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Micromechanics Based Stress-Displacement Relationships
of Rough Contacts: Numerical Implementation under

Combined Normal and Shear Loading

Anil Misra1 and Shiping Huang1

Abstract: The behavior of contact between solid bodies with rough surfaces un-
der combined normal and shear loading remains a problem of interest in many
areas of engineering. In this paper, we have utilized a micromechanical methodol-
ogy to derive an expression of stress-displacement relationship applicable to com-
bined normal and shear loading conditions. The micromechanical methodology
considers the mechanics of asperity contacts and the interface roughness in terms
of asperity height and asperity contact orientation distribution. A numerical proce-
dure is implemented to evaluate the derived expressions under complex and mixed
loading conditions using an incremental approach. We find that the proposed nu-
merical procedure provides accurate results under all kind of loading conditions,
although the number of steps to convergence depends upon the initial assumption.
The results show that the interface closure behavior is highly nonlinear and does not
follow a power-law although a Hertzian model is used for asperity contacts. Nu-
merical results also confirm the experimental observation that rougher interfaces
are softer and have higher frictional strength compared to smooth interfaces under
shear loading.

Keywords: rough contact, stress-displacement relationship, Newton-Raphson method,
nonlinear equations

1 Introduction

Contact between solid bodies is ubiquitous in nature and contact problems abound
across all areas of engineering. The understanding and modeling of stress-displacement
behavior of a contact has been one of the most widely researched problems with
contributions spanning more than a century. This paper considers the contact of
relatively stiff bodies undergoing small normal deformations, such as those found

1 Department of Civil, Environmental and Architectural Engineering, the University of Kansas,
KS,U.S.A.



198 Copyright © 2009 Tech Science Press CMES, vol.52, no.2, pp.197-215, 2009

in fractured media, jointed rock masses, masonry structures, granular geomaterials,
and in structural and machine assemblies. The pioneering work along these lines
was performed by Hertz with regards to contact of perfectly smooth rotund elastic
bodies (Johnson 1985). With the advancement in the measurement of surface pro-
files and contact behavior, it has become clear that all surfaces consist of numerous
irregular asperities and the surface roughness has a significant role in determining
the mechanical behavior. Accordingly, numerous researchers have investigated the
mechanical behavior of contacting surfaces by explicitly modeling the behavior of
asperity contacts.

Among the early efforts along these lines, Greenwood and Williams (1966) intro-
duced the statistical approach to describe the roughness of the interface, assuming
each asperity had the same radius but different heights. Since then statistical meth-
ods have prevailed and a vast amount of literature has been contributed to this field.
Whitehouse and Archard (1970) developed the Greenwood and Williamson (G-W)
model by accounting for the random radii of curvature of the asperity tips. Nayak
(1971, 1973) introduced the techniques of random process theory into the analysis
of Gaussian roughness which was subsequently used by Bush, Gibson and Thomas
(1975) in rough surface contact. Adler and Firman (1981) proposed a non-Gaussian
random surfaces; Yamada, Takeda, Kagami and Naoi (1978a, 1978b) derived his
contact model formed by two rough surfaces described by probability density func-
tion of the peak height of each asperity; Brown and Scholz (1985, 1986) presented a
composite height model for the contact between two random nominally flat elastic
surfaces. McCool and co-worker (Mccool 1986; Mccool and Gassel 1981) treated
anisotropic rough surfaces with ellipsoidal asperities, however, they found a good
agreement with the simpler G-W model and suggested that spherical shape asperity
assumption is not only simplifying but also representative of the asperity contact
behavior. More recently, Persson and coworkers have developed an alternative the-
ory for contact between solids by considering the real contact area of self-affine
surfaces undergoing large deformations (see Persson 2007) and references therein).
A preponderance of the above-cited work (Brown and Scholz 1985, 1986; Bush,
Gibson and Thomas 1975; Greenwood and Williams 1966; Mccool 1986; Mc-
cool and Gassel 1981; Whitehouse and Archard 1970) was concerned with contact
behavior under loading in the normal direction to the nominal orientation of the
interface. Under shear loading, sliding of asperity contact becomes significant in
determining the overall friction of the interface. The early work related to the
modeling of friction of the rough interface was done by Archard (1957). Contact
friction and its dependence on interface roughness has been widely recognized and
deemed important in a variety of problems as seen from the recent works of Ozaki,
Hashiguchi, Okayasu and Chen (2007), Guz, Menshykov, Zozulya and Guz (2007);
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Guz and Zozulya (2007), Vignjevic, De Vuyst and Campbell (2006) and many oth-
ers. Clearly, both contact closure and friction modeling remains an active area and
satisfactory models for rough contacts under combined normal and shear loading
remain elusive.

To obtain a deeper understanding of contact problems under both normal and shear
loading, numerical approach, such as the finite element and the meshfree methods
have been utilized recently (see Wriggers 2006, Selvadurai and Yu 2005, Sellgren,
Bjorklund and Andersson 2003, Hyun, Pei, Molinari and Robbins 2004, Shankar
and Mayuram 2008, Vignjevic, De Vuyst and Campbell 2006, Han, Liu, Rajen-
dran and Atluri 2006 and many others). The foremost limitation of the finite ele-
ment and meshfree methods remains their computational expense especially when
dealing with 3-dimensional contact problems involving numerous asperities. Con-
sequently, methods that utilize statistical descriptions of the interface roughness
continue to be attractive. Along these lines, the author has developed a kinemati-
cally driven micromechanical methodology for contacting rough surfaces by con-
sidering asperity heights and asperity contact orientation distributions (Misra 1997,
1999). In this paper, we have utilized this micromechanical methodology to derive
an expression of stress-displacement relationship applicable to combined normal
and shear loading conditions. A numerical procedure is implemented to evalu-
ate the derived expressions under complex and mixed loading conditions using the
Newton-Raphson method to solve the nonlinear stress-deformation equations in an
incremental manner. The present work extends the statistical approach by incor-
porating (1) a directional distribution function of asperity contact orientations as
an additional measure of surface roughness, and (2) an iterative procedure to ob-
tain the asperity contact forces at each load increment recognizing that the asperity
contact force distribution is not known a priori.

In the subsequent discussion, we first briefly present our approach for statistical
modeling of contact surface and the essence of the kinematically driven microme-
chanical methodology. We then describe the numerical procedure based upon
Newton-Raphson method for evaluating the stress-displacement relationship. Fi-
nally we present computed stress-displacement relationships under various bound-
ary conditions used in the laboratory testing performed on contacting solid bodies.
We find that the proposed numerical procedure provides accurate results under all
kind of loading conditions, although the number of steps to convergence depends
upon the initial assumption. The results show that the interface closure behavior is
highly nonlinear and does not follow a power-law although a Hertzian model is used
for asperity contacts. Numerical results also confirm the experimental observation
that rougher interfaces are softer and have higher frictional strength compared to
smooth interfaces under shear loading.
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2 Statistical Description of Contact Interface

The contacting surface geometry determines the orientations and the number of as-
perity contacts under a given loading condition. The composite topography defined
as the sum of the contacting surface profiles and described via statistics of asper-
ity contact heights, orientations, and curvatures may be utilized for this purpose
(Adler and Firman 1981; Misra 1997; Nayak 1971; Yoshioka 1994). In this paper,
the statistics of asperity contact heights is described via gamma distributions, asper-
ity contact orientations via spherical harmonic expansions, and asperity curvatures
are assumed to be constant for simplicity. It is usual to define the asperity contact
height with reference to the highest peak of the composite topography such that,
asperity height, r, represents the overlap of the interacting surfaces. The density
function for asperity heights, H(r), is given by a gamma distribution (Adler and
Firman 1981; Yoshioka and Scholz 1989a, 1989b) expressed as:

H (r) =
rαe−r/β

Γ(α +1)β α
(0 < r < ∞, α >−1, β > 0) (1)

where α and β are parameters related to the mean and variance of the asperity
heights as follows

mean : rm = (α +1)β

variance : r2
σ = (α +1)β 2 (2)

Parameter α is unit less while parameter β takes the unit of asperity height. Sur-
faces that have smaller average asperity height and narrow distributions of asperity
heights are considered to be smoother. Fig. 1 gives examples of asperity height
distributions for two interfaces that can be described as smooth and rough in com-
parison with each other. For an interface with N asperities per unit area, NH(r) dr
denotes that number of asperity contacts in the interval represented by r and r + dr.
Thus, the total number of asperity contacts, under a given closure, is given by

Nr =
r∫

0

NH (r)dr (3)

In order to describe the orientation distribution, we introduce a local Cartesian
coordinate system as shown in Fig. 2. The local coordinate system consists of
three vectors n, s and t, among which n is the vector normal to the asperity contact
surface, and s and t are on the plane tangential to the asperity contact surface. The
relationship between the local coordinate system and the global Cartesian system
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Figure 1: Examples of contact height distributions.

 

Figure 2: Schematic depiction of the micromechanical modeling methodology for
rough interfaces.

is given by:

ni = 〈cosθ , sinθ cosφ , sinθ sinφ〉
si = 〈−sinθ , cosθ cosφ , cosθ sinφ〉
ti = 〈0, −sinθ , cosφ〉

(4)

The asperity contact orientation is defined by considering the inclination of the as-
perity contact normal with respect to that of the interface normal direction. As
shown in Fig. 2, the orientation of an oblique asperity contact is defined by the az-
imuthal angle, φ , and the meridional angle, θ , measured with respect to a Cartesian
coordinate system in which direction 1 is normal to the interface. A 3-dimensional
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density function utilizing shifted spherical harmonics expansion in spherical polar
coordinates that describes the concentrations of asperity contact orientations was
introduced by Misra (1997, 1999). For a rock joint with isotropic distribution of
asperity contact orientations, the density function, ξ (Ω), is defined in the domain:
0 ≤ θ ≤ 2π/a, 0 ≤ φ ≤ 2π , given by

ξ (Ω) =
asinaθ

2π sinθ

[
1+

b
4
(3cosaθ +1)+3c(sinaθ)2 cos2φ

]
(
0≤ θ ≤ π

2a ; 0≤ φ ≤ 2π; a≥ 1
)

(5)

where angles φ and θ are defined in Fig. 2 Ω represents the solid angle formed by
φ and θ , and parameters a and b determine the shape of the density function ξ (Ω).
Thus, the product Nrξ (Ω)dΩ denotes the number of asperity contacts NΩ in the
interval represented by solid angles Ω and Ω+dΩ, that is

NΩ = Nrξ (Ω)dΩ (6)

The orientation parameters a and b are related to the mean and variance of asperity
contact orientations as follows

E [θ ] =
6−b

6a
and E

[
(θ −E [θ ])2

]
=

36π−108+20b−6bπ−b2

36a2 (7)

 

θ
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Figure 3: Contact orientation distributions: left frame is for isotropic inter-
face (a=1,b=0,c=0) and right frame is for anisotropic interface (a=1,b=-1,c=1/3).
Grayscales indicate the probability density of finding asperity contact in a given
orientation defined by the coordinate system.
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The density function in Eq.(5) has the ability to model surfaces with varying rough-
ness. As discussed in Misra (1999), more asperity contacts orient in the direction
perpendicular to the interface for smooth surfaces than that for rough surfaces. Ac-
cordingly, as parameter, a, increases, the contact distribution concentrates towards
the direction normal to the interface (along the 1-axis of the global Cartesian co-
ordinate system in Fig. 2). In particular, the density function, ξ (Ω), behaves like
a delta function in the limit a→ ∞ and yields an expectation E[θ] =0, which rep-
resents a concentrated contact orientation, normal to a perfectly smooth interface.
The parameter, a, describes the extent of the asperity contacts in the meridional
direction as well as the mean asperity contact orientation. Fig. 3 show the 3-
dimention distribution density for different combination of parameters a, b and c.

3 Micromechanical Stress-Displacement Relationship

In the kinematically driven approach, we assume that the asperity displacement,
δ j, at a given asperity height is the same and directly related to the overall dis-
placement of the interface, ∆ j. The subscripts in this paper follow the established
tensor convention unless specified otherwise. Under the kinematic assumption, the
asperity displacement in the local coordinate system can be written in terms of the
overall interface displacements as follows:

δn

δs

δt

=

n1 n2 n3
s1 s2 s3
t1 t2 t3


∆1− r

∆2
∆3

 (8)

Note that we assume the asperities to have spherical shape with the same radius but
different heights. Therefore, for a normal interface displacement ∆1, the displace-
ment of the asperity at height r is ∆1− r. This kinematic assumption disregards the
nonlocality of asperity contact interactions. The assumption is reasonable for inter-
faces with relatively large asperity spacing in stiff materials such that the overlap
of deformation fields associated with neighboring asperity contacts is minimal and
the statistical description of the interface remains unchanged during loading. This
assumption has been widely used and appears to be especially useful for describ-
ing contacts between metals and stiff geomaterials, such as rock joints (Brown and
Scholz 1986; Greenwood and Williams 1966). In some cases, however, the asperi-
ties may undergo damage. The consequent change in the interface geometry has to
be appropriately modeled (Misra 2002).

In local coordinate system, considering the Hertz-Mindlin contact theory of per-
fectly smooth elastic interfaces as well as other theories of smooth elastic-plastic in-
terfaces(Johnson 1985), it is reasonable to assume that normal asperity stiffness Kn
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depends on the normal asperity displacement δn according to the following power
law:

Kn = λKδ
η
n (9)

Where δ n is the magnitude of normal compression at the asperity contact, and K,
λ and η are constants. The asperity stiffness, Kn given by Eq.(9),becomes identical
with the Hertz stiffness for contact of perfectly smooth elastic spheres when[
λ = 2−v

2(1−v) ; η = 1
2 ; K = 8G

√
R

3(2−v)

]
(10)

where G is the shear modulus, v is Poisson’s ratio and R is asperity radius of cur-
vature. It is noteworthy that the exponent η can vary from 0 for perfectly plastic to
1/2 for perfectly elastic behavior at contact of perfectly smooth spherical asperities
(Johnson 1985). Since this paper focuses on monotonic loading of interfaces, we
consider the case of constant normal asperity force and monotonically increasing
asperity shear force. Mindlin and Deresiewicz (1953) have derived the follow-
ing asperity force-displacement relationship for this loading condition, considering
partial slip at contact edge with increasing contact shear displacement:

fst = µKnδn

[
1− (1− δst

λ µδn
)

3
2

]
(11)

Where fst is the asperity shear force and δ st is the asperity shear displacement given
by,

δst =
√

δ 2
s +δ 2

t (12)

Thus, in s and t direction, we have the following force displacement relationship:

fs = fst
δs

δst
= µKn

δn

δst

[
1− (1− δst

λ µδn
)

3
2

]
δs = Ksδs (13)

ft = fst
δt

δst
= µKn

δn

δst

[
1− (1− δst

λ µδn
)

3
2

]
δt = Ktδt (14)

where Ks and Kt are stiffness in s and t directions, respectively. We note Eqs. (13)
and (14) are valid when λ µδ n>δ st . When this condition is violated, sliding occurs
at the contact per the Amonton–Coulomb’s friction law. In this case Eqs. (13) and
(14) can be rewritten as:

fs = µKn
δn

δst
δs = Ksδs (15)
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ft = µKn
δn

δst
δt = Ktδt (16)

Thus, for a single asperity contact the force-displacement can be written in the
following matrix form in the local coordinate system:

fn

fs

ft

=

Kn 0 0
0 Ks 0
0 0 Kt


δn

δs

δt

 (17)

Or in the global coordinate system, the asperity contact forces, fi, and displace-
ments, δ j, are related as follows:

f1
f2
f3

=

K11 K12 K13
K12 K22 K23
K13 K23 K33


∆1− r

∆2
∆3

 or fi = Ki j (∆ j−δ1 jr) (18)

Where the asperity contact stiffnesses, Ki j, given by:

Ki j = Knnin j +Kssis j +Kttit j (19)

where Kn, Ks and Kt denote asperity stiffness along the n, s and t direction of the
asperity contact.

At a rough interface, numerous asperity contacts of varying height overlap and
orientations occur under a given loading condition. These asperity contacts can be
classified into three groups: (1) those in contact but without sliding, (2) those in
contact but with sliding, and (3) those not in contact. The overall interface stress
can be obtained as the sum of the asperity contact forces contributed by groups (1)
and (2). Utilizing the orientation distribution and height distribution introduced in
section 2, we obtain the following expression for the overall interface stress:

Fi = N(
∫

re

∫
Ωe

f e
i ξ (Ω)dΩH(r)dr +

∫
rp

∫
Ωp

f p
i ξ (Ω)dΩH(r)dr (20)

Where the superscript e denotes the domain and forces of asperity contacts that are
not sliding, and the superscript p denotes the domain and forces of asperity contacts
experiencing sliding.

4 Numerical implementation for nonlinear force-displacement relationship

Based on the expression derived above, if the overall interface displacements are
known, the overall interface stresses can be calculated directly from Eq. (20). How-
ever, the loading conditions utilized during laboratory testing of interfaces or for
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computations involving fractured bodies are in many cases specified either in terms
of stresses or a mix of stresses and displacement. If the stress loading conditions or
mixed loading conditions are given, we have to solve the nonlinear equation sys-
tem given by Eq. (20) to obtain the corresponding displacements. In this paper, we
utilize the Newton-Raphson method to solve this set of nonlinear equations. For
further discussion, Eq. (20) is rewritten as

Ri (∆i)≡ N(
∫

re

∫
Ωe

f e
i ξ (Ω)dΩH(r)dr +

∫
rp

∫
Ωp

f p
i ξ (Ω)dΩH(r)dr)−FE

i = 0 (21)

where Ri(∆i) is the residual vector, FE
i is understood as the external force vector.

We expand the residual Ri(∆i) in Taylor’s series with respect to displacement vector
∆i at (n-1)th iteration to obtain:

R j (∆i) = R j (∆i)
n−1 +

(
∂R j

∂∆i

)n−1

d∆i + ... (22)

where we omit the terms of order 2 and higher. Now, using Eq. (22) we get

(Tji)
n−1 d∆i =−R j (∆i)

n−1 (23)

where Tji is recognized as the tangent stiffness tensor given as,

(Tji)
n−1 =

(
∂R j

∂∆i

)n−1

(24)

We can thus obtain the increment of displacement, d∆i, corresponding to the resid-
ual at the (n-1)th iteration as

d∆i =
−R j (∆i)

n−1

(Tji)
n−1 (25)

and, subsequently, update the interface displacement in the usual manner

(∆i)n = (∆i)
n−1 +d∆i (26)

The above numerical scheme has been implemented as follows:

Step 1: Discretize the integration domain in Eq. (20) into sufficient points repre-
senting asperity contact heights and orientations so as to obtain a converged solu-
tion. For our computations we have used ∆r = 0.01r90, where r90 = is the 90th

percentile of asperity height for r−discretization, and grid of 20x40 for θ and φ -
discretization. The integration is performed using Simpson’s rule.
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Step 2: Use the (n-1)th iteration displacement (∆i)n−1 to determine sliding condition
of each contact point and sum all of the forces of contacts points to obtain the
overall force, (Fi)n−1, using discretized Eq. (20).

Step 3: Use a small interface displacement increment, ∂∆i, typically taken as
0.01r90, to compute the corresponding increment of interface force, ∂Fj, follow-

ing step 2 and evaluate tangential stiffness(Tji)
n−1 =

(
∂Fj
∂∆i

)n−1
.

Step 4: Calculate the residual force Rn−1
j = FE

j – (Fj)n−1, and use Eq. (25) to find
the interface displacement increment, d∆i. Update the interface displacement (∆i)n

and check for convergence.

5 Results and Discussion

We demonstrate the applicability of the derived overall stress-displacement rela-
tionship and its numerical implementation under a variety of loading conditions.
The interface properties used for our example computations are tabulated in Tab. 1.
These parameters are for illustrative purposes and are loosely based upon observa-
tions of lab tests on stiff rock, ceramic and metal samples. Example computations
are performed for (1) normal (1-d) loading under specified interface normal stress,
(2) combined normal and shear (2-d) loading under specified normal and shear
stresses as well as specified normal stress and shear displacement. In particular,
these computations illustrate (1) the importance of asperity contact orientations as
an additional roughness parameter that is usually disregarded in other treatments of
rough contacts in the literature (Zavarise and Paggi 2008), and (2) the coupling be-
tween the normal and shear behavior of the interface even though no such coupling
is assumed at the asperity contact.

Table 1: Interface property.

asperity number asperity friction plasticity parameter orientation distribution
N=1000 /mm2 µ=1 η =1/2 a=1,b=0,c=0

Radius shear modulus Poisson’s ratio height distribution
R=200 µm G=80 GPa ν=0.3 α=6.14, β=3.52 µm

5.1 Normal loading (1-d)

To evaluate our procedure under stress-controlled normal loading conditions, the
interface stress was specified as F1 = 140 MPa, F2= F3= 0. For our computation we
took an initial value of normal displacement ∆0

1 = 9µm at first iteration. The results
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of the subsequent iterations and convergence are shown in Tab. 2. After 7 itera-
tions, the unbalanced stress is reduced to <1% of the specified normal stress. As
seen from Tab. 2, convergence would be achieved in lesser number of iterations if
the initial assumption was closer to the result. Typically for the first loading incre-
ment, a close initial assumption is not possible. However, for subsequent loading
increment we use the previous increment result as the initial assumption and the
convergence steps can be significantly reduced. Based upon this incremental pro-
cedure we can obtain the complete stress-displacement curve under normal loading
as shown in Fig. 4. We note that the calculated normal stress-displacement behav-
ior does not follow a power-law behavior with the usual Hertzian exponent of 3/2.
Instead, the behavior is highly nonlinear as shown by the nonlinear curve in the
log-log plot in Fig. 4b. This nonlinearity depends upon the initial closure, asperity
contact friction angle and the asperity height distribution. A detailed study of the
closure behavior non-linearity will be described in a future publication.
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Figure 4: (a) Normal stress-displacement curve (b) Normal stress-displacement
curve (logarithm plot)

Table 2: Convergence for normal loading.

Iteration, n 0 1 2 3 4 5 6 7
(∆1)n−1µm 9.00 64.99 37.76 26.91 21.24 18.10 16.75 16.48
Rn−1

1 MPa 137.0 -27497.0 -5823.0 -1483.0 -400.0 -96.0 -14.0 -0.8

5.2 Combined normal and shear loading (2-d)

We consider two cases of combined normal and shear (2-d) loading: case 1 – under
specified normal and shear stresses (stress-loading), and case 2 – under specified
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normal stress and shear displacement (mixed-loading). For case 1, the interface
stress was specified as: F1 = 300 (MPa), F2= 400 (MPa), F3= 0. For our compu-
tation we arbitrarily took an initial value of normal displacement ∆0

1 = 30µm, and
shear displacement ∆0

2 = 15µm at first iteration, respectively. In this case we have
two unknown displacements and the results of the subsequent iterations and con-
vergence are shown in Tab. 3. After 5 iterations, the unbalanced stress is reduced
to <1% of the specified stresses.

Table 3: Convergence for 2-d stress loading condition.

Iteration, n 0 1 2 3 4 5
(∆1)n−1µm 30 23.29 19.86 18.56 18.36 18.35
(∆2)n−1µm 15 8.99 7.06 6.71 6.76 6.76
Rn−1

1 MPa -2710.5 -683.0 -1485.0 -175.0 -5.0 0.0
Rn−1

2 MPa -3552.4 -793.4 -1528.0 -129.0 -3.0 -3.0

For case 2, the loading was specified as: F1 = 140 (MPa), F3= 0, and ∆2 = 5µm.
The initial value of the normal displacement ∆0

1 was taken as 30µm at the first
iteration. In this case we have an unknown displacement and an unknown stress.
The results of the subsequent iterations and convergence are shown in Tab. 4. After
5 iterations, the unbalanced stress is reduced to <1% of the specified stresses and the
shear stress converges to <2% of the previous iteration. We have obtained similar
results for 3-dimensional stress- and mixed-loading conditions.

Table 4: Convergence for 2-d mixed loading condition.

Iteration, n 0 1 2 3 4 5
(∆1)n−1µm 30 22.80 18.78 16.78 16.20 16.15

(F2)n−1 MPa 1151.3 559.9 292.1 191.1 167.9 164.6
Rn−1

1 MPa -2485.4 -668.2 -172.1 -32.7 -2.7 0.01

5.3 Qualitative Comparison of Model Prediction with Measurements

Finally, we have utilized the numerical implementation to study the effect of inter-
face roughness upon the friction behavior by applying a constant normal stress, F1,
while monotonically increasing the shear stress, F2. In the example computation,
we have considered (1) the roughness variation due to asperity contact orientations,
since the orientation distribution has a critical effect upon the interfacial frictional
strength, (2) the roughness variation due to asperity heights, and (3) the effect of
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interface normal stress. The result of the friction example is given in Figs. 5a, 5b
and 6a, as a plot of shear resistance defined as the ratio of shear to normal stress,
F2/F1, versus the shear displacement ∆2. In Fig. 5a, two interfaces with differ-
ent values of asperity contact orientation parameter, a, and same asperity height
distributions are considered. The rough interface is represented by asperity con-
tact orientation parameter a=3 for the mean asperity inclination of 19.1o, while the
smooth interface is represented by asperity contact orientation parameter a=10 for
the mean asperity inclination of 5.7o. Similarly, in Fig. 5b, two interfaces with
different asperity height distributions and the same asperity contact orientation pa-
rameter are considered. In this case, the rough interface is represented by asperity
height distribution parameters α=6.14 and β=3.52µm, while the smooth interface
by α=3.82 and β=1.15µm.
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Figure 5: (a) Shear resistance-displacement curves under constant normal stress
for a rough (a=3) and a smooth (a=10) interface with same asperity height dis-
tributions. (b) Shear resistance-displacement curves under constant normal stress
for interfaces with different asperity height distributions and asperity orientation
parameter a=10.

The difference between the two curves in Figs. 5a and 5b may be considered in
two distinct regions of shear displacements; one under small displacements, and the
second at large displacement. In the small shear displacement regime, we observe
that rough interfaces are less stiff compared to the smooth interfaces. Measure-
ments performed on interfaces of same materials but different roughness (Biegel,
Wang, Scholz, Boitnott and Yoshioka 1992; Yoshioka and Scholz 1989) confirm
that smoother interfaces are stiffer. The stiffer response of smooth interface can
be attributed to the concentration of asperity contact orientation distribution to-
ward the direction normal to the interface or a larger real area of contact. Under
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Figure 6: (a) Shear resistance-displacement curves under different constant normal
stresses for a relatively smooth interface (α=3.82; β=1.15 and a=10). (b) Interface
sliding resistance as a function of normal stress for a relatively smooth interface
(α=3.82; β=1.15 and a=10).

small shear displacements, the effect of applied normal stress is dominant. There-
fore, interfaces with larger number of asperity contact in the direction normal to
the interface or with a larger real contact area tend to be stiffer. At the large shear
displacement regime, the effect of different roughness measures (asperity orien-
tation and heights) on the interface behavior is different. We observe in Fig. 5a
that the curves crossover and the rough interfaces are found to have a higher shear
resistance, and eventually, a higher frictional strength compared to smooth inter-
faces. As the shear loading is increased, the larger proportion of asperity contacts
inclined close to the direction normal to the interface for smooth interface begin
to slide at shear resistance close to the asperity friction coefficient. In fact, we
can observe from Fig. 5a, that the smooth interface (a=10), will reach a frictional
strength only slightly greater than the asperity friction coefficient of 1. In contrast,
the curves in Fig. 5b do not crossover and show a tendency to converge to similar
shear strength. This result is not unexpected since the asperity contact orientations
for these two interfaces are identical. The shear resistance given by the ratio F2/F1
tends to the asperity friction coefficient, µ , as the orientation parameter, a → ∞

representing a perfectly smooth interface irrespective of the height distributions.
We note that the asperity contact orientations and asperity heights are correlated;
consequently for a real interface the parameters for both the roughness measure
should change simultaneously. The example presented here demonstrates the sig-
nificant role asperity contact orientations play in the determination of the overall
shear stress-displacement behavior and, particularly, the shear strength behavior of
interfaces. In Fig. 6a and 6b, we illustrate the effect of interface normal on the
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shear resistance- displacement behavior. As expected the shear stress close to in-
terface sliding increases with normal stress, however, this increase is nonlinear as
shown by the plot of shear resistance versus normal stress in Fig. 6b. We find
that the shear resistance decreases (or the effective friction coefficient) decreases
with normal stress which is in agreement with experimental studies on interfaces
between rock blocks (Jing, Nordlund and Stephansson 1992).

6 Concluding Remarks

Methods that utilize statistical descriptions of the interface roughness continue to
be attractive for modeling rough contact behavior. Along this approach, the au-
thor has previously presented a micromechanical methodology for contacting rough
surfaces by considering asperity heights and asperity contact orientation distribu-
tions (Misra 1997, 1999). The applicability of the methodology was widely de-
scribed; however, the derived approach was not amenable to implementation within
larger-scale models that include rough interfaces, such as simulation of jointed rock
medium. In this paper, we have utilized this micromechanical methodology to de-
rive an expression of stress-displacement relationship applicable to combined nor-
mal and shear loading conditions using an incremental numerical approach. This
numerical procedure was implemented to evaluate the derived expressions under
complex and mixed loading conditions.

The numerical procedure provides accurate results, although the number of steps
to convergence depends upon the initial assumption. The calculated normal stress-
displacement behavior is found to be highly nonlinear and does not follow a power-
law behavior with the usual Hertzian exponent of 3/2. The calculated shear behav-
ior is found to have a complex dependence upon interface roughness. These results
confirm the experimental observation that rougher interfaces are softer and have
higher frictional strength compared to smooth interfaces under shear loading. The
current model has been described for monotonic loading cases. Modeling of in-
terface behavior under cyclic loading has added complexity arising from several
sources, including: (1) asperity behavior under oscillating normal and shear force,
(2) evolution of interface structure as asperity contact undergo damage and wear,
and (3) numerical implementation. Investigation of cyclic behavior utilizing the
approach developed in this paper will be a subject of our future work.
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