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A Generalized Kelvin Solution Based BEM for Contact
Problems of Elastic Indenter on Functionally Graded

Materials

H. T. Xiao1 and Z. Q. Yue2

Abstract: This paper presents a three-dimensional boundary element method
for contact problems of an elastic indenter on the surface of functionally graded
materials (FGMs). The FGM elastic properties can have any irregular variations
with depth. The indenter is subjected to the loading normal to the flat contact sur-
face. The classical Kelvin solution is used for the mathematical formulation of
the homogeneous elastic indenter. The generalized Kelvin solution is used for the
mathematical formulation of the FGM base. The contact variables are defined with
respect to each of the surfaces using local coordinate systems. The corresponding
contact equations are used to couple the two sets of the linear equation systems for
the indenter and the FGM. The numerical verifications illustrate that the proposed
method can obtain accurate results for the contact displacement and stress. Numer-
ical results for an elastic rectangular plate centrically or eccentrically indenting a
FGM of actual depth variation property are presented and analyzed.

Keywords: functionally graded materials, FGM, contact problem, BEM, elastic
indenter, rigid indenter, frictional contact surface

1 Introduction

Functionally graded materials (FGMs) are one of the peculiar heterogeneous solid
materials because their properties vary along the depth direction only and have
no change along the lateral directions. Topics concerning the contact problems
between an indenter and a FGM are of interest to researchers and engineers in
applied mechanics and many branches of engineering.

Publications on contact problems are extensively available in the literature. A thor-
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ough description and review of the contact problems may be found in the treatises
written by Gladwell (1980), Johnson (1985), Hills et al. (1993) and Selvadurai
(2007). Some important contributions to the FGM contact problems are specially
discussed below. Selvadurai (1979) and Gladwell (1980) developed the approaches
to the formulation of elastostatic contact problems and embedded anchor problems
dealing with isotropic and inhomogeneous elastic media. Rowe and Booker (1981)
examined the axisymmetric surface settlement of a non-homogeneous elastic soil
with a crust subjected to a rigid circular footing using a finite layer analysis method.
Booker et al. (1985) provided analytical solutions for the behavior of a smooth rigid
disc due to a normal load or a moment on the surface of a non-homogeneous half-
space. Rajapakse and Selvadurai (1991) used a variational technique and further
examined the axisymmetric response of a circular footing and an anchor plate in
a linearly non-homogeneous elastic soil of halfspace extent. Yue and Selvadurai
(1995) solved the problems of both asymmetric and axisymmetric indentation of
a rigid circular plate on a saturated poroelastic halfspace. Selvadurai (1996) ex-
amined the axisymmetric indentation of a half-space by a rigid circular foundation
with a smooth flat base where the shear modulus varies with depth in exponential
function and the Poisson’s ratio always has no change.

In more recent years, Guler and Erdogan (2006) analyzed the two-dimensional con-
tact problems of two deformable elastic solids with graded coatings. Vignjevic et
al. (2006) and Oishi et al. (2008) developed some algorithms for different contact
problems. Pak et al. (2008) analyzed tensionless contact of a flexible plate and
annulus with a smooth half-space with integral equation method.

In examining the FGM contact problems with analytical methods, it is generally
assumed that the FGM elastic properties vary with depth in simple functions. How-
ever, such simplified depth variation models sometimes cannot represent the actual
property variations in depth. Numerical methods have to be used. For example,
Pender et al. (2001) used finite element method (FEM) to investigate the contact
problems of a rigid indenter on a graded substrate with irregular property change
in depth.

On the other hand, the use of BEM to examine contact problems has been well re-
ported in the literature. For examples, Man et al. (1992) presented a 2D BEM analy-
sis of contact problems with an iterative and fully-incremental technique. Olukoko
et al. (1994) reviewed three alternative BEMs to model contact problems with fric-
tional slipping. The first method is based on node-on-node matching along the
interface. The other two are along an independent discretization of the contacting
bodies. Hack and Backer (1999) analyzed the 2D frictional contact problems under
tangential loading using the local coordinates. Leahy and Becker (1999a, 1999b)
developed the 3D BEM for contact problems with frictional slipping. Gun (2004)
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used the 3D BEM developed to analyze 3D elasto-plastic contact problems. Keppas
et al. (2008) developed a BEM to treat 2D time dependent thermo-elastic contact
problems and incorporated the thermal resistance along the contacting surfaces.
Blázquez and París (2009) showed that the use of a non-conforming algorithm as-
sociated with a weak application of the contact conditions could reduce the incom-
patibilities and produce a smooth distribution of the contact stresses. However, the
literature review of the present study indicated that there are few publications in the
open literature on BEM based analysis for the FGM contact problems.

In this paper, a boundary element method (BEM) is presented for further analysis
of the contact problems between an elastic indenter and a FGM, as shown in Fig.
1. The indenter is modeled as a homogeneous elastic solid and is analyzed with the
conventional Kelvin solution based BEM. The FGM is modeled as a layered elastic
system and analyzed with the generalized Kelvin solution based BEM (Yue, 1995;
Yue and Xiao, 2002; Xiao et al. 2005). The node-on-node approach is utilized for
the contact area. The contact variables are defined with respect to each surface of
two domains using the local coordinate systems. The elastic indenter can be rigid
if its modulus is provided with a large value. Two verifications are also presented
to compare the present contact stress results with those given in the literature. The
proposed BEM is further used to analyze the eccentric indentation of a rectangular
elastic plate on a FGM. The FGM is the Silicon Nitride-Oxynitride Glass system
given in Pender et al. (2001). Two cases of contact problems are considered. The
displacements and stresses in FGM are further presented and analyzed.
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Figure 1: Contact problem between an elastic indenter and a FGM halfspace
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2 BEM Formulations for FGM Contact Problems

2.1 Formulations for indenter

The indenter is modeled as a homogeneous, isotropic elastic solid. The classical
Kelvin solution for a point load in a homogeneous elastic space is used for analysis
of the elastic indenter shown in Fig. 1a. The boundary integral equation can be
written as follows:

Ci j (P)u j (P) =
∫

S1

uK
i j (P,Q) t j (Q)dS (Q)−

∫
S1

tK
i j (P,Q)u j (Q)dS (Q) (1)

where u j and t j are, respectively, the displacements and tractions on the boundary
surface of the indenter S1; uK

i j and tK
i j are the displacements and tractions of the

Kelvin solutions; P and Q denote, respectively, the source and field points on the
boundary S1; and Ci j (P) is a coefficient dependent on the local boundary geometry
at the source point P.

2.2 Formulations for FGM

The FGM has its isotropic elastic properties variable in depth, shown in Fig. 1b.
The generalized Kelvin solution given by Yue (1995) is used. This basic solution
is an extension of the classical Kelvin solution and is for stress and displacement
field in a layered elastic solid of infinite extent due to the action of point loads.
Each layer is a homogeneous elastic solid of finite thickness and infinite lateral
extension. The total number of the dissimilar elastic layers is an arbitrary integer
n (0 ≤ n < ∞). The layers adhere to the first homogeneous elastic solid of upper
semi-infinite extent and the last homogeneous elastic solid of lower semi-infinite
extent. The interface between any two connected dissimilar layers is planar and
fully bonded. All the layer interfaces are parallel to each other. The convergence
and accuracy of the solution are rigorously and analytically verified. This solution
has been used for the analysis of crack problems in FGMs (Yue and Xiao, 2002,
Xiao et al. 2005).

For this FGM contact problem, the shear modulus of the first solid of upper semi-
infinite extent is assigned a zero value (or an infinitesimal value, e.g., 10−15 MPa).
Consequently, the first elastic solid becomes a void space of upper semi-infinite ex-
tent. The generalized Kelvin solution for a point load in a multilayered elastic solid
of infinite extent is automatically degenerated into the generalized Boussinesq-
Cerruti solution for a point load in a layered halfspace (Yue, et al. 1999).

For 0≤ z≤ h, the FGM is modeled as the layered elastic solid. Each layer has the
thickness equal to h/n. Each layer has its elastic modulus E (z) and Poisson ratio
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ν (z) at its upper depth. For h ≤ z < ∞, the FGM is modeled as the last homoge-
neous elastic solid of lower semi-infinite extent. If its shear modulus approaches
to infinity or is assigned an extremely large value (say, 1015 MPa), this last elastic
solid would become a rigid base foundation to support the above FGM layer.

As Yue and Xiao (2002) and Xiao et al. (2005), a large layer number n is selected
for obtaining the solution of the FGM with a good degree of accuracy.

The displacements on the FGM contact surface can be expressed as

ui (Q) =
∫

S2

uY
i j (Q,P) t j (P)dS (P) (2)

where uY
i j is the displacements of the generalized Kelvin solution; S2 is the contact

surface ; P and Q denote, respectively, the source and field points on the boundary
S2.

It is noted that Eq. 2 does not contain the integration on the layer interfaces because
the solution strictly satisfies the interface conditions. Discretization along layer in-
terfaces are not needed in this BEM formulation. Thus, similar to Mindlin solution
based BEM, only the contact surface is needed to be discretized.

Eqs. 1 and 2 are discretized accordingly. The eight-noded isoparametric elements
are employed to discretize the indenter surface and the contact face (Fig.2). Two
sets of linear equation system are obtained for solution of the unknown contact
displacements and contact stresses. For a rigid indenter, the contact stresses are
singular at the contact circumference (Yue, 1996). In order to accurately compute
the displacements and stresses near the contact circumference, the traction singular
elements of eight nodes are used (Xiao et al. 2005).

2.3 Contact conditions

When the elastic indenter contacts the FGM, each solid has a normal direction
x3 and two orthogonal tangential directions x1 and x2, as shown in Fig. 1a. The
coordinate systems in Fig. 1a follow the right-hand side screw rule. Each contact
node has six contact variables which are the three contact displacements and the
three contact stresses.

The contact conditions are the continuity of the two normal displacements and the
equilibrium condition for each pair of the six contact stresses. They are imposed
on the contact node pairs.

In addition, two contact cases are considered. The first case is that the contact is
fully bonded, where the two contact tangential displacements along each of the two
orthogonal tangential directions are equal. The second case is that the contact has
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Figure 2: Axisymmetric FEM meshes for indentation of an elastic circular cylinder
on a homogeneous elastic base of half space extent

frictional slippage that follows the Coulomb frictional criterion, where the two con-
tact tangential displacements along each of the two orthogonal tangential directions
are different.

Let the symbol (m) for the indenter and the symbol (g) for the FGM. In the local
coordinate systems, the common contact conditions for the two cases at a node pair
can be expressed as follows:

u(m)
x3 =−u(g)

x3 +δ (3)

t(m)
x3 = t(g)

x3 (4)

t(m)
x1 =−t(g)

x1 (5)

t(m)
x2 = t(g)

x2 (6)

The additional contact conditions for the first case at a node pair can be expressed
as follows:

u(m)
x1 = u(g)

x1 (7)

u(m)
x2 =−u(g)

x2 (8)
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The additional contact conditions for the second case at a node pair can be ex-
pressed as follows:

t(g)
x1 = St1µ t(g)

x3 (9)

t(g)
x2 = St2µ t(g)

x3 (10)

where δ is an initial gap possibly between the contact nodes and µ is the coefficient
of contact friction. St1 and St2 are equal to +1 or –1 if the slip occurs along or
opposite the directions of the x(g)

1 and x(g)
2 axes, respectively.

2.4 Coupling the system equations

Eq. 1 for the indenter and Eq. 2 for the FGM are then coupled together at the contact
nodes. Two sets of simultaneous linear equation systems can be expressed in matrix
form as follows:[

A(g) 0
0 A(m)

][
u(g)

u(m)

]
=
[

B(g) 0
0 B(m)

][
t(g)

t(m)

]
(11)

where u and t are the sub-matrices of the displacement and tractions, respectively;
the sub-matrices A and B are the coefficient matrices of the displacements and
tractions, respectively.

Eq.11 can be re-written in terms of sub-matrices for the global directions for all
nodes. Eq.11 is further converted from the global coordinate expressions to the
local coordinate expressions. Subsequently, the contact equations in Eqs. 3 to 10
can be incorporated into Eq.11.

For the first contact case, the BEM results can be directly obtained by solving the
new linear equations. However, for the second contact case, it is necessary to solve
a series of the linear equations in an iterative process until all the other conditions
are met. These conditions include that there are not tensile stresses in contact area
and no overlap outside the contact area. The frictional slipping or sticking is judged
in the iterative process.

2.5 Displacements and stresses in FGM

After having obtained the contact displacements and three contact stresses, the dis-
placements and stresses at any point within FGM can be further obtained with the
following expressions

ui (q) =
∫

S2
uY

i j (q,P) t j (P)dS (P)
σi j (q) =

∫
S2

σY
i jk (q,P) tk (P)dS (P) (12)



166 Copyright © 2009 Tech Science Press CMES, vol.52, no.2, pp.159-179, 2009

where uY
i j and σY

i jk are the displacements and stresses at the q point induced by t j(or
tk) located at the P point in the FGM.

It is noted that Eq.12 has the integrals of weak and strong singularities for com-
puting the additional displacements and stresses on the contact surface. So, Eq.12
is not used for the values at the contact surface. Instead, the results at the nodes
and the constitutive equations are used for accurate values of the displacements and
stresses at any point on the contact surface (Brebbia et al. 1984).

3 Numerical verifications

3.1 Numerical verification A

Two conventional contact problems are used for the numerical verifications. The
first is the normal contact of circular elastic cylinder on a homogeneous elastic solid
of semi-infinite extent. The cylinder has a unit radius a ( = 1), height 2a, elastic
modulus Ep and Poisson’s ratio 0.2. Its upper flat surface is subjected to a uniform
pressure p0. Its lower flat surface fully contacts with the elastic foundation.

Due to symmetry, a quarter of the cylinder and foundation system is discretized.
The boundary element meshes are shown in Fig. 2. The contact surface has 76
eight-noded elements. The cylinder has 232 eight-noded elements.

The exact solution for a smooth rigid cylinder is available in the literature. The
non-dimensional rigid cylinder settlement can be expressed as follows.

W = w0aE f /p0(1−ν
2) = 0.3184 (13)

where E f and ν are respectively the elastic modulus and Poisson’s ratio of the
foundation, and w0 is the rigid cylinder settlement.

The non-zero contact stress is the normal stress and expressed as follows:

p(r) = p0/
(

2
√

1− r2
)

(14)

where r(0≤ r < 1) is the radial distance.

The BEM results for the non-dimensional rigid cylinder settlement W at the con-
tact center are 0.3153 and 0.3137 for Ep/E f = 102 and Ep/E f = 105, respectively,
which are close to the rigid cylinder value 0.3184. The BEM results for the non-
zero normal contact stress are shown in Fig. 3, where Ep/E f = 1, 10, 102 and
105, respectively. It is evident that as Ep/E f increases, the normal contact stress
becomes closer and closer to the exact solution.
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Figure 3: Axisymmetric normal contact stresses for different modulus ratios be-
tween the cylinder and the base
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Figure 4: Normal indentation of a cube on homogeneous elastic base of half space

3.2 Numerical verification B

The second is the indentation of an elastic cube on a homogeneous elastic base of
half space extent, as shown in Fig. 4. The cube has a side length 2.0 m and has
the same elastic constants as the elastic base. The elastic modulus is E and the
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Figure 5: FEM meshes for normal indentation of a cube on homogeneous elastic
base of half space

Poisson’s ratio ν = 0.2. The friction coefficient µ = 0 or µ = 0.2 is used for the
contact surface. The uniform pressure p has the same value as the elastic modulus
E. The BEM meshes are shown in Fig. 5. Due to symmetry, a quarter of the
cube and the base system is discretized. The contact surface has 100 eight-noded
elements (Fig. 5a). The cube has 400 eight-noded elements (Fig. 5b). It is noted
that a similar contact problem was considered in Leathy and Becker (1999b), where
the base was limited to a rectangular solid of height 4 m, width 16 m and depth 16
m.

The present BEM results for the normal and shear stresses are shown in Figs. 6
and 7, respectively, where the FEM and BEM results in Leathy and Becker (1999b)
are also plotted. The normal contact stress values from the present study have a
good agreement with the results in Leathy and Becker (1999b). However, the shear
contact stress values have some differences with the results in Leathy and Becker
(1999b). Furthermore, the normal contact stress within the inner contact region is
slightly lower for the frictional contact µ = 0.2 than for the smooth contact µ = 0.0.



A Generalized Kelvin Solution Based BEM for Contact Problems 169

 

0.0 0.2 0.4 0.6 0.8 1.0
0.5

1.0

1.5

2.0

2.5

3.0
N

or
m

al
 s

tre
ss

 (N
/m

2 )

Distance along interface (m)

Leahy & Becker (1999)
 μ=0.2
 μ=0.0

The present results
 μ=0.2
 μ=0.0

Figure 6: Normal contact stress results
and comparison with others’ results

0.0 0.2 0.4 0.6 0.8 1.0
-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

S
he

ar
 s

tr
es

s 
(N

/m
2 )

Distance along interface (m)

Leahy & Becker (1999)
μ=0.2:  FEM,  BEM

The present results
μ=0.2: 

 

Figure 7: Shear contact stress results
and comparison with others’ results

4 Applications

4.1 The FGM contact problem

Fig. 8 illustrates the FGM contact problem examined in this study. The elastic
rectangular plate is subject to a point normal load Pz (3000 N) and is in smooth
contact with the FGM. The plate is 2 mm long, 1 mm wide and 0.25 mm high.
Accordingly, the contact area is 2 mm by 1 mm. The plate has its elastic modulus
E p=1010 GPa. So, it is rigid.

The graded material of Si3N4-based ceramics in Pender et al. (2001) is used as the
FGM. The FGM has a constant Poisson’s ratio 0.22 and a depth variable elastic
modulus (GPa) as follows.

E(z) = 225.01+370.6z, 0≤ z≤ 0.05mm
E(z) = 243.54+76.4(z−0.05) , 0.05≤ z≤ 0.10mm
E(z) = 247.36+450.8(z−0.1), 0.10≤ z≤ 0.15mm
E(z) = 269.90+145.0(z−0.15), 0.15≤ z≤ 0.20mm
E(z) = 277.20+122.2(z−0.20), 0.20≤ z≤ 0.25mm
E(z) = 283.26−53.4(z−0.25), 0.25≤ z≤ 0.30mm
E(z) = 280.59+294.1(z−0.30), 0.30≤ z≤ 0.40mm
E(z) = 310.0, z≥ 0.40mm

(15)

where z is the depth as shown in Figs. 8 and 9.

The FGM from the depth 0 to 0.4 mm is descritized into 30 thin layers, as shown
in Fig. 9. Each layer has a constant modulus from Eq. 9. The FGM from the depth
0.4 mm to ∞ is modeled as a homogeneous elastic solid of lower halfspace extent.
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Figure 9: Arbitrary variation of elastic modulus in layer for actual measured mod-
ulus

For comparison, the FGM is also modeled as a homogeneous elastic solid of lower
halfspace extent. Its elastic modulus is equal either to the lower limit 225.01 GPa
at z = 0 or the upper limit 310 GPa at z = 0.4 mm of the actual FGM.
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Figure 10: BEM mesh of 724 elements and 2122 nodes for the elastic rectangular
plate with high modulus
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Figure 11: Vertical displacements of the contact surface due to central load

The point normal load Pz is applied at either the plate centre (0, 0, -0.25 mm) or an
eccentric point (0.6 mm, 0.3 mm, -0.25 mm) above the plate. The BEM mesh for
the plate is shown in Fig. 10. The contact surface has 200 elements and 661 nodes.

4.2 BEM results for the central load application

Fig. 11 shows the vertical displacements of the contact surface for the three FGM
modulus cases: the lower limit, the actual FGM and the upper limit. The results are
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Figure 12: Normal contact stress of actual FGM under the central load

expected since the vertical displacement for the actual FGM is 6.47×10−3 mm and
is bounded by 7.51×10−3 mm and 5.45×10−3 mm for the lower and upper limit
modulus cases, respectively.

Fig. 12 shows the normal contact stress for the actual FGM. As expected, the nor-
mal contact stress has high concentrations along the contact circumference. Fig.
13 further shows the normal contact stresses for the actual FGM and its two lim-
its along the x-axis. The contact stress values for the two limit cases are almost
identical but higher than those of the actual FGM.

Fig. 14 shows the distributions of the vertical normal stresses at the two depths (z
= 0.032 mm or 0.07 mm) along the x-axis under the central load. Fig. 15 further
shows the vertical normal stresses at the two depths (z = 0.032 mm or 0.07 mm)
along the x-axis with an offset y = 0.5 mm under the central load. As the depth z
increases, the normal stress concentrations near the contact circumference become
less and less. In addition, the FGM results in limited change in the vertical normal
stress in comparison with the homogeneous elastic solids (i.e., the two limit cases).

4.3 BEM results for the eccentric load application

Fig. 16 shows the vertical displacements of the contact surface for the three FGM
modulus cases. As expected, the vertical displacement for the actual FGM is
bounded by those for the lower and upper limit modulus cases, respectively. In



A Generalized Kelvin Solution Based BEM for Contact Problems 173

-1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0
0

2

4

6

8

10

Tr
ac

tio
n 

t z (
10

3 N
/m

m
2 )

x axis (mm)

y=0.0mm,z=0.0mm

 E=225.01 GPa

 E=310 GPa

 Graded material

-1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0
0

2

4

6

8

10

12

Tr
ac

tio
n 

t z (
10

3 N
/m

m
2 )

x axis (mm)

y=0.3mm,z=0.0mm

 E=225.01GPa

 E=310GPa

 Graded material

-1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0
0

3

6

9

12

15

Tr
ac

tio
n 

t z(1
03 N

/m
m

2 )

x axis (mm)

y=0.4mm,z=0.0mm

 E=225.01GPa

 E=310GPa

 Graded material

-1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0
0

10

20

30

40

50

Tr
ac

tio
n 

t z(1
03 N

/m
m

2 )

x axis (mm)

y=0.5mm,z=0.0mm

 E=225.01GPa

 E=310GPa

 Graded material

 Figure 13: Normal contact stresses of the actual FGM and its two limits along the
x-axis with different offsets y = 0.0, 0.3, 0.4 or 0. 5 mm under the central load
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Figure 14: Vertical normal stressesσzz

at the depth z = 0.032 or 0.07 mm along
the x-axis under the central load
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Figure 15: Vertical normal stressesσzzat
the depth z = 0.032 or 0.07 mm along
the x-axis with an offset y = 0.5 mm un-
der the central load
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Figure 16: Vertical displacements of the contact surface due to the eccentric load
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Figure 17: Normal contact stress of actual FGM under the eccentric load
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Figure 18: Normal contact stresses of the actual FGM and its two limits along the
x-axis with different offsets y =−0.5, −0.4, 0.4 or 0.5 mm under the eccentric load
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Figure 19: Vertical normal stresses at
the depth z =0.032 or 0.07 mm along the
x-axis with an offset y = 0.5 mm under
the eccentric load
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Figure 20: Vertical normal stresses at
the depth z = 0.032 or 0.07 mm along
the x-axis with an offset y = 0.4 mm un-
der the eccentric load
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Figure 21: Vertical normal stresses at
the depth z = 0.032 or 0.07 mm along
the x-axis under the eccentric load
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Figure 22: Vertical normal stresses at
the depth z = 0.032 or 0.07 mm along
the x-axis with an offset y = −0.5 mm
under the eccentric load

addition, the maximum vertical displacements are at the corner point (1.0, 0.5, 0.0)
and the minimum vertical displacements are at the corner point (−1.0, −0.5, 0.0)
for the three cases. The eccentric load does not cause any tension or gap between
the plate and its elastic base.

Fig. 17 shows the distribution of the normal contact stress associated with the
actual FGM under the eccentric load. The normal contact stress has concentrations
along the plate circumference. Its highest is located at the corner (1.0, 0.5, 0.0) and
the lowest at the corner point (−1.0, −0.5, 0.0), which correspond to the locations
of the maximum and minimum vertical displacements. Its second and third high
values are located at the third and fourth corners (1.0, -0.5, 0.0) and (−1.0, 0.5,
0.0), respectively.

Fig. 18 shows a comparison among the normal contact stresses for the actual FGM
and its two limit cases along the x-axis with different offsets y = 0.0, 0.3, 0.4 or 0.5
mm, respectively. At the edge x = 1.0 mm, the values of the normal contact stress
are the highest, the intermediate and the smallest for the upper limit case, the lower
limit case and the FGM case, respectively. However, at the opposite edge x = −1.0
mm, the value of the normal contact stress for the lower limit case is the highest.

Figs. 19-22 show the distribution of the vertical normal stress for the three cases
at the two depths (z= 0.032 mm or 0.07 mm) along the x-axis with offsets of y =
0.5, 0.4, 0.0 and −0.5 mm, respectively. The highest values of the vertical normal
stress are located at the edge x = 1.0 mm. The vertical normal stresses also have the
local peaks at the edge x = −1.0 mm. As the depth z increases, the normal stress
concentrations near the contact circumference become less and less. In addition,
the FGM results in noticeable changes in the vertical normal stress in comparison
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with the homogeneous elastic solids (i.e., the two limit cases).

5 Conclusions

This paper presents a generalized Kelvin solution based BEM for the analysis of
the normal indentation of an elastic cylinder on a FGM. The numerical verifications
show that the proposed method can obtain the satisfactory results for the contact
problems. In particular, the method is applied to the contact problem of an elastic
indenter on a FGM base. The BEM results have shown that the FGM has some
effects on the contact displacement and contact stress and the vertical normal stress
field in the elastic base solid.
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