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Uncertainty Analysis for a Particle Model of Granular
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Abstract: In alpine regions human settlements and infrastructure are at risk to be
hit by landslides or other types of geological flows. This paper presents a new ap-
proach that can aid the design of protective constructions. An uncertainty analysis
of the flow around a debris barrier is carried out using a chute flow laboratory model
of the actual debris flow. A series of discrete element simulations thereby serves to
compare and assess two different barrier designs. In this study, the transformation
method of fuzzy arithmetic is used to investigate the influence of epistemically un-
certain model parameters. It turns out that parameter and modeling uncertainties
can have a tremendous influence on the predicted efficiency of protective struc-
tures.
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1 Introduction

Landslides are prevalent geological phenomena in mountain regions. The term
landslide comprises different phenomena such as debris flows, earth flows and de-
bris avalanches. Geological flows are commonly made up of more or less uncon-
solidated polydisperse rock material (Easterbrook (1999)). Often, the saturation of
rock material with water is the determining factor to trigger such flow events. How-
ever, water does not necessarily need to be involved, as e.g. sturzstroms demon-
strate (Hsü (1975)). Geological flow events are difficult to foresee. If at all, they
can be predicted with a higher precision in space than in time. Along with this
quasi unpredictability, the fact that landslides can be huge dangerous events, makes
them a terrible threat for human beings.

Geotechnical engineers globally cooperate with engineering geologists to design
dams and barriers that are intended to protect settlements, roads and other vital

1 Institute of Engineering and Computational Mechanics, University of Stuttgart, Germany.
2 Institute of Applied and Experimental Mechanics, University of Stuttgart, Germany.



182 Copyright © 2009 Tech Science Press CMES, vol.52, no.2, pp.181-196, 2009

infrastructure from the effects of geological flow phenomena. Nowadays, this en-
gineering work is more and more aided by computer simulation. To the authors’
best knowledge, all known simulation approaches for discontinuous rock material,
e.g. those applied in Bourrier, Dorren, Nicot, Berger, and Darve (2009) or Chao-
Lung, Jyr-Ching, Ming-Lang, Lacques, Chia-Yu, Yu-Chang, and Hao-Tsu (2009)
are based on empirically derived laws that describe the dynamics of sliding ma-
terial. Typically, a number of simplifying assumptions must be made to gain a
simulation model with acceptable complexity. Common simplifications, such as
the assumption of the rock material being homogeneous, along with the difficult
choice of model parameters may impose a high degree of modeling uncertainty.

A common way to deal with uncertainties is to introduce safety factors for all cru-
cial design variables. The computationally required cross section of a dam, e.g., is
scaled with a factor greater than one to increase the likelihood that the dam holds in
case of an impact that is more powerful than anticipated in the modeling assump-
tions. However, this kind of consideration is only feasible if the result of parameter
changes is obvious. A survey on how to estimate safety factors for structures that
are exposed to debris flows is given in (Proske, Kaitna, Suda, and Hübl (2008)),
based on a very coarse and verbal description of the system.

But is the respective design effective in any case, e.g. for all types of rock mate-
rial? This question casts into doubt the assumption that a construction is generally
safe if its design is based on just a certain set of parameters and assumptions. The
objective of the design process might thus be reformulated: The best design of a
protective structure should not only be safe for one set of model parameters, the
nominal set, but it must also be safe for all values of the input parameters that seem
to be possible. Moreover, the preferable design should not be sensitive to variations
of all uncertain input parameters of the design process. In order to reach these prop-
erties within the computational process, a methodology is needed, that is capable
of handling uncertain model parameters. In the following, different principles in
modeling uncertainty are given and the one which is used in this work, namely the
transformation method of fuzzy arithmetic, is explained. Then the method is ap-
plied to a chute flow described by using the discrete element method and the results
are discussed.

2 Classification, Representation and Propagation of Uncertainty

2.1 Uncertainty Classification and Representation

In general, non-determinism in numerical models may arise from different sources,
motivating some categorization of uncertainties. Although other classifications are
possible, the following categorization of uncertainties (Hofer (1996)) proves to be



Uncertainty Analysis for a Particle Model of Granular Chute Flow 183

well-suited in this context: aleatory uncertainties that can be measured, such as
variability or scatter caused by irregularities in fabrication, on the one side, and on
the other side, epistemic uncertainties, which arise from an absence of information,
rare data, vagueness in parameter definition, subjectivity in numerical implemen-
tation, or simplification and idealization processes employed in the modeling pro-
cedure. All these conditions manifest as uncertain model parameters. They entail
that the results that are obtained from simulations that only use one specific set
of values as the most likely ones for the model parameters cannot be considered
as representative of the whole spectrum of possible model configurations. Fur-
thermore, this fake exactness offered by the numerical simulation of models with
actually uncertain, but crisply quantified parameters can make the comparison be-
tween numerical simulations and experimental testing questionable. Namely, such
a comparison may be rated as unsatisfactory if the simulation results obtained with
crisp, i.e., discrete and non-fuzzy values do not well match the experimental ones,
even though it might be absolutely satisfactory, if the uncertainties inherent to the
models would have been appropriately taken into account in the simulation proce-
dure.

While aleatory uncertainties have successfully been taken into account by the use
of probability theory (Loeven and Bijl (2008); Stroud, Krishnamurthy, and Smith
(2002)) and, in practice, by Monte Carlo simulation, the additional modeling of
epistemic uncertainties still remains a challenging topic. As a practical approach to
address this issue, a special interdisciplinary methodology to comprehensive mod-
eling and analysis of systems is presented which allows for the inclusion of uncer-
tainties - in particular of those of epistemic type - from the very beginning of the
modeling procedure. This approach is based on fuzzy arithmetic, a special field of
fuzzy set theory, which will be described in the following.

A special application of the theory of fuzzy sets, which is rather different from the
well-established use of fuzzy set theory in fuzzy control, is the numerical imple-
mentation of uncertain model parameters as fuzzy numbers (Kaufmann and Gupta
(1991)). Fuzzy numbers are defined as convex fuzzy sets over the universal set R
with their membership functions µ(x) ∈ [0,1], where µ(x) = 1 is true only for one
single value x = x ∈R, the so-called center value or nominal value. For example, a
fuzzy number p̃ of triangular (linear) shape, expressed by the abbreviated notation
(Hanss (2005))

p̃ = tfn(x,wl,wr) , (1)

is defined by the membership function

µp̃(x) = min
{

max
[
0,1− (x− x)/wl

]
,max

[
0,1− (x− x)/wr

]}
∀ x ∈ R , (2)
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or, more explicitly, by

µp̃(x) =





0 for x≤ x−wl
1+(x− x)/wl for x−wl < x < x
1− (x− x)/wr for x≤ x < x+wr
0 for x≥ x+wr .

(3)

A triangular fuzzy number is shown in Fig. 1. However, any other shape of mem-

µ(x)

x x

p̃

wl wr

0

1

Figure 1: Triangular fuzzy number p̃.

bership function may be selected if appropriate to quantify the uncertainty of a
specific model parameter. The calculation with fuzzy numbers is referred to as
fuzzy arithmetic and proves to be a non-trivial problem, especially with regard to
the evaluation of large mathematical models with fuzzy-valued operands.

2.2 Uncertainty Propagation Based on the Transformation Method

As a successful practical implementation of fuzzy arithmetic, which allows the
evaluation of arbitrary systems with uncertain, fuzzy-valued model parameters, the
transformation method (Hanss (2002)) is used. Alternative methods to numerically
handle uncertainties are, for example, presented in (Hanss, Herrmann, and Haag
(2009)). The transformation method is available in a general, a reduced and an
extended form, with the most appropriate form to be selected depending on the
type of model to be evaluated (Hanss (2002, 2005, 2003)).

Assuming the uncertain system to be characterized by n fuzzy-valued model pa-
rameters p̃i, i = 1,2, . . . ,n, the major steps of the method can briefly be described
as follows:
In the first step, each fuzzy number p̃i is discretized into a number of nested inter-
vals X ( j)

i = [a( j)
i ,b( j)

i ], assigned to the membership levels µ j = j/m, j = 0,1, . . . ,m,
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that result from subdividing the possible range of membership equally spaced by
∆µ = 1/m, see Fig. 2. In a second step, the input intervals X ( j)

i , i = 1,2, . . . ,n,
j = 0,1, . . . ,m, are transformed to arrays X̂ ( j)

i that are computed from the upper and
lower interval bounds after the application of a well-defined combinatorial scheme
(Hanss (2002, 2005)). Each of these arrays represents a specific sample of possi-
ble parameter combinations and serves as an input parameter set to the problem to
be evaluated. As a result of the evaluation of the model for the input arrays X̂ ( j)

i ,
output arrays Ẑ( j) are obtained which are then retransformed to the output inter-
vals Z( j) = [a( j),b( j)] for each membership level µ j and finally recomposed to the
fuzzy-valued output q̃ of the system.

In addition to the simulation part of the transformation method described above,
the analysis part of the method can be used to quantify the influence of each fuzzy-
valued input parameter p̃i on the overall fuzziness of the model output q̃. For these
purposes, the standardized mean gain factors κi and ϕi, and the normalized degrees
of influence ρi and ωi have been introduced (Hanss (2002, 2005); Gauger, Turrin,
Hanss, and Gaul (2007)), quantifying in an absolute and in a relative character, re-
spectively, the effect of the uncertainty of the ith model parameter p̃i on the overall
uncertainty of the model output q̃. In (Hanss (2002, 2005)), a standardization with
respect to the nominal values is incorporated into the computation of the standard-
ized mean gain factors κi and of the normalized degrees of influence ρi, whereas
the approach proposed in (Gauger, Turrin, Hanss, and Gaul (2007)) considers the
influences of the overall input uncertainty on the overall output uncertainty.

Vibration Analysis of Fluid-Filled Piping Systems with Epistemic Uncertainties 5

As a result of the evaluation of the model for the input arraysX̂ ( j)
i , output arrayŝZ( j)

are obtained which are then retransformed to the output intervalsZ( j) = [a( j),b( j)]
for each membership levelµ j and finally recomposed to the fuzzy-valued outputq̃
of the system.

In addition to the simulation part of the transformation method described above,
the analysis part of the method can be used to quantify the influence of each fuzzy-
valued input parameter̃pi on the overall fuzziness of the model outputq̃. For these
purposes, the standardized mean gain factorsκi and the normalized degrees of influ-
enceρi have been introduced [11, 13, 7], quantifying in an absoluteand in a relative
character, respectively, the effect of the uncertainty of the ith model parameter̃pi

on the overall uncertainty of the model outputq̃. In [11, 13], a standardization with
respect to the nominal values is incorporated into the computation of the standard-
ized mean gain factorsκi and of the normalized degrees of influenceρi, whereas
the approach that is proposed in [7] considers the influencesof the overall input
uncertainty on the overall output uncertainty.

a( j)
i b( j)

iX( j)
i

xi

p̃i

0

1

µ j

µ j+1

∆ µ

µ p̃i(xi)

Fig. 1 Decomposition of a fuzzy number̃pi into intervalsX( j)
i , j = 0,1, . . .,m.

Among other advantages of the transformation method, its characteristic prop-
erty of reducing fuzzy arithmetic to multiple crisp-numberoperations entails that
the transformation method can be implemented without majorproblems into an ex-
isting software environment for system simulation [13]. Expensive rewriting of the
program code is not required. Instead, the steps of decomposition and transforma-
tion as well as of retransformation and recomposition can preferably be coupled to
an existing, commercial software environment by a separatepre- and postprocessing
tool.

Figure 2: Decomposition of a fuzzy number p̃i into intervals X ( j)
i , j = 0,1, . . . ,m.

Among other advantages of the transformation method, its characteristic property
of reducing fuzzy arithmetic to multiple crisp-number operations entails that the
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transformation method can be used with an existing software environment for sys-
tem simulation even if its internals are not known or accessible (Hanss (2005)).
Expensive rewriting of the program code is not required. Instead, the steps of de-
composition and transformation as well as of retransformation and recomposition
can be coupled to an existing software environment by a separated pre- and post-
processing tool.

3 Chute Flow Studies Using Particle Methods

3.1 Laboratory Model

To demonstrate the potentially high sensitivity of numerical debris flow models, a
virtual laboratory representation is generated, that serves as basis for a numerical
uncertainty analysis. As debris flows tend to follow natural or artificial grooves, the
flow-bed of the slide is simplified towards a prismatic chute, see Fig. 3. To allow
for the simulations to be reproducible, the rock material is replaced by glass beads,
thus considering only dry debris. Initially, the glass beads are stored in a reservoir
at the upper end of the chute. At the beginning of the test the downstream facing
barrage of the particle container is instantaneously removed. A resulting particle
wave then starts to slide downstream. After a short period of free flow, the wave
hits a barrier, see Fig. 3. Two types of barriers are compared, one with a single
column and one with two columns. In both setups the total surface of the barrier,
facing in downstream direction is equal. The barrier represents a geotechnical engi-
neering construction that is designed to reduce the impulse of the debris flow and to
smooth its peak. Such constructions are typically placed above human settlements
or infrastructure. To compare the efficiency of the two barrier designs, the impulse
of the flow wave is measured at a control plane behind the barrier. The geometric
parameters of the chute flow laboratory setup are summarized in Tab. 1.

Figure 3: Setup of the chute flow laboratory model.
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Table 1: Geometric parameters of the chute flow laboratory model.

parameter value
chute wall height b [m] 0.15
chute base width w [m] 0.05
chute wall slope α [-] 60◦

chute slope β [-] 20◦

distance barrier- l1 [m] 0.17
control plane
container length a [m] 0.153

parameter value
distance barrage- l2 [m] 0.5
barrier
barrier width wp [m] 0.03
barrier length dp [m] 0.03
number of spheres n [-] 5000
sphere diameter d [mm] 6

3.2 Numerical Simulations

Using a computational model of the chute-flow laboratory model, one is able to
perform a sensitivity analysis. To describe the motion of the particles, the Discrete
Element Method (DEM) (Cundall (1971)) is chosen. This approach models the
glass spheres as very stiff bodies with unconstrained dynamics. The spheres ex-
change impulse through surface contacts. Following the DEM approach, the parti-
cle dynamics is time-integrated on force-acceleration level (Fleissner and Eberhard
(2008)). This requires a suitable model for the particle contact forces. In a chute
flow, particle contact forces are relatively small as they only result from inertial
forces due to the absence of external compression. Therefore, a linear elastic con-
tact model is well suited to compute the elastic contact force fi j

e acting on a sphere
i at the position ri in case of a contact with another sphere j at position r j. This
force depends on the depth of spheres’ common surface interpenetration δ i j and
the sphere radii Ri and R j as

4ri j = ri− r j, (4)

ni j =
4ri j

||4ri j||
, (5)

δ
i j = Ri +R j−ni j ·4ri j, (6)

fi j
e = knδ

i jni j. (7)

The parameter kn is the stiffness of the normal contact. The coefficient of restitution
for contacts between glass spheres is usually quite close to one. The resulting
dissipation is modeled through a linear damper that is introduced in parallel to
the linear elastic contact force element. The resulting dissipative force acting on
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sphere i is computed from the velocities of the spheres vi and v j as

fi j
d = dnni j · (v j−vi)ni j. (8)

Though this approach is widely used, the damping parameter dn is usually deter-
mined by matching experiments and simulations. For alpine debris flows, such
experiments are hardly possible. Contact damping is thus a highly epistemically
uncertain parameter which, for this study, was estimated by educated guess.

Contacts between dry glass spheres cannot be modeled adequately without consid-
ering slipping and sticking friction forces fi j

f . Thereby, sticking friction requires a
special treatment as it is not an applied force. The tangential elasticity of the contact
region that results from surface roughness is modeled via a linear elastic tangen-
tial element (Cundall and Strack (1979); Brendel and Dippel (1998)). However,
due to a lack of knowledge about the tribologic conditions in a real debris flow,
the stiffness of the respective tangential element is another epistemically uncertain
parameter.

The resulting overall force on a sphere i is computed as an accumulation of the
applied forces that result from contacts with other spheres as

fi = ∑
j

fi j = ∑
j

fi j
e + fi j

d + fi j
f . (9)

All contact forces fi j on sphere i are thereby also considered as counter forces
acting on spheres j. To resolve contacts between the glass spheres and the boundary
geometry of chute and barrier, the entire boundary geometry is considered as rigid,
following the approach introduced in (Fleissner, Gaugele, and Eberhard (2007)).

Another parameter that is regarded as epistemically uncertain is the material density
of the debris. Only the density of the glass beads, used for this study, is measurable.
Therefore, it is chosen as the nominal value for the stiffness uncertainty analysis.
All important material and contact parameters of the simulation model are listed in
Tab. 2.

Figures 4 and 5 depict the particle motion in the chute. The displayed snapshots
exhibit how the barrier causes a stagnation of the overall particle motion above the
barrier. At the barrier the spheres are deflected from their initial trajectory, which
causes a loss of kinetic energy and impulse of the particle ensemble. The particle
wave is thus effectively smoothed by the barrier. This becomes even more evident
if the particle ensemble motion is compared to the motion of the same ensemble in
case the barrier is omitted, see Figs. 4(a) and 4(b).
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Table 2: Parameters of the sphere contact model.

parameter value
material density (nominal) ρmass [kg/m3] 2500
slipping friction coefficient µ [-] 0.6
sticking friction coefficient µ0 [-] 0.8
normal stiffness kn [105 N/m] 7.85
normal damping (nominal) dn [10−1 Ns/m] 1.4
tangential stiffness (nominal) kt [104 N/m] 1

(a) Free flow (b) Single-column barrier

Figure 4: Snapshots from chute flow particle simulations.

3.3 Uncertainty and Sensitivity Analysis

The sensitivity of a parametric system is characterized by the magnitude of the
variation of specific output parameters with respect to variations of specific input
parameters. Three epistemically uncertain input parameters are investigated in a
sensitivity analysis. The chosen parameters are the material density ρmass, the tan-
gential stiffness kt of the sticking friction model and the normal contact damping
parameter dn. The density is chosen as an example for a parameter that is uncertain



190 Copyright © 2009 Tech Science Press CMES, vol.52, no.2, pp.181-196, 2009

Figure 5: Debris deflection at the single-column barrier

as it is very difficult to estimate for a large amount of real debris. The latter two
parameters are examples for the type of epistemically uncertain parameters that are
part of a simplified physical model. This type of parameters is usually determined
by curve fitting of experimental data, a method that is inherently subjective and thus
uncertain. Even a curve fitting requires a number of experiments and simulations.
As the resulting overhead is often unacceptable, parameters of the respective type
are determined by educated guess. In Tab. 3, the parameters of the triangular fuzzy
input parameters p̃i that are used for the uncertain simulations are given.

Table 3: Input parameters for the uncertainty analysis.

parameter p̃i = tfn(xi,wl,i,wr,i) xi wl,i wr,i

material density (nominal) ρmass [kg/m3] 2500 250 250
normal damping (nominal) dn [10−1 Ns/m] 1.4 0.7 0.7
tangential stiffness (nominal) kt [104 N/m] 1 0.5 0.5

A uniform grid is used to generate sets of parameters from the three dimensional
parameter space of ρmass, kt and dn. This sampling process results in an array X̂ ( j)

i
with 189 sets of input parameters. All simulations are carried out using the particle
simulation program Pasimodo (Fleissner (2009)), which is developed at the Insti-
tute of Engineering and Computational Mechanics of the University of Stuttgart.
One simulation run of the chute flow using Pasimodo on a 3.2GHz Pentium IV
takes approximately three hours. Thus the overall computation time is about 24
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days. As the computations for different parameter sets are independent, the overall
simulation process is accelerated by distributing the simulations to several proces-
sors on a computer cluster. The results of all simulations are gathered to serve as
input for a post processing that reassembles the actual uncertainty analysis.

4 Results

From a practical point of view, it is interesting to consider the impulse that affects
a structure that is hit by a debris flow. In this work, the debris flow is approximated
by the previously described chute flow and the affected structure is represented by
a virtual control plane that is located below the debris flow barrier and oriented
perpendicular to the flow. The quantity that is used to assess the potential damage
of the structure is the accumulated impulse that acts on the control plane. Figure 6
shows the accumulated impulse on the control plane for three nominal simulations,
one without any barrier and the other two with a single-column or a double-column
barrier, respectively. The accumulated impulse is reduced by about 90% through
the barriers which shows their effectiveness.
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Figure 6: Accumulated impulse on the control plane for the nominal input param-
eter set.

In Figs. 7(a) and 7(b), the accumulated impulse is shown for a debris flow barrier
with a single column and a double column, respectively. The dashed lines depict
the results of nominal simulations, i.e., the results that emerge if no uncertainty
is considered. The other lines reflect the ranges of possible outputs for different
membership levels or, equivalently, for different degrees of possibility. It is evident,
in fact, that it makes sense to consider uncertainty, as the worst-case output deviates
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Figure 7: Uncertain accumulated impulse over time for two debris-flow barrier
designs.

about ±50% from the nominal configuration. For assessing the risk of an exposed
structure, this variance definitely has to be taken into account.

In order to reduce the output uncertainty and to achieve a better understanding
of the system under consideration, it is important to know which uncertain input
parameter causes which amount of output uncertainty. This question is answered
by the so-called measures of influence which are a by-product of the transforma-
tion method. Figure 8 shows the values of ρi for the accumulated impulse over
time. The influence measure ρi reflects the relative effect of an unitary percentaged
variation of the input p̃i on the output. Recalling the definition of the impulse as
the product of velocity and mass, it appears plausible that the uncertainty of the
impulse is predominantly governed by the uncertainty of the material density, but
it is also clear that the parameters of the contact model do have a non-negligible
effect on the dynamic behavior of the particle set. Figure 8 quantifies these com-
peting influences and reveals that the uncertainty of the density makes up about
80% of the output uncertainty while the two parameters of the contact model make
up about 10% each. The short-term fluctuations that can be observed for points in
time which are smaller than about 0.8s are attributed to the normalization with very
small values and cannot be considered as reliable.

The use of a unitary percentaged variation of the input parameters is indicated when
a rather theoretical analysis of a system is performed. In the previous paragraph,
this is done for the accumulated impulse, and the acquired influence measures are
compared to an estimation based on the underlying mathematical equations.



Uncertainty Analysis for a Particle Model of Granular Chute Flow 193

0 0.5 1 1.5 2 2.5
0

0.5

1

time [s]

ρ i [−
]

 

 
material density

normal damping

tangential stiffness

Figure 8: Normalized relative measure of influence ρi for the accumulated impulse
on the control plane behind the single-column barrier.

In engineering applications, however, some parameters allow for a much larger rel-
ative worst-case deviation than others. As a consequence, it is indicated to consider
the direct contribution ϕi of the input uncertainty to the uncertainty of the output
on an absolute scale. In Fig. 9, these absolute measures of influence ϕi are shown
for the accumulated impulse for both designs. As the estimation of the uncertain-
ties of the inputs is done to the authors’ best knowledge, it becomes clear that the
influence of the uncertainty of the material density loses its dominant role and in
reality only makes up about a third of the uncertainty of the output and thus is not
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Figure 9: Absolute measure of influence ϕi for the accumulated impulse.
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Figure 10: Relative deviation of the accumulated impulse for two different designs.

more important than the two uncertain contact parameters tangential stiffness and
normal damping. For the single-column design, the uncertainty increases faster at
the beginning while it increases linearly for the double-column design.

Besides the computation of worst-case bounds and influence measures, the uncer-
tainty analysis based on the transformation method offers the possibility to compare
different models and designs on a much broader basis than it can be done by only
crisp-valued simulations. For the debris flow under consideration, two different
designs are compared with each other. The first design contains one column in the
middle of the particle flow while the second design consists of two columns with
the same total cross-sectional area as the first design. A comparison of the two
designs reveals that the nominal value of the second design is significantly smaller
than the nominal value of the first design, see Fig. 7. Thus, the potential damage
of a structure is expected to be smaller and the design with two columns is prefer-
able to the other design. Another aspect that has to be compared before making
final design decisions is the reliability of the computational results. For this reason,
Figs. 7(a) and 7(b) are normalized with respect to their nominal value and com-
pared in Fig. 10. It can be seen that the relative deviation of the output uncertainty
is approximately the same for both designs. Moreover, both designs are equally
sensitive to the input uncertainties that are considered in this work. Thus, from
an uncertainty point of view, the preference of the double-column design, which
originally was based on simulations with nominal values only, can be confirmed.
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5 Conclusions

For the particle-flow problem considered in this work, it is strongly recommended
to consider uncertainties in the simulation process as precise values for the contact
parameters as well as for the mass properties of the system are unknown for the
most part and these uncertainties have an enormous effect on the output of inter-
est. With respect to the issue of risk analysis and safety assessment, the inclusion
of uncertainties in analysis and design of protective structures using a fuzzy arith-
metical approach represents a comprehensive and well-defined strategy. Moreover,
advanced and better-founded safety factors can be derived which are based on a
numerical analysis of the problem, rather than on educated guesses only.
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