 66.43 96.24 2064 3891 5637
CGNR 38.82 76.71 115.00 6066 11988 17970
with GRS 7.35 11.36 14.28 1140 1761 2214
with GCS 8.22 12.16 15.00 1272 1882 2321
CGMN (λ =1.50) 2.35 3.60 4.71 228 350 458

Table 4: Results for Problem 1B, grid size = 80×80×80.

Runtimes (sec.) No. of iterations

Convergence goal: 10−4 10−7 10−10 10−4 10−7 10−10

GMRES 1012 1851 — 7350 13442 —
with GRS 965 2018 — 7002 965 —
CGNR 1371 — — 20160 — —
with GRS 265 444 568 3892 6521 8348
with GCS 300 476 593 4421 7000 8717
CGMN (λ =1.70) 68 105 137 661 1020 1340

5.3 Problem 1C

Tables 5 and 6 show the results for Problem 1C. These results are quite similar to
those of Problem 1B, except that now, GRS reduces the runtime of GMRES by
about 42% in the coarse grid case, and it was also helpful to GMRES in the finer
grid case. GRS and GCS were both very helpful to CGNR, but here CGMN also
takes a clear lead.
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Table 5: Results for Problem 1C, grid size = 40×40×40.

Runtimes (sec.) No. of iterations

Convergence goal: 10−4 10−7 10−10 10−4 10−7 10−10

GMRES 71.26 134 205 4177 7856 11957
with GRS 40.87 78.47 119.5 2385 4579 6972
CGNR 34.0 73.9 111.8 5314 11548 17476
with GRS 7.86 14.8 21.9 1229 2316 3421
with GCS 7.59 14.5 21.4 1170 2239 3294
CGMN (λ =1.20) 2.75 6.07 9.4 267 590 913

Table 6: Results for Problem 1C, grid size = 80×80×80.

Runtimes (sec.) No. of iterations

Convergence goal: 10−4 10−7 10−10 10−4 10−7 10−10

GMRES 1388 — — 10040 — —
with GRS 609 1126 — 4394 8126 —
CGNR 1179 — — 17995 — —
with GRS 246 444 608 3731 6737 9231
with GCS 225 367 498 3407 5577 7566
CGMN (λ =1.50) 67 120 188 638 1152 1800

Table 7 provides some eigenvalue information for Problem 1C, for the original and
the scaled cases. The last column shows the number of eigenvalues in the percentile
containing the origin, when the interval of (the real part) of the eigenvalues is di-
vided into 100 equal-sized subintervals. GRS increased the condition number and
it had only a small effect on the number of eigenvalues around the origin.

Table 7: Basic eigenvalue information for Problem 1C.

Matrix λmin λmax λmax/λmin
No. of eigenvalues
around x=0

Original 0.240E-3 0.619E+0 0.258E+4 45
With GRS 0.200E-3 1.008E+0 0.480E+4 29

Fig. 2 shows the distribution of the eigenvalues for Problem 1C, for the original and
the scaled cases. Note that the eigenvalue distribution for the geometrically scaled
matrix of Problem 1C is quite similar to that of the scaled matrix of Problem 1A.



Systems with Large off-Diagonal Elements and Discontinuous Coefficients 37

However, the behavior of Bi-CGSTAB and GMRES on the two problems is very
different. This fact clearly indicates that the eigenvalue distribution is not the sole
factor affecting convergence of these algorithms.
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Figure 2: Eigenvalue distribution for Problem 1C, for the original and the scaled
cases.

5.4 Problem 1D and the continuous case

The results of the first three versions of Problem 1 raise the following question:
what is the cause of the different behavior of the algorithms on Problem 1A and on
the other two problems? Is it due to the direction of the flow with respect to the
boundary between the two subdomains? The purpose of Problem 1D is to answer
this question.

In this case (1D), the flow is parallel to the interface, as in case 1B, but, similarly
to case 1A, there is only one convection term in the differential equation (uy). The
results that we got for this variant are very similar to those obtained with Problem
1A, and we omit them. This clearly indicates that the direction of the flow is ir-
relevant. What is relevant is that in cases 1A and 1D, there is only one convection
term, and it contributes only two large off-diagonal elements to each equation in
the linear system. In Problems 1B and 1C there are, respectively, four and six large
off-diagonal elements in each linear equation.

We conclude from this that the different behavior of the solution methods depends
very largely on the number of large off-diagonal elements in each linear equation.
These results show that ILU(0) is very helpful to Bi-CGSTAB and GMRES, but
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only when the number of large off-diagonal elements in the linear equation is no
more than two. For the more difficult cases, we have reasonable results with the
scaled versions of CGNR and very good results with CGMN.

These results raise a second question: what is the cause of the difficulties of Bi-
CGSTAB and GMRES on Problems 1B and 1C? Is it the discontinuous coefficients
or the large convection terms, or is it a combination of both factors? In order to
answer this question, we tested yet another variant of the problem. We modified
Problem 1C so that there were no discontinuities, but just large convection terms.
This was done by taking ν1 = ν2 = 10−5 throughout the unit cube, which was
discretized with a grid of 40×40×40. The results are shown in Table 8.

Table 8: Results for a continuous version of Problem 1C, with large convection
terms and grid size = 40×40×40.

Runtimes (sec.) No. of iterations

Convergence goal: 10−4 10−7 10−10 10−4 10−7 10−10

GMRES 49.23 92.46 136.24 2871 5406 7952
with GRS 46.89 88.98 131.18 2754 5226 7705
CGNR 6.83 13.88 21.07 1067 2169 3292
with GRS 6.66 13.59 20.68 1042 2124 3234
with GCS 6.66 13.59 20.70 1042 2126 3237
CGMN (λ =1.10) 2.85 6.29 9.68 277 611 941

The following points should be noted in comparing Tables 5 and 8:

• Bi-CGSTAB, with and without ILU(0) and/or GRS, did not converge at all.

• GMRES (without GRS) performed better on the continuous case.

• GRS was only slightly helpful to GMRES in the continuous case, but its help in
the discontinuous case was significant. In fact, GMRES+GRS was even better
in the discontinuous case.

• CGNR (without GRS) performed much better on the continuous case.

• CGNR with GRS or GCS performed very similarly on the two cases.

• CGMN also performed very similarly on the two cases (and better than CGNR
with GRS or GCS).

The above results indicate that the primary cause of the difficulties to Bi-CGSTAB
and GMRES in Problems 1B and 1C is the presence of several large off-diagonal
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elements. For GMRES, the discontinuous coefficients were also a contributing
factor.

6 Problem 2

Problem 2 is also from (Gerardo-Giorda, Tallec, and Nataf, 2004, §5.2, Test 4),
where it was solved with DD. The equation is the same as in Problem 1, namely,

−div(ν(x)∇u)+~b r∇u+u = 0.

The domain consists of the cube Ω = [−0.5,0.5]×[−0.5,0.5]×[0,1], which is par-
titioned into eight equal sub-cubes, numbered in a clockwise helicoidal way from
Ω1 = [−0.5,0]×[−0.5,0]×[0,0.5] to Ω8 = [0,0.5]×[−0.5,0]×[0.5,1]. The velocity
field is given by~b = (−2πy,2πx,sin(2πx)). The values of ν in domains Ω1, . . . ,Ω8
are, respectively, ν1, . . . ,ν8, where ν1 = 10−1,ν3 = 10−2,ν6 = 10−3,ν8 = 10−4, and
ν2 = ν4 = ν5 = ν7 = 10−6. Among the four tests of (Gerardo-Giorda, Tallec, and
Nataf, 2004, §5.2), this case exhibits the most variance in the values of ν . Dirichlet
boundary conditions are taken as u = 1 on the z = 0 face and u = 0 elsewhere on
the boundary of Ω. The domain was discretized with a grid of 40×40×40.

Table 9 below presents the runtimes and number of iterations of the methods that
achieved at least one convergence goal. We can see that GRS was quite helpful
to GMRES, and both GRS and GCS were very helpful to CGNR. Similarly to
Problems 1B, 1C, and 1D, CGMN achieved the best timing results.

Table 9: Runtimes and no. of iterations for Problem 2.

Runtimes (sec.) No. of iterations
Convergence goal: 10−4 10−7 10−10 10−4 10−7 10−10

GMRES 81.8 156.1 — 4798 9152 —
with GRS 38.5 86.1 133.9 2256 5051 7849
CGNR 47.9 90.8 133.7 7491 14181 20881
with GRS 7.35 10.7 13.9 1150 1670 2170
with GCS 8.81 11.9 14.0 1378 1855 2195
CGMN (λ =1.45) 2.44 3.86 4.87 240 380 477

7 Problem 3

This problem is based on a three-dimensional example from [Graham and Hag-
ger (1999)], to which we added convection terms. The differential equation is the
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following:

− ∂

∂x
(aux) −

∂

∂y
(auy) −

∂

∂ z
(auz) + dux + euy + f uz = 0,

where the domain is the unit cube, and a(x,y,z) is defined as

a(x,y,z) =

{
104 if 1

3 < x, y, z < 2
3 ,

1 otherwise.

The Dirichlet boundary conditions are prescribed with u = 1 on the z = 0 plane
and u = 0 on the other boundaries. The convection terms were taken as equal,
d = e = f , and the unit cube was divided into a grid of 40×40×40. The resulting
linear systems are indefinite, with eigenvalues in the four quadrants of the imagi-
nary plane. This problem was studied extensively in Gordon and Gordon (2009b),
where it was shown that the usefulness of GRS degrades as the convection terms
are increased.

In order to compare the performance of the various methods as the convection in-
creases, we ran tests with convection terms of 100, 200, 500, and 1000. The results
are summarized in Table 10 below (only for methods which achieved at least one
convergence goal).

Table 10: Time in seconds for the different methods to achieve the three conver-
gence goals, as the convection terms are increased. Minimal times are shown in
boldface.

Convection: 100 200 500 1000
Convergence goal: 10−4 10−7 10−10 10−4 10−7 10−10 10−4 10−7 10−10 10−4 10−7 10−10

Bi-CGSTAB+GRS 1.00 2.77 3.62 2.77 7.20 9.85 9.74 20.99 38.24 — — —

Bi-CGSTAB+ILU(0) 1.35 1.56 1.74 2.30 — — — — — — — —
with GRS 0.76 1.42 1.67 1.90 — — — — — — — —

GMRES+GRS 2.05 — — 2.23 — — 4.50 — — — — —
with ILU(0) 0.76 — — — — — — — — — — —

CGNR+GRS 5.10 10.42 11.28 4.78 9.46 10.23 5.96 12.40 13.42 7.29 14.96 16.15
CGNR+GCS 9.36 10.44 11.28 8.66 9.43 10.24 11.30 12.35 13.39 13.67 14.90 16.07

CGMN 2.01 4.27 4.60 1.93 4.56 4.95 1.96 5.77 6.30 2.45 6.92 7.59

Several points are worth noting:

• Bi-CGSTAB, with ILU(0) and GRS, excels with convection = 100, and also
with the low-order goal with convection = 200. However, this method failed in
the more difficult cases.
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• Bi-CGSTAB+GRS managed to handle convection up to 500, but the increase in
time was much worse than for CGNR (with GRS or GCS) or CGMN.

• Starting from convection = 200 and convergence goal = 10−7, CGMN takes a
clear lead.

• CGNR by itself did not converge in any of the cases, but with GRS or GCS, it
achieved all the convergence goals at all the convection values.

• For the convergence goal of 10−4, CGNR with GRS was almost twice as fast as
CGNR with GCS. For the higher orders, there was little difference between the
two scaling methods.

Not shown in Table 10 is the fact that the optimal relaxation parameter λ of CGMN
varied somewhat with the convection: 1.65, 1.55, 1.45 and 1.35 for convection
values of 100, 200, 500 and 1000, respectively. However, the runtimes of CGMN
varied very little when λ was changed between these values. Since CGMN is more
relevant for the higher convection values, a fixed value of λ = 1.45 is sufficient to
obtain reasonable results on this problem.

8 Conclusions and further research

This paper extends the authors’ previous work on two topics: the solution of lin-
ear systems derived from strongly convection dominated PDEs using the CGMN
algorithm [Björck and Elfving (1979); Gordon and Gordon (2008)] and its block-
parallel version CARP-CG [Gordon and Gordon (2009a)], and the geometric row
scaling (GRS) technique [Gordon and Gordon (2009b)] as a useful preconditioner
for nonsymmetric linear systems with discontinuous coefficients. GRS consists of
dividing each equation by the L2-norm of its vector of coefficients. The usefulness
of this method is limited to small to moderate convection terms.

The main topic of this work is linear systems with very large off-diagonal elements
and discontinuous coefficients (LODC systems). It is shown that if a matrix C is
obtained from A by GRS, then all the diagonal elements of CCT are larger than
all the off-diagonal ones. This gives a theoretical foundation for the robustness of
the CGMN and CARP-CG, and also to CGNR when applied to a system scaled by
GCS (geometric column-scaling).

The above algorithms were compared with Bi-CGSTAB and restarted GMRES,
in all possible combinations of using GRS and/or ILU(0). The algorithms were
tested on various test problems with large convection terms and discontinuous co-
efficients. While GRS is of some help when the off-diagonal elements are small or
few, it fails when the off-diagonal elements become strongly dominant. It is exactly
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in those cases that CGMN excels. CGNR with GRS or GCS is equally robust, but
less efficient.

The main conclusion of this work is the usefulness of two complementary tools
for nonsymmetric LODC systems (with equations containing more than two large
off-diagonal elements):

• GRS for LODC systems with small to moderate convection terms.

• CGMN, CARP-CG, and CGNR+GRS/GCS for LODC systems with very large
convection terms.

Future work will examine other types of LODC problems, such as the Helmholtz
equation with large wave numbers in heterogeneous media, and circuit problems.

Acknowledgement: The authors wish to thank the anonymous reviewers for their
helpful comments.
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