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Fragmentation of Ice Sheets during Impact

A.P.S. Selvadurai1

Abstract: The paper deals with a computational approach for modelling the frag-
mentation of ice sheets during their impact with stationary structures. The mod-
elling takes into consideration the intact continuum behaviour of the ice as a rate-
sensitive elastoplastic material. During impact, the ice sheet can undergo fragmen-
tation, which is controlled by a brittle strength criterion based on the current stress
state. The fragmentation allows the generation of discrete elements of the ice sheet,
the movements of which are governed by the equations of motion. The contact
between individual fragments is governed by a Coulomb criterion. The individ-
ual fragments can themselves undergo further fragmentation with a size-dependent
brittle strength criterion. The modelling is applied to examine the interaction and
fragmentation of an ice sheet of finite dimensions as it impacts a stationary object.

Keywords: Ice-structure interaction, viscoplasticity, fragmentation, dynamics of
ice sheets, rate sensitivity, discrete elements.

1 Introduction

The interaction of ice masses and either stationary or moving objects is of critical
importance to navigation in ice-infested waters, construction of offshore resource
exploration structures in the high arctic, ice booms to contain floating ice cover
from entering hydraulic structures and in the study of offshore structures, such as
bridge piers and beacons, used in marine transportation. Accounts of advances
and historical aspects of the progress of research are documented by Sodhi and
Cox (1987), Sinha, Timco and Frederking (1987), Hallam and Sanderson (1987),
Sanderson, (1988), Dempsey, Bazant, Rajapakse and Sunder (1993), Selvadurai
and Sepehr (1998), Ibrahim, Chaloub and Falzarano (2007) and Konuk, Gürtner
and Yu (2009). The incidence of ice-structure interaction is expected to increase
in the next decades as global warming can result in year-round navigable passages
with offshore ice covers, which were previously accessible only during summer
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months. The interaction between a moving ice sheet and a stationary structure is
a complex problem in both constitutive modelling and multi-body dynamics of in-
teracting ice fragments. The interaction process is governed by a number of factors
including the velocity of motion of the moving ice sheet, its rate-sensitive consti-
tutive behaviour, ability to fragment, the frictional interaction of fragments and the
process of continued fragmentation during the various stages of loading. The paper
presents the application of a computational approach to modelling continuum-to-
fragmentation during in-plane mechanics of a floating ice sheet. The methodology
is demonstrated through application to typical problems involving in-plane interac-
tion of a moving ice sheet and a stationary structure (Figure 1).
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Figure 1: Impact of a floating ice sheet with a stationary structure

2 Constitutive models for fragmentable ice

A typical feature of the dynamic interaction between an ice feature and a stationary
rigid structure is the process of fragmentation. Fragment development is the end
result of many micromechanical scale- and rate-dependent processes such as sta-
ble and unstable micro-crack evolution, damage development, crack coalescence
to form macro-crack generation, etc, which are influenced by the morphology of
the ice feature (i.e. columnar grained vs. polycrystalline), the temperature and rate
effects. The transition from the development of stable micro-crack to macro-crack
formation will also depend on a variety of mechanical factors and loading histories,
and in situ stress states, which are difficult to accommodate in a realistic fashion.
While computational methods based on finite element and boundary element tech-
niques can be effectively utilized to examine the progress of micro-crack extension
and coalescence to form macro-cracks and damage, frictional effects and interface
plasticity phenomena on crack surfaces (Selvadurai, 2004, 2005; Selvadurai and
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Au, 1991; Selvadurai and Mahyari, 1997, 1998; Jing, 2003; Han and Atluri, 2003;
Selvadurai and Yu, 2005; Liu, Han, Rajendran and Atluri, 2006; Xu, Dong and
Zhang, 2008; Zhou, Li and Yu, 2008), these procedures cannot conveniently han-
dle the presence of multiple cracks and the resulting generation of intact fragments.
Furthermore, as intact fragments develop, the computational scheme should be able
to examine the interaction of multiple but discrete continuum regions. A computa-
tional approach that accounts for transition from a continuum to a fragmented state
offers the most appropriate method for dealing with the transformation processes.
Codes such as NIKE2D (Hallquist, 1979), DYNA 2D and 3D (Goudreau and Hal-
lquist, 1982) and more current versions (LS-DYNA) are considered the earliest
of formal development of computational approaches that incorporate continuum-
to-fragmentation processes. The application of continuum-to-fragmentation pro-
cedures to mechanics of ice-structure interaction is discussed by Hocking, Mus-
toe and Williams (1985a, b) Williams, Mustoe and Worgan, 1986; and Mustoe,
Williams, Hocking and Worgan (1987). These procedures have been extended by
Selvadurai and Sepehr (1999) to examine fragment size limiting effects in ice frag-
mentation processes during dynamic interaction. In this paper we shall examine the
class of ice-structure interaction problems involving floating ice sheets and station-
ary structures, where fragmentation occurs by preserving the in-plane character of
the deformations.

2.1 A model for intact ice

In this section we shall briefly review some of the salient features associated with
the two-dimensional modelling of continuum-to-fragment transition in rate sensi-
tive geomaterials. Since the constitutive behaviour is assumed to be rate sensitive,
we need to consider an incremental formulation, such that the incremental total
strain tensor dεi j is given by

dεi j = dε
el
i j +dε

vp
i j (1)

where dεel
i j and dε

vp
i j refer to the incremental components of the elastic and vis-

coplastic strain tensors respectively. For an isotropic linear elastic geomaterials the
constitutive response has the form (Davis and Selvadurai, 1996)

dε
el
i j =

dσi j

2G
+
(

1
9K
− 1

6G

)
dσkkδi j (2)

where G and K are elastic constants. To account for viscoplasticity phenomena,
we consider the model proposed by Perzyna (1966) (see also Cristescu and Suli-
ciu, 1982; Selvadurai and Au, 1991; Pellet, Hadju, Deleruyelle and Besnus, 2005;
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Sterpi and Gioda, 2009; Ghiabi and Selvadurai, 2009) which has the incremental
form of the basic constitutive response of the viscoplastic type, where the incre-
mental components of the strain are given by

dε
vp
i j = γ 〈Φ(F)〉 ∂F

∂σi j
(3)

where γ is a fluidity parameter,〈〉 is the Macaulay symbol, F(σi j) is a yield function
which, for most brittle geomaterials, can be approximated by a Mohr-Coulomb
failure criterion (Davis and Selvadurai, 2002) given by

F =
I1

3
sinϕ +

√
J2

{
cosΘ− sinΘsinϕ√

3

}
− ccosϕ (4)

and c and φ are the conventional strength parameters associated with cohesion and
the angle of internal friction, respectively. Also,

I1 = σkk; J2 =
1
2

σ
′
i jσ
′
i j; J3 =

1
3
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′
jkσ
′
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3

sin−1
{
−
(

3
√

3J3
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/
(

2J3/2
2

)}
; −π/6≤Θ≤ π/6

(5)

and σ ′i j is the stress deviator tensor. The flow function in (3) needs to be determined
by appeal to experimental results. Several plausible and computationally tractable
flow functions have been proposed in the literature; e.g.

〈Φ(F)〉=

exp
(

M(F−F0)
F0

− 1
)

(
F−F0

F0

)N (6)

where M and N are constants and F0 is a uniaxial failure stress.

2.2 A model for fragmented ice

The preceding developments focus on the mechanics of ice prior to fragmentation.
We now focus on criteria that can be used to establish fragmentation of ice upon
attainment of either a specified tensile/compressive stress or a specified level of
strain energy. The latter condition is perhaps more intuitively acceptable, but suf-
fers from the limitation that the orientation of the fragment separation plane cannot
be specified. With the former approach, the orientation of a potential plane of frag-
mentation can be determined by considering the stress state at a point. For example,
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for fragment initiation in compression, the criterion can be written in terms of the
principal stresses in the form

σ1 ≥ σc +σ3 tan2(450 +φ/2) (7)

where σc is the unconfined strength in compression and σ1 and σ3 are, respec-
tively, the maximum and minimum principal stresses. The unconfined compressive
strength can be related to the shear strength parameters c and φ according to

σc = 2c[
√

(tan2 φ +1)+ tanφ ] (8)

For the compression failure mode, there are two possible conjugate orientations of
fragmentation inclined at equal angles (π/2−φ/2) to the directions on either side
of it. In two dimensions, these are defined by

θ = tan−1 {(σ1−σxx)/σxy}± (90−ϕ)/2 (9)

where θ is the angle between the fragmentation plane and the positive global axis,
σxx is the x-component of the stress tensor and σxy is the shear stress. The criterion
for fragmentation in tension takes the simpler form

σ3 ≥ σT (10)

where (Greek sigma subscript T) is the tensile strength and the orientation is per-
pendicular to the axis of the tensile principal stress σ3.

Since both viscoplastic flow and fragmentation are described by appeal to the same
basic failure criterion, additional constraints need to be prescribed to identify the
conditions under which each process will occur. In the computational develop-
ments, it is assumed that the intact ice will experience brittle fragmentation only in
situations when either a single principal stress or both principal stresses are in the
tensile mode. In contrast, viscoplastic flow occurs when both principal stress com-
ponents are compressive. Also, if viscoplastic flow occurs first, there is provision
for subsequent fragmentation development in tension. This subsequent fragmenta-
tion will be governed by prescribed post peak strength characteristics, which can
also include softening.

2.3 Size dependency in the fragmentation process

Size dependency in strength is a typical feature in brittle geomaterials, which have
an inherent structure consisting of grains in a fabric arrangement. The random oc-
currence of defects, such as micro-cracks and other inhomogeneities generally con-
tribute to size dependency in the fragmentation strength. A review of experimental
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data indicating size dependency in brittle geomaterials is given by Selvadurai and
Sepehr (1999). From the point of view of computational modelling of fragmenta-
tion, the introduction of size dependency is a desirable concept. The progressive
increase in the fragmentation process will continually decrease the fragment size
and, in the process, lead to an increase in the number of generated fragments. The
non-linear processes associated with such unrestricted fragment size development
makes the computational procedure unmanageable. This deficiency is remedied
by adopting a fragmentation tensile strength that increases with a decrease in the
fragment size. Both laboratory and field experiments performed on ice point to
variations of the type shown in Figure 2. These results are incorporated in the
computational modelling.

2.4 Inter-fragment interaction

Fragment interaction response upon attainment of fragmentation is an important
consideration in the study of the fragmentation process. These responses are best
described by appeal to an interface response identified at a local contact plane be-
tween two interacting surfaces (e.g. Selvadurai and Boulon, 1995; Nguyen and
Selvadurai 1998; Willner, 2003; Song, McFarland, Bergman and Vakakis, 2005;
Ozaki, Hashiguchi, Okayasu and Chen, 2007; Zozulya, 2009), which can be de-
fined in relation to the differential displacements at the contacting surfaces: i.e.

dFi = ki j(du(1)
j −du(2)

j ) (11)

where i = n,s; dFi are the incremental changes in the contact force per unit length
between contacting surfaces; du(1)

i and du(2)
i are displacements at the contact plane

between the regions (1) and (2) ; and ki j are the stiffness coefficients defined in the
normal (knn = kn) and shear (kss = ks) directions on the average plane of contact (all
other ki j = 0). These stiffnesses themselves could be functions of the differential
displacements (du(1)

i − du(2)
i ). A Coulomb friction model is the simplest of the

models that can characterize the contact process. For such a response,

ks = k∗s ; |dτs|< c f + µσn

ks = 0; |dτs|= c f + µσn
(12)

where τs is the shear stress, σn is the normal stress at the inter-fragment contact
plane, c f is an interface adhesion and µ f is the Coulomb friction for the contact
plane. For interaction responses in the normal direction, it is possible to assume
linear elastic behaviour provided the contact force is compressive. The normal
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stiffness will vanish when the fragments separate. i.e.

kn = k∗n; dσn ≤ 0

kn = ks = 0; dσn > 0
(13)
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Figure 2: Size-dependent variation of tensile strength of ice [The references cited
are given in Selvadurai and Sepehr (1999)]

3 Computational modelling

Approaches to the computational modelling of dynamic problems that include vis-
coplasticity and other rate-independent non-linear phenomena are described by a
number of authors and the reader is referred to Zienkiewicz and Cormeau (1974),
Owen and Hinton (1980), Simo and Hughes (1998) and Selvadurai and Sepehr
(1999) for further details.

3.1 Computational procedure for viscoplasticity

The viscoplastic strain increment at the time interval ∆tn = (tn+1− tn) can be ob-
tained via a scheme given by

(∆εεε
vp)n = ∆tn {(1−Ω)(ε̇εεvp)n +Ω(ε̇εεvp)n+1} (14)
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where Ω can take the values 0,1 and 1/2 depending on either the fully explicit,
fully implicit or the Crank-Nicolson schemes, respectively. The incremental stress
at the iteration n can be given in the form

(∆σσσ)n = [D−1 +Ω(∆tn)Hn]−1 {[B]n(∆d)n− (ε̇εεvp)n(∆tn)} (15)

where

(∆εεε)n = [B]n(∆d)n

(∆εεε
vp) = (ε̇εεvp)n(∆tn)−{Ω(∆tn)(H)n}(∆σσσ)n

(H)n = (∂ε̇εε
vp/∂σσσ)n

(16)

and D is the elasticity matrix given by

σ̇σσ = Dε̇εε
e (17)

During any time increment (∆tn), the incremental form of the equation of equilib-
rium takes the form∫

V
[B]Tn (∆σσσ)n +(∆f)n = 0 (18)

where (∆f)n is the vector of applied incremental forces during the time increment
(∆tn). The incremental displacement occurring at this particular time interval can
also be written as

(∆d)n = [KT ]−1
n

∫
V
[B]Tn [D−1 +(C)n]−1(ε̇εεvp)n(∆tn)dV +(∆f)n (19)

and

[KT ]n =
∫

V
[B]Tn [D−1 +Ω(∆t)n(H)n]−1[B]ndV (20)

The displacement increments, when back-substituted into (15), give the stress in-
crement

(∆σσσ)n = D[B(∆d)n− (ε̇εεvp)n(∆t)n] (21)

with

([σσσ ; d ; εεε
vp])n+1 = ([σσσ ; d ; εεε

vp])n +([∆σσσ ; ∆d ; ∆εεε
vp])n (22)



Fragmentation of Ice Sheets during Impact 267

The evaluated stress increment is based on a linearized version of the equilibrium
equations in an integral form. The total stresses given by σσσ will not exactly sat-
isfy the complete equations of equilibrium. The incorporation of an out-of-balance
residual force Ψ in each cycle will minimize the error, i.e.

(Ψ)n+1 =
∫

V
[B]Tn+1(σσσ)n+1dV +(f)n+1 6= 0 (23)

and this residual force will be added to each applied force increment at the sub-
sequent step. The time integration is unconditionally stable if Ω ≥ 1/2; i.e. the
procedure is numerically stable but does not ensure accuracy of solution. Conse-
quently, even for values of Ω≥ 1/2, limits must be imposed on the selection of the
time step to achieve a valid result. For viscoplasticity problems, which are based
on an associated flow rule, (Q = F), a linear flow function of the form Φ(F) = F ,
and where F is described by the Mohr-Coulomb failure criterion, a recommended
limit for the time increment as specified by Zienkiewicz and Cormeau (1974) that
takes the form

∆t ≤ 4(1−ν)(1−2ν)F0

γ(1−2ν + sin2
ϕ)E

(24)

where F0 is the equivalent uniaxial yield stress (c cosϕ) and E is Young’s modulus.
The change in the displacement associated with the viscoplastic strain is given by

∆d = K−1
{∫

V
(BT Ddεεε

vpdV +∆f
}

(25)

where ∆f denotes the change in load during the time interval ∆t. The resulting
stress change is

∆σσσ = D[B∆d− (∆t) dεεε
vp] (26)

The updated stress matrix after the time increment ∆t is

σσσ
(1) = σσσ

(∗) +∆σσσ (27)

where σσσ (∗) is the initial stress matrix. After n time steps, the stress state is given by

σσσ
(n+1) = σσσ

(n) +∆σσσ
(n) (28)
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3.2 Computational procedure for discrete elements

The discrete element approach, which includes a transformation of an initially con-
tinuum region to a fragmented state, involves a sophisticated computational scheme
that has many facets. Two aspects of the computational scheme merit further dis-
cussion purely because these procedures have a bearing on the accuracy and effi-
ciency of the solution algorithm. The principal computational aspects associated
with the discrete element modelling of a fragmentable viscoplastic material basi-
cally involves two components these are

(i) the procedures used to examine the non-linear material phenomena such as a
viscoplasticity and non-linear inter-fragment interaction and

(ii) the procedures used in the solution of the dynamic equations of motion associ-
ated with the entire system of interacting fragments, intact continuum regions
and structural components.

The computational aspects of the discrete element procedure, which accommodate
viscoplasticity effects, fragmentation and inter-fragment contact generation-contact
loss-a Signorini-type interpenetration constraint in is described in detail in the ar-
ticles by Hocking, Mustoe and Williams (1985a, b) and Selvadurai and Sepehr
(1999). The matrix equation governing the dynamic process can be expressed in
the conventional form:

[M]
{

d2

dt2 {u}
}

+[C]
{

d
dt
{u}
}

+[K]{u}= {f} (29)

where {u} is the displacement vector, {f} is the force vector, [M], [C] and [K] are,
respectively, mass, damping and stiffness matrices, and{

d
dt

[u]
}

n+1/2
=
{

d
dt

[u]
}

n−1/2
+
{

d2

dt2 [u]
}

n
(∆t)

{[u]}n+1/2 = {[u]}n +
{

d
dt

[u]
}

n+1/2
(∆t)

(30)

where ∆t is the time increment and the subscripts denote the time step number.

The stability of the computational scheme is controlled by the time increment in
the integration scheme. This time increment has to satisfy criteria applicable to the
solution of viscoplastic problems as well as the time increment criteria applicable
to the integration of the dynamic equations (29). For viscoplasticity problems, the
recommended limit for the time increment is given by (24). For the integration of
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the equations of dynamic equilibrium, the stability condition for the time increment
∆t, which employs an explicit-explicit, partitioning (which is strictly applicable
only to linear systems) takes the form

∆t ≤ 2[(1+ D̃2)1/2− D̃]/ϖmax (31)

where ϖmax is the maximum frequency of the combined system involving both rigid
body motion and deformability of the system, and D̃ is the fraction of critical damp-
ing at ϖmax. Other criteria have been proposed in the literature on computational
mechanics (Owen and Hinton, 1980): e.g.

∆t ≤ 2/ϖmax; ∆t ≤ β l
[

ρ (1+ν)(1−2ν)
E (1−ν)

]1/2

(32)

where β is a coefficient that depends on the element type and l is the smallest
length between any two nodes. As is evident, if extensive fragmentation takes
place without a limit on the smallest fragment size, the time increment has to be
reduced accordingly to preserve stability of the computational scheme. This makes
the computational procedure computing intensive. The computational code used
in the studies was DEC-ICE, which was modified to accommodate the additional
criteria related to limits on fragment generation and the dual possibility of either
generation of viscoplastic flow and /or fragment evolution.

In addition to the computational modelling of fragmentation and the dynamic in-
teraction between fragments, in the case of floating ice features, the hydrodynamic
interaction between the fluid and the dynamically moving floating ice fragments
should also be taken into consideration in correctly defining the interaction pro-
cess. A complete hydrodynamic modelling of a moving ice feature is not attempted
in this computational approach. The influence of hydrodynamic resistance is mod-
elled by a drag force acting on an equivalent circular body moving on the water
surface.

4 Interaction between an ice sheet and a stationary rigid structure

The computational scheme described briefly in the preceding sections is applied to
the study of the impact of an ice sheet with a stationary immovable pier. We first
consider the problem of the direct impact of an ice sheet of thickness of 1m and a
circular plan form of diameter 20m (Figure 3). These dimensions also will prevent
out of plane buckling and fragmentation that is usually associated with relatively
thin ice floes, where the forces are generated through accumulation of ice fragments
as opposed to in plane failure processes. The ice sheet moves with a steady velocity
of 0.2 m/sec.
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stationary
structure

ice sheet

20m diam.

Figure 3: Impact of a moving ice sheet with a stationary rigid pier

The properties of the ice sheet are as follows:

Ice Sheet (intact):
E = 3.5 GPa; ν = 0.35
c = 1.5 MPa; ϕ = 300; σT = 0.5 MPa
γ = 1.0×10−2 sec−1; N = 1

Ice Sheet (failed):
E = 3.5 GPa; ν = 0.35
cres = 3.5 Pa; ϕres = 30; σT res = 0.5 Pa
γ = 1.0×10−2 sec−1; N = 1

Fragmented Ice:
E = 3.5 GPa; ν = 0.35
c = 1.5 MPa; ϕ = 300; σT = (0.271/

√
L) MPa

where L is the fragment size

Ice Fragments:{
kn = 1.0 GPa; ks = 1.0 GPa
c = 0; ϕ = 300
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The failed ice is assigned nominal values of cohesion, internal friction and tensile
strength, which are denoted by the residual values (subscript res). The ice sheet
moves with a velocity of 0.2 m/sec and impacts a stationary rigid circular obstacle
at an obliquity of 450 to the axis of the obstacle. The computational approach is
applied to determine the average normal contact stresses that are generated at the
contact zone between the indenting ice feature and the stationary rigid pier. Figure
4 illustrates the time history of the development of contact stresses and the cor-
responding development of fragmentation. As is evident, the peak contact stress
develops at the intial impact and the stress decreases as fragmentation occurs. Fig-
ure 5 illustrates the time history of the contact stress development during oblique
impact of the ice sheet (velocity of 0.2 m/sec and in plan, inclined at 450 to the ref-
erence coordinate system). Also in this case the peak contact stress occurs during
the initial impact and the magnitude is considerably reduced due to the obliquity.
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Figure 4: Time-dependent evolution of
interactive contact stresses between the
impacting ice-sheet and the stationary
rigid pier - collinear impact.
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Figure 5: Time-dependent evolution of
interactive contact stresses betwe

We next consider the problem of the oblique impact of a moving ice sheet of irreg-
ular plan shape with a stationary rigid pier. The plan area of the ice sheet is equiv-
alent to a 10m diameter circular region of thickness 1m. The initial finite element
discretization of the ice sheet is shown in Figure 6. A relatively coarse distribution
of triangular elements is considered sufficient for the purpose of the computational
modelling. The constitutive parameters for the ice sheet are identical to those used
previously. The oblique impact occurs with a velocity of 0.2 m/sec. Figure 7 illus-
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trates the time history of the interactive contact stress and the subsequent generation
of fragmentation. The failure illustrated is not intended to be characteristic of the
most probable modes of failure of the ice sheet; the mode of failure is governed by
a number of factors including the strength characteristics of the ice, the obliquity
of impact and the approach velocity. The results nonetheless illustrate plausible
fragmentation processes in impacting ice features. It is also noted thatin the case of
isolated ice features, the peak stress occurs prior to initiation of fragmentation.

rigid pier

Ice Sheet

 

Figure 6: The finite element dis-
cretization used in the modelling
of the intact ice sheet
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Figure 7: The oblique impact of an ice
sheet with a stationary rigid structure.

5 Concluding remarks

The paper presents a computational approach for examining the dynamic interac-
tion between a fragmentable ice sheet and a stationary rigid object. The modelling
takes into consideration the fragmentation of an initially intact ice sheet that dis-
plays rate-sensitive constitutive properties. The fragments themselves can undergo
frictional unilateral contact interactions that can initiate further break-up. To limit
the uncontrolled generation of fragments, the strength characteristics governing
fragmentation are assumed to increase with decreasing fragment size. The compu-
tational results indicate trends that are observed in dynamic interaction problems
involving ice sheets and stationary structures. The fragment shape development is
controlled by the shape of elements used in the initial discretization. This can result
largely in quadrilateral and triangular ice fragments with an elongated geometry;
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this satisfies the criteria controlling fragment generation mainly through splitting
induced by the action of compressive inter-element contact forces. The analysis
can be extended to include other forms of fragmentation that can include bending
failure but excludes unattainable fragment geometries (Figure 7).
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Figure 8: Fragment shapes
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